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Abstract—Traditional text data mining techniques are not di-
rectly applicable to image data which contain spatial information
and are characterized by high-dimensional visual features. It is
not a trivial task to discover meaningful visual patterns from
images, because the content variations and spatial dependency in
visual data greatly challenge most existing data mining methods.
This paper presents a novel approach to coping with these
difficulties for mining visual collocation patterns. Specifically, the
novelty of this work lies in the following new contributions: (1) a
principled solution to the discovery of visual collocationpatterns
based on frequent itemset mining; and (2) a self-supervised
subspace learning method to refine the visual codebook by feeding
back discovered patterns via subspace learning. The experimental
results show that our method can discover semantically mean-
ingful patterns efficiently and effectively.

Index Terms—image data mining, visual pattern discovery,
visual collocation pattern.

I. I NTRODUCTION

Motivated by the previous success in mining structured
data (e.g., transaction data) and semi-structured data (e.g.,
text), it has aroused our curiosity in finding meaningful
patterns in non-structured multimedia data like images and
videos [1] [2] [3] [4] [5]. For example, as illustrated in Fig. 1,
once we can extract some invariant visual primitives such
as interest points [6] or salient regions [7] from the images,
we can represent each image as a collection of such visual
primitives characterized by high-dimensional feature vectors.
By further quantizing those visual primitives to discrete “visual
items” (also known as “visual words”) through clustering these
high-dimensional features [1], each image is represented by a
set of transaction records, where each transaction corresponds
to a local image region and describes its composition of visual
items. After that, data mining techniques can be applied to
such a transaction database induced from images for discov-
ering visual collocation pattern.

Although the discovery of visual patterns from images
appears to be quite exciting, data mining techniques that are
successful in transaction and text data may not be simply
applied to image data that contain high-dimensional features
and have spatial structures. Unlike transaction and text data
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that are composed of discrete elements without much ambi-
guity (i.e. predefined items and vocabularies), visual patterns
generally exhibit large variabilities in their visual appearances.
A same visual pattern may look very different under differ-
ent views, scales, lighting conditions, not to mention partial
occlusion. It is very difficult, if not impossible, to obtain
invariant visual features that are insensitive to these variations
such that they can uniquely characterize visual primitives.
Therefore although a discrete item codebook can be forcefully
obtained by clustering high-dimensional visual features (e.g.,
by k-means clustering), such “visual items” tend to be much
more ambiguous than the case of transaction and text data.
Thus the imperfect clustering of visual primitives brings large
challenges when directly applying traditional data mining
methods to image data. Specifically, the ambiguity lies in two
aspects:synonymyand polysemy[8]. A synonymous visual
item shares the same semantic meanings with other visual
items. Because the corresponding underlying semantics is split
and represented by multiple visual items, synonymy leads to
over-representations. On the other hand, a polysemous visual
item may mean different things under different contexts. Thus
polysemy leads to under-representations. Both phenomena
appear quite often when clustering visual primitives through
an unsupervised way. The root of these phenomena is the
large uncertainties within non-structured visual data in the
high-dimensional space. Therefore, it is crucial to address
the uncertainty issues. One possible solution to resolve the
ambiguity of polysemous visual words may be to put them
into a spatial context. In other words, thevisual collocation(or
co-occurrence) of several visual items is likely to be much less
ambiguous. Therefore, it is of great interest to automatically
discover these collocation visual patterns. Once such visual
collocation patterns are discovered, they can help to learna
better representation for clustering visual primitives.

However, since visual patterns exhibit more complex struc-
ture than transaction and text pattern, the difficulty in rep-
resenting and discovering spatial patterns in images prevents
straightforward generalization of traditional data mining meth-
ods that are applicable for transaction data. For example,
unlike traditional transaction database where records areinde-
pendent of each other, the induced transactions generated by
image patches can be correlated due to spatial overlap. This
phenomenon complicates the data mining process for spatial
data, because simply counting the occurrence frequencies is
doubtable and thus a frequent pattern is not necessarily a
meaningful pattern. Thus special care needs to be taken.
Although there exist methods [9] [10] [11] for spatial collo-
cation pattern discovery from geo-spatial data, they cannot be



2

Fig. 1. The illustration of collocation visual patterns from images. There
are two kinds of imperfectness when translating image data into transaction
data for data mining. First, the visual primitives can be miss-detected in the
feature extraction process, due to the occlusion, bad lighting conditions or
the unreliable detectors. Secondly, even if a visual primitive is extracted,
it can be wrongly clustered into a visual item due to visual polysemy and
synonymy. A direct pattern mining on the noisy transaction database cannot
obtain satisfactory results.

directly applied to image data which are characterized by high-
dimensional features. Moreover, the spatial co-occurrences of
the items do not necessarily indicate the real associations
among them, because a frequent spatial collocation patterncan
be generated by the self-repetitive texture in the image andthus
is not semantically meaningful. Thus, finding frequent patterns
may not always output meaningful and informative patterns in
image data.

Given a collection of images, our objective of image data
mining is to discover meaningful visual patterns that appear
repetitively among the images. Compared with the background
clutters, such visual patterns are of great interests thus should
be well treated in clustering visual items. For example, given a
few face photos of different persons, can we discover the visual
collocations like eyes and noses that can interpret the face
category? Moreover, once these visual patterns are discovered,
can they help to learn a better feature representation via
subspace learning?

To address these problems, this paper presents a novel
bottom-up approach to discovering semantically meaningful
visual patterns from images. As shown in Fig. 1, an image
is represented by a collection of visual items after clustering
visual primitives. To discover visual collocation patterns, a
new data mining criterion is proposed. Instead of using the
co-occurrence frequency as the criterion for mining the mean-
ingful collocation patterns in images, a more plausiblevisual
collocation miningbased on likelihood ratio test is proposed to
evaluate the significance of a visual itemset. Secondly, once the
visual collocation patterns (foreground items) and background
items are discovered, we can feed them back into the clustering
procedure by learning a better subspace representation via

metric learning, to distinguish the object of interests from the
cluttered background. Then the visual primitives can be better
clustered in the learned subspace. To this end, we propose a
self-supervised subspace learning of visual items. By taking
advantage of the discovered visual patterns, such a top-down
refinement procedure helps to reduce the ambiguities among
visual items and better distinguish foreground items from the
background items. Our experiments on three object categories
from the 101 Caltech dataset demonstrate the effectivenessand
efficiency of our proposed method.

The rest of the paper is organized as follows. We discuss the
related work in Section II, followed by the overview of our
approach in Section III. The discovery of visual collocation
patterns is presented in Section IV. After that we discuss
how to refine the discovered patterns via metric learning in
Section V. The experiments are conducted in Section VI
followed by the conclusion in Section VII.

II. RELATED WORK

By characterizing an image as a collection of primitive
visual features that highlight the local image invariants,and
clustering these primitive features into discrete visual words,
we can translate an image to a visual document. Such a “bag
of words” model bridges the text data mining and image data
mining research, and has been extensive applied in image
retrieval [12], recognition [13], as well as image data min-
ing [1] [14] [15]. As a similar treatment of texts, previous text
information retrieval and data mining methods can be applied
to image data. For example, in [16], text-retrieval methods
are applied to search visual objects in videos. Statistical
natural language models, such as probabilistic Latent Semantic
Analysis (pLSA) and Latent Dirichlet Allocation (LDA), are
applied to discover object categories from images [17] [8].

Although it brings many benefits by representing images
as visual documents, the induced visual vocabulary tend to
be much more ambiguous than that in text. To learn a
better visual vocabulary, [18] discusses the limitation ofk-
means clustering and propose a new strategy to build the
codebook. However, unsupervised learning of a good visual
vocabulary is difficult. As a treatment to resolve the ambiguity
of polysemous and synonymous visual words, spatial context
information in image is taken into consideration. It is noted
that theco-occurrenceof visual words, namely a composition
of visual items, has a better representation power and is likely
to be less ambiguous, such as the visual phrases [19] [20],
visual synset [21] and dependent regions [22].

To discover visual patterns, some other methods consider the
spatial configuration among the visual features when modeling
the spatial image pattern. In [23], attributed relational graphs
(ARG) are applied to model the spatial image pattern. EM
algorithm is used for parameters learning. In [24], spatial
relations are defined in terms of the distance and direction
between pair of detected parts. In [25], both geometry and
appearance information of generic visual object category is
coded in a hierarchical generative model. A constellation
model is used to model a visual object category in [26]. The
proposed probabilistic model is able to handle all kinds of
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variations of the objects, such as shape, appearance, occlusion
and relative scale. However, the structure of the model and the
object parts need to be manually selected. In [27], a tree model
is proposed to discover and segment visual objects that belong
to the same category. Despite its powerful modeling ability, the
training of these generative models is usually time-consuming.
When using the EM algorithm for learning, it is easy to be
trapped by the local optimality. In [28], a generative model,
called active basis model, is proposed to learn a deformable
template to sketch the common object from images. The active
basis consists of a small number of Gabor wavelet elements
at selected locations and orientations.

Instead of using top-down generative model to discover vi-
sual patterns, these are also data-driven bottom-up approaches.
To perform efficient image data mining, frequent itemset
mining is applied in [29] [30] by translating each local image
region into a transaction. In order to consider the spatial
configuration among the visual items, in [31], semantics are
represented as visual elements and geometric relationships
between them. An efficient mining method is proposed to find
pair-wise associations of visual elements that have consistent
geometric relationships sufficiently often. In [32], an efficient
image pattern mining approach is proposed to handle the scale,
translation, and rotation variations in mining frequent spatial
patterns in images. In [33], contextual visual word is proposed
to improve the image search and near duplicate copy detection.

There are also related works in data mining. It is of great
interests to discover frequent patterns in data mining research.
For example, frequent itemset mining (FIM) and its extensions
[34] [35] [36] have been extensively studied. However, a
highly frequent pattern may not be informative or interesting,
thus a more important task is to extract informative and
potentially interesting patterns from the possibly noisy data.
This can be done by mining meaningful patterns either through
post-processing the FIM results or proposing new data mining
criteria, including mining compressed patterns [37] [38] [39],
approximate patterns [40] [41] [42] and pattern summarization
[43] [44] [45]. These data mining techniques may discover
meaningful frequent itemsets and represent them in a compact
way.

III. OVERVIEW

A. Notations and basic concepts

Each image in the database is described by a set of
visual primitives: I = {vi =

(

~fi, xi, yi

)

}, where ~fi de-

notes the high-dimensional feature and{xi, yi} denotes the
spatial location ofvi in the image. We treat these visual
primitives as theatomic visual patterns. For each visual
primitive vi ∈ I, its local spatial neighbors form agroup
Gi = {vi, vi1 , vi2 , · · · , viK

}. For example,Gi can be the
spatial K-nearest neighbors (K-NN) or ε-nearest neighbors
(ε-NN) of vi under the Euclidean distance. As illustrated in
Fig. 2, the image databaseDI = {It}Tt=1 can generate a
collection of such groups, where each groupGi is associated
with a visual primitive vi. We want to mention that two
spatially neighbored groups may share some visual primitives

Fig. 2. Illustrations of the visual groups and the discoveryof visual
collocations. Each circle corresponds to a spatial group (namely a transaction),
which is composed of 5-NN visual items. An image can generatea collection
of such groups for data mining. A and B are discovered visual collocation
patterns.

due to their spatial overlap. By further quantizing all the high-
dimensional features~fi ∈ DI into M classes throughk-
means clustering, a codebook of visual primitivesΩ can be
obtained. We call every prototypeWk in the codebookΩ =
{W1, ..., WM} a visual item. Because each visual primitive is
uniquely assigned to one of the visual itemsWi, the group
Gi can be transformed into atransactionTi. More formally,
given the group datasetG = {Gi}Ni=1 generated fromDI and
the visual item codebookΩ (|Ω| = M ), we can induce a
transaction databaseT = {Ti}. Such an induced transaction
database is essentially based on thecentric reference feature
modelfor mining association rules [10]. Given the visual item
codebookΩ, a sub-setP ⊂ Ω is called avisual itemset
(itemset for short). For a given itemsetP , the transactionTi

which includesP is called anoccurrenceof P , i.e. Ti is an
occurrence ofP , if P ⊆ Ti. Let T(P) denote the set of all the
occurrences ofP in T, and thefrequencyof P is the number
of its occurrences denoted as:

frq (P) = |T(P)| = |{i : ∀j ∈ P , tij = 1}|, (1)

where tij = 1 denotes that thejth item appears in theith
transaction, andtij = 0 otherwise.

For a given thresholdθ, called aminimum support, itemset
P is frequentif frq(P) > θ. It is not a trivial task to discover
all the frequent itemsets given datasetT, because the number
of possible itemsets is exponentially large with respect tothe
codebook size. For example, the codebookΩ has in total2|Ω|

candidates for frequent itemsets, therefore exhaustive check is
infeasible for large codebooks. Also, if an itemsetP appears
frequently, then all of its sub-setsP ′ ⊂ P will also appear
frequently, i.e. frq(P) > θ ⇒ frq(P ′) > θ. For example,
a frequent itemsetP composed withn items can generate
2n frequent sub-itemsets including itself and the null itemset.
To eliminate this redundant representation,closed frequent
itemsetsis introduced [46]. Thus this guarantees that no visual
collocations will be left out. Theclosed frequent itemsetis
defined as follows.
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Fig. 3. The overview for the proposed method for mining visual collocation
patterns. We propose a hierarchical and self-supervised visual pattern discov-
ery method to handle the imperfectness from the visual vocabulary and can
reveal the hierarchical structure of visual patterns

Definition 1: closed frequent itemset
If for an itemsetP , there is no other itemsetQ ⊇ P that can
satisfy T(P) = T(Q), we sayP is closed. For any itemset
P andQ, T(P ∪ Q) = T(P) ∩ T(Q), and if P ⊆ Q then
T(Q) ⊆ T(P).

To find frequent itemsets, we apply the FP-growth algo-
rithm to discoverclosedfrequent itemsets [47]. The number
of closed frequent itemsets is much less than the frequent
itemsets, and they compress information of frequent itemsets
in a lossless form,i.e. the full list of frequent itemsets
F = {Pi} and their corresponding frequency counts can
be exactly recovered from the compressed representation of
closed frequent itemsets. As FP-tree has a prefix-tree structure
and can store compressed information of frequent itemset,
it can efficiently discover all the closed frequent sets from
transaction datasetT.

B. Overview of our method

We present the overview of our visual pattern discovery
method in Fig. 3. Given a collection of images, we detect the
local interest features, followed by clustering them into agroup
of visual items. The spatial dependences of these visual items
are discovered via using the proposed data mining methods.
Once these spatial collocation patterns are discovered, itcan
guide the subspace learning in finding a better feature space
for visual item clustering. Finally, the discovered visualitems
are further grouped to recover the visual patterns.

In Section IV, we present our new criteria for discovering
visual collocation patternsPi ⊂ Ω. After that in Section V,

we feed back the discovered visual collocationsΨ to refine
the data mining via metric learning. The experiments are
conducted in Section VI and we conclude in Section VII.

IV. D ISCOVERING V ISUAL COLLOCATION PATTERNS

A. Visual Primitive Extraction

We apply the PCA-SIFT points [48] as thevisual primitives.
Such visual primitives are mostly located in the informative
image regions such as corners and edges, and the features
are invariant under rotations, scale changes, and slight view-
point changes. Normally each image may contain hundreds
to thousands of such visual primitives based on the size
of the image. According to [48], each visual primitive is a
41 × 41 gradient image patch at the given scale, and rotated
to align its dominant orientation to a canonical direction.
Principal component analysis (PCA) is applied to reduce the
dimensionality of the feature. Finally each visual primitive is
described by a 35-dimensional feature vector~fi. These visual
primitives are initially clustered into visual items through k-
means clustering, using Euclidean metric in the feature space.
We will discuss how to obtain a better visual item codebookΩ

based on the proposed self-supervised metric learning scheme
in Sec. V.

B. Finding Meaningful Visual Collocations

Given an image datasetDI and its induced transaction
databaseT, the task is to discover the visual collocation
patternsP ⊂ Ω (|P| ≥ 2). Each visual collocation is
composed by a collect of visual items that occur together
spatially. To evaluate the qualification of aP ⊆ Ω, simply
checking its frequencyfrq(P) in T is far from sufficient. For
example, even if an itemset appears frequently, it is not clear
whether such co-occurrences among the items are statistically
significant or just by chance. In order to evaluate the statistical
significance of a frequent itemsetP , we propose a new
likelihood ratio test criterion. We compare the likelihoodthat
P is generated by the meaningful pattern versus the likelihood
thatP is randomly generated,i.e. by chance.

More formally, we perform the likelihood ratio test to
measure a visual collocation based on the two hypotheses,
where

H0: occurrences ofP are randomly generated;
H1: occurrences ofP are generated by the hidden pattern.

Given a transaction databaseT, the likelihood ratioL(P)

of a visual collocationP = {Wi}
|P|
i=1 can be calculated as:

L(P) =
P (P|H1)

P (P|H0)
=

∑N
i=1 P (P|Ti, H1)P (Ti|H1)

∏|P|
i=1 P (Wi|H0)

. (2)

HereP (Ti|H1) = 1
N

is the prior, andP (P|Ti, H1) is the like-
lihood thatP is generated by a hidden pattern and is observed
at a particular transactionTi. ThereforeP (P|Ti, H1) = 1,
if P ⊆ Ti, and P (P|Ti, H1) = 0, otherwise. Consequently,
based on Eq. 1, we can calculateP (P|H1) = frq(P)

N
. We also

assume that the itemsWi ∈ P are conditionally independent
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under the null hypothesisH0, andP (Wi|H0) is the prior of
item Wi ∈ Ω, i.e. the total number of visual primitives that
are labeled withWi in the image databaseDI . We thus refer
L(P) as the “significance” score to evaluate the deviation of
a visual collocation patternP . If P is a second-order itemset,
then L(P) degenerates to the pointwise mutual information
criterion,e.g., the lift criterion [46].

It is worth noting thatL(P) may favor high-order colloca-
tions even though they appear less frequently. Table I presents
such an example, where 90 transactions have only itemsA
andB; 30 transactions haveA,B andC; 61 transactions have
D andE; and 19 transactions haveC andE.

TABLE I
TRANSACTION DATABASET1 .

transaction number L(P)

AB 90 1.67
ABC 30 1.70
DE 61 2.5
CE 19 0.97

From Table I, It is easy to evaluate the significant scores
for P1 = {A, B} andP2 = {A, B, C} with L(P1) = 1.67
and L(P2) = 1.70 > L(P1). This result indicates thatP2

is a more significant pattern thanP1 but counter-intuitive.
This observation challenges our intuition becauseP2 is not
a cohesive pattern. For example, the other two sub-patterns
of P2, P3 = {A, C} and P4 = {B, C}, contain almost
independent items:L(P3) = L(P4) = 1.02. Actually, P2

should be treated as a variation ofP1 as C is more likely
to be a noise. The following equation explains what causes
the incorrect result. We calculate the significant score ofP2

as:

L(P2) =
P (A, B, C)

P (A)P (B)P (C)
= L(P1)×

P (C|A, B)

P (C)
. (3)

Therefore when there is a small disturbance with the distri-
bution of C over T1 such thatP (C|A, B) > P (C), P2 will
competeP1 even thoughP2 is not a cohesive pattern (e.g.C
is not related to eitherA or B). To avoid those free-riders such
asC for P1, we perform a more strict test on the itemset. For
a high-orderP (|P| > 2), we perform the t-test for each pair
of its items to check if itemsWi and Wj (Wi, Wj ∈ P) are
really dependent (see Appendix A for details.) A high-order
collocationPi is meaningful only if all of its pairwise subsets
can pass the test:∀i, j ∈ P , t({Wi, Wj}) > τ , whereτ is the
confidence threshold for the t-test. This further reduces the
redundancy among the discovered itemsets.

Finally, to assure that a visual collocationP is meaningful,
we also require it to appear relatively frequent in the database,
i.e. frq(P) > θ, such that we can eliminate those colloca-
tions that appear rarely but happen to exhibit strong spatial
dependency among items. With these three criteria, a visual
collocation pattern is defined as follows.

Definition 2: Visual Collocation Pattern
An itemsetP ⊆ Ω is a(θ, τ, γ)-meaningful visual collocation,
if it is:

1) frequent: frq(P) > θ;

2) pair-wisely cohesive: t({Wi, Wj}) > τ, ∀i, j ∈ P ;
3) significant: L(P) > γ.

C. Spatial Dependency among Induced Transactions

Suppose primitivesvi and vj are spatial neighbors, their
induced transactionTi andTj will have large spatial overlap.
Due to such spatial dependency among the transactions, it
can cause over-counting problem if simply calculatingfrq(P)
from Eq. 1. Fig. 4 illustrates this phenomena wherefrq(P)
contains duplicate counts.
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Fig. 4. Illustration of the frequency over-counting causedby the spatial
overlap of transactions. The itemset{A, B} is counted twice byT1 =
{A, B, C, E} andT2 = {A, B, D, F}, although it has only one instance in
the image. Namely there is only one pair ofA andB that co-occurs together,
such thatd(A, B) < 2ε with ε the radius ofT1. In the texture region where
visual primitives are densely sampled, such over-count will largely exaggerate
the number of repetitions for a texture pattern.

In order to address this transaction dependency problem,
we apply a two-phase mining scheme. First, without consid-
ering the spatial overlaps, we perform closed FIM to obtain
a candidate set of frequent itemsets. For these candidates
F = {Pi : frq(Pi) > θ}, we re-count the number of
their real instances exhaustively through the original image
databaseDI , not allowing duplicate counts. This needs one
more scan of the whole database. Without causing confusion,
we denote ˆfrq(P) as the occurrence number ofP and use
it to updatefrq(P). Accordingly, we adjust the calculation

of P (P|H1) =
ˆfrq(P)

N̂
, where N̂ = N/K denotes the

approximated independent transaction number withK the
average size of transactions. In practice, asN̂ is hard to
estimate, we rankPi according to their significant valueL(P)
and perform the top-K pattern mining.

Integrating all the steps in this section, we present our
algorithm to discover meaningful visual collocations in Al-
gorithm 1.

Algorithm 1 : Visual Collocation Mining

input : Transaction datasetT, parameters:(θ, τ, γ)
output: a collection of meaningful visual collocations:

Ψ = {Pi}

Init: closed FIM withfrq(Pi) > θ: F = {Pi}, Ψ←− ∅;1

foreach Pi ∈ F do GetRealInstanceNumber(Pi)2

for Pi ∈ F do3

if L(Pi) > γ ∧ PassPairwiseTtest (Pi) then4

Ψ←− Ψ ∪ Pi5

ReturnΨ6
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V. SELF-SUPERVISEDREFINEMENT OFV ISUAL ITEM

CODEBOOK

A. Foreground V.S. Background

As discussed earlier, our image data mining method highly
relies on the quality of the visual item codebookΩ. A bad
clustering of visual primitives brings large quantizationerrors
when generating the transactions. Such a quantization error
will affect the data mining results significantly. Thus a good
Ω is required. To improve the codebook construction, we
propose to use the discovered collocation patterns to supervise
the clustering process. Although there is no supervision avail-
able initially, the unsupervised data mining process actually
discover useful information for supervision. Thus it is called
self-supervised refinement.

We notice that each image contains two layers: a foreground
object and the background clutters. Given a collection of
images containing the same category of objects, the foreground
objects are similar, while the background clutters are different
from each other. The discovered visual collocations are sup-
posed to be associated with the foreground object. As each
image is composed of the visual items, we can partition the
codebook into two partsΩ = Ω

+ ∪Ω
−, where items inΩ+

are more likely to appear in the foreground object, while items
in Ω

− are more likely to appear in the background. Thus it
provides information to learn a better codebook.

By discovering a set of visual collocationsΨ = {Pi}, we
define theforeground item codebookas follows:

Definition 3: foreground codebookΩ
+

Given a set of visual collocationsΨ = {Pi}, an item
Wi ∈ Ω is a foreground item if it belongs to any collocation
patternP ∈ Ψ, namely,∃P ∈ Ψ, such thatWi ⊂ P . All
of the foreground items compose the foreground codebook
Ω

+ =
⋃|Ψ|

i=1 Pi.

With the foreground codebook, thebackground codebook
becomesΩ− = Ω\Ω+. Each visual primitive belongs to
either the foreground object (positive class) or the background
clutter (negative class).

Our goal now is to use the data mining results to refine the
codebooksΩ+ andΩ

−, such that they can better distinguish
the two classes. For the negative class, any visual primitive that
belongs toΩ− can be the negative training example. However,
for the positive classΩ+, not all of items inΩ+ are qualified
to be positive samples. We only choose those instances of the
visual collocations.

B. Learning a better metric for clustering

With these training examples via data mining, we transfer
the unsupervised clustering problem into semi-supervisedclus-
tering to obtain a better codebookΩ. Our task is to cluster
all the visual primitivesvi ∈ DI . Now some of the visual
primitives are already labeled according to the discovered
visual collocations and the background visual items. Thus we
can use these labeled primitives to help cluster all of visual
primitives.

We apply the nearest component analysis (NCA) [49] to
improve the clustering results by learning a better Mahalanobis
distance metric in the feature space. Similar to the linear
discriminative analysis (LDA), NCA targets at learning a
global linear projection matrixA. However, unlike LDA, NCA
does not need to assume that each visual item class has a
Gaussian distribution and thus can be applied to more general
cases. Given two visual primitivesvi and vj , NCA learns a
new metricA and the distance in the transformed space is:
dA(vi, vj) = (~fi− ~fj)

T AT A(~fi− ~fj) = (A~fi−A~fj)
T (A~fi−

A~fj).
The objective of NCA is to maximize a stochastic variant

of the leave-one-out K-NN score on the training set. In the
transformed space, a pointvi selects another pointvj as its
neighbor with probability:

pij =
exp(−‖A~fi −A~fj‖2)

∑

k 6=i exp(−‖A~fi −A~fk‖2)
, pii = 0. (4)

Under the above stochastic selection rule of nearest neigh-
bors, NCA tries to maximize the expected number of points
correctly classified under the nearest neighbor classifier (the
average leave-one-out performance):

f(A) =
∑

i

∑

j∈Ci

pij , (5)

where Ci = {j|ci = cj} denotes the set of points in the
same class asi. By differentiatingf , the objective function can
be maximized through gradient search for optimalA. After
obtaining the projection matrixA, we update all the visual
features ofvi ∈ DI from ~fi to A~fi, and re-cluster the visual
primitives based on their new featuresA~fi.

C. Clustering of Visual Collocations

The discovered visual collocations may not be complete
patterns. There is redundancy among them as well. Give a
patternH = {A, B, C}, it is possible to obtain many incom-
plete visual collocations such as{A, B}, {A, C}, {B, C} due
to image noises and quantization errors. Therefore we need to
handle this problem.

If two visual collocationsPi andPj are correlated, their
transaction setT(Pi) and T(Pj) (Eq. 1) should also have
a large overlap [43], implying that they may be generated
from the same patternH. As a result,∀i, j ∈ Ψ, we can
measure their similaritys(i, j), which depend not only on their
frequencies ˆfrq(Pi) and ˆfrq(Pj), but also the correlation
between their transaction setT(Pi) andT(Pj). We apply the
Jaccard distance to estimates(i, j) [50]:

s(i, j) = exp

1

1−
|T(Pi)∩T(Pj )|

|T(Pi)∪T(Pj )| . (6)

Given a collection of visual collocationsΨ = {Pi} and
their pair-wise similarity s(i, j), we cluster them intoK
classes using normalized cut [51]. Each classHj = {Pi}

|Hj|
i=1

is a group of visual collocations, called avisual part. Each
Pi ∈ H is an variation ofH, due to the image noises or
the quantization error of the codebook. By grouping visual
collocations, we end up with a collection of visual parts:
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H = {Hi}. These visual parts can be further constructed to
recover the whole visual object.

Algorithm 2 : Main Algorithm
input : Image datasetDI ,

ε or K for searching spatialε-NN or K-NN,
parameter:(θ, τ, γ),
number of semantic patterns:|H|,
number of maximum iterationl

output: A set of semantic patterns:H = {Hi}

Init: Get visual item codebookΩ0 and induced1

transaction DBT0
Ω

; i←− 0;
while i < l do2

Ψ
i = MIM(Ti

Ω
); /* visual collocation mining3

*/

Ω
i
+ = ∪jPj, wherePj ∈ Ψ

i;4

Ai = NCA (Ωi
+ ,Ti

Ω
); /* get new metric */5

UpdateΩi andT
i based onAi;/* re-clustering */6

if little change ofΩi then7

break;8

i←− i + 19

S = GetSimMatrix (Ψi);10

H = NCut (S, |H|); /* pattern summarization */11

ReturnH;12

VI. EXPERIMENTS

A. Dataset Description

Given a large image datasetDI = {Ii}, we first extract
the PCA-SIFT points [48] in each imageIi and treat these
interest points as the visual primitives. We resize all images
by the factor of2/3. The feature extraction is on average
0.5 seconds per image. Multiple visual primitives can be
located at the same spatial location, but with various scales
and orientations. Each visual primitives is represented asa
35-d feature vector after principal component analysis. Then
k-means algorithm is used to cluster these visual features into
a visual item codebookΩ. We select three categories from
the Caltech101 database [26] for the experiments: faces (435
images from23 persons), cars (123 images of different cars),
and airplanes (800 images of different airplanes). We set the
parameters for MIM as:θ = 1

4 |DI |, where|DI | is the total
number of images, andτ is associated with the confidence
level of 0.90. Instead of setting thresholdγ, we select the
top phrases by ranking theirL(P) values. We set visual item
codebook size|Ω| = 160, 500, and300, for the car, face, and
airplane categories, respectively. For generating the transaction
databasesT, we setK = 5 for searching spatial K-NN to
compose each transaction. All the experiments were conducted
on a Pentium-43.19GHz PC with1GB RAM running window
XP.

B. Evaluation of Visual Collocation Patterns

We use two metrics to evaluate the discovered visual collo-
cations: (1) the precision ofΨ: ρ+ denotes the percentage
of discovered visual collocationsPi ∈ Ψ that are located

in the foreground objects, and (2) the precision ofΩ
−: ρ−

denotes the percentage of meaningless itemsWi ∈ Ω
− that

are located in the background. Fig. 5 illustrates the concepts
of our evaluation. In the ideal situation, ifρ+ = ρ− = 1, then
everyPi ∈ Ψ is associated with the interesting object,i.e.
located inside the object bounding box; while all meaningless
items Wi ∈ Ω

− are located in the backgrounds. In such a
case, we can precisely discriminate the frequently appeared
foreground objects from the clutter backgrounds, through an
unsupervised learning. Finally, we use retrieval rateη to
denote the percentage of retrieved images that contain at least
one visual collocation. Since for the airplane category, most
airplanes appear in the clean background, its precision will
be high because there is much less interest points located in
the background. To make a fair evaluation, we thus only test
the accuracy of the car and face categories, where the objects
are always located in a cluttered background. We only test
the airplane category for the discovery of high-level visual
patterns.

Fig. 5. Evaluation of visual collocations mining. The highlight bounding
box (yellow) represents the foreground region where the interesting object is
located. In the idea case, all the MIPi ∈ Ψ should locate inside the bounding
boxes while all the meaningless itemsWi ∈ Ω

− are located outside the
bounding boxes.

In Table II, we present the visual collocations from the car
database. The first row indicates the number of visual collo-
cations (|Ψ|), selected by theirL(P). When selecting more
visual collocations, the precision score ofΨ, ρ+, decreases
(from 1.00 to 0.86), while the percentage of retrieved images
η increases (from0.11 to 0.88). The high precision ofρ+

indicates that the discovered visual collocation are associated
with the foreground objects. It is also noted that meaningful
item codebookΩ+ is only a small subset with respect to
Ω (|Ω| = 160). This implies that most visual items do not
belong to the foreground objects. They are noisy items from
the backgrounds.

TABLE II
PRECISION SCOREρ+ AND RETRIEVAL RATE η FOR THE CAR DATABASE,

CORRESPONDING TO VARIOUS SIZES OFΨ. SEE TEXT FOR DESCRIPTIONS

OF ρ+ AND η.

|Ψ| 1 5 10 15 20 25 30

|Ω+| 2 7 12 15 22 27 29
η 0.11 0.40 0.50 0.62 0.77 0.85 0.88
ρ+ 1.00 0.96 0.96 0.91 0.88 0.86 0.86

We further compare three types of criteria for selecting
visual collocationsP into Ψ, against the baseline of selecting
the individual visual itemsWi ∈ Ω to build Ψ. The three
visual collocation selection criteria are: (1) occurrencefre-
quency: ˆfrq(P) (2) T-score (Eq. 7) (only select the second
order itemsets,|P| = 2) and (3) likelihood ratio:L(P) (Eq. 2).
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The comparison results are presented in Fig. 6. It shows how
ρ+ andρ− vary with increasing size ofΨ (|Ψ| = 1, ..., 30). In
general, the larger the size ofΨ, the lower the precisionρ+,
but the higher the precisionρ−, becauseΩ− becomes smaller
and purer. Meanwhile, we notice that all of the three criteria
perform significantly better than the baseline of choosing the
most frequent individual items as meaningful patterns. This is
not surprising because frequent itemsWi ∈ Ω correspond to
common features (e.g.corners), therefore they appear in both
foreground objects and clutter backgrounds and express little
discriminative ability.

Finally, Among the three criteria, occurrence frequency
f̂ rq(P) performs worse than the other two criteria, which fur-
ther demonstrates that not all frequent itemsets are meaningful
patterns. It is also shown from Fig. 6 that when only selecting
a few number of visual collocations,i.e.Ψ has a small size, all
the three criteria yield similar performances. However, when
more visual collocations are added, the proposed likelihood
ratio test method performs better than the other two, which
shows our MIM algorithm can discover meaningful visual
patterns.

0.65 0.7 0.75 0.8 0.85 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ−

ρ
+

likelihood ratio
t−test
co−occorrence frequency
single item frequency

Fig. 6. Performance comparison by applying three differentcriteria to select
visual collocations, also with the baseline of selecting most frequent individual
items to buildΨ.

By taking advantage of the FP-growth algorithm for closed
FIM, our pattern discovery is very efficient. As presented
in Table III, it costs around17.4 seconds for discovering
visual collocations from the face database containing over
60, 000 transactions. Compared with top-down models such as
topic discovery for visual pattern discovery, such a bottom-up
pattern mining method is more efficient. Moreover, as we only
select a very small subset of visual primitives for subspace
learning,e.g., NCA, the computational cost for metric learning
is acceptable.

TABLE III
CPUCOMPUTATIONAL COST FOR VISUAL COLLOCATIONS MINING IN

FACE DATABASE, WITH |Ψ| = 30.

# images
|DI |

# transactions
|T|

closed FIM
[47]

MIM
Alg.1

435 62611 1.6 sec 17.4 sec

C. Refinement of visual item codebook

To implement NCA for metric learning, we select5 visual
collocations fromΨ (|Ψ| = 10). There are in total less than

10 items shared by these5 visual collocations for both face
and car categories,i.e. |Ω+| < 10. For the foreground class,
we select all of the instances of top five visual collocationsas
training samples. Considering the large number of background
items Ω

−, we only select a small number of them which
have higher probability to generated from the background.
Specifically, from the visual primitives belonging toΩ−, we
only select those uncommon visual primitives that cannot find
many matches in the rest of images. The number of negative
training samples is selected according to the number of posi-
tive training samples, to make balanced training examples.

After learning a new metric using NCA, the inter-class
distance is enlarged while the intra-class distance is reduced
among the training samples. We then reconstruct the visual
item codebookΩ usingk-means clustering, and perform the
visual collocation discovery again. To compare the visual
collocations using the original codebook and the refined one,
Fig. 7 shows the results in both car and face datasets. It can be
seen that the precisionρ+ of visual collocations is improved
with the refined codebook.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

η

ρ+

face w/o refinement
car w/o refinement
face w refinement
car w refinement

Fig. 7. Comparison of visual item codebook before and after self-supervised
refinement.

D. Clustering of visual collocations

For each object category, we select the top-10 visual
collocations by theirL(P) (Eq. 2). All of the discovered
visual collocations are the second-order, third-order, orfourth-
order itemsets. Each collocation pattern is a local composition
of visual items. These items function together as a single
visual lexical entity. By further clustering these top-10 visual
collocation (|Ψ| = 10) into visual parts, the clustering results
are presented in Fig. 8 and Fig. 9, for the face and car
categories respectively. For the face category, we clustervisual
collocations into|H| = 6 visual parts. Five of the six visual
parts are semantically meaningful: (1) left eye (2) between
eyes (3) right eye (4) nose and (5) mouth. All of the discovered
visual parts have very high precision. It is interesting to note
that left eye and right eye are discovered separately, due tothe
differences of their visual appearances. The other visual part
that is not associated with the face. It corresponds to corners
from computers and windows in the office environment. For
the car category, we cluster them into|H| = 2 visual parts:
(1) car wheels and (2) car bodies (mostly windows containing
strong edges). For the airplane category, we also cluster them
into |H| = 3 visual parts, while two of them are semantically
meaningful: (1) airplane heads and (2) airplane wings.
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To evaluate the clustering of visual collocations, we apply
the precision and recall scores defined as follows: Recall = #
detects / (# detects + # miss detects) and Precision = # detects
/( # detects + # false alarms). For each visual part, the ground
truths are manually labeled in the images. We evaluate both
the car and face categories in Fig. 8 and Fig. 9. It can be seen
that the discovered visual parts are of high precision but low
recall rate. The high precision rate validates the quality of the
discovered patterns. The miss detection of many visual parts
is mainly caused by the interest point miss detection and the
quantization errors in the codebook.

E. From visual parts to visual objects

The discovered visual parts in Fig. 8 and Fig 9 can be further
composed into a high-level pattern that describes the whole
object. We treat each partHi as a high-level item and build an-
other codebookΩ′ = H = {Hi}. Based on the new codebook
Ω

′, each image is composed of a few high-level itemsHi, i.e.,
visual parts. Thus each image generates a single transaction
for data mining. Then we perform visual collocation mining
on these transactions again, but with a much smaller codebook
Ω

′. In general, our approach can be easily extended to a multi-
level discovery of visual patterns. Letl denotes the level, a
typical semantic pattern in layerl, Hl

i ⊂ Ωl is a composition
of simpler subpatterns (items) from the lower levelΩl−1 =
{Hl−1

i ,Hl−1
2 , ...,Hl−1

Ml−1
} which, in turn, are built from even

simpler subpatternsΩl−2 = {Hl−2
1 ,Hl−2

2 , ...,Hl−2
Ml−2
}. The

most primitive subpatternsΩ1 = {H1
1,H

1
2, ...,H

1
M1
} are the

primitive visual items. Such a multi-level pattern discovery
can help to reveal the hierarchical structure of visual patterns
and is computationally efficient.

To explain the procedure of detecting visual parts, Fig. 10,
Fig. 12, and Fig 14 show some exemplar results, for the car,
face, and airplane categories, respectively. Visual primitives
are highlighted as the green circles in each image. Then the
discovered visual collocations are highlighted by the bounding
boxes. The colors of the visual primitives inside the bounding
box distinguish different types of the visual parts. Once the
visual parts are obtained, Fig. 11, Fig. 13 and Fig. 15
show how these visual parts can be further constructed to
represent the whole object, for the car, face, and airplane
categories, respectively. Since a visual part correspondsto
a group of similar visual collocationsH = {Pj}, in each
image, we treat any occurrence ofPj ∈ H as the occur-
rence ofH. For example, according to the visual parts in
Fig. 8, there are 5 visual parts in the face category:Ω

′ =
{left eye, right eye, between eyes, nose, mouth} in the face
category. While for the car and airplane categories, there are
only two visual parts:Ω′ = {car wheel, car body} for the car
category andΩ′ = {airplane head, airplane wing} for the
airplane category, respectively. It is interesting to notice that
although we do not reinforce geometrical relationship among
the visuals parts, the geometrical configuration among themis
consistent among different images.

VII. C ONCLUSION

Text-based data mining techniques are not directly applica-
ble to image data, which exhibit much larger variabilities and

uncertainties. To leap from text data mining to image data
mining, we present a systematic study on mining visual collo-
cation patterns from images. A new criterion for discovering
visual collocations based on traditional FIM is proposed. Such
visual collocations are statistically more interesting than the
frequent itemsets. To obtain a better visual codebook, a self-
supervised subspace learning method is proposed by applying
the discovered visual collocations as supervision to learna
better similarity metric through subspace learning. By further
clustering these visual collocations (incomplete sub-patterns),
we successfully extract semantic visual patterns despite the
intra-pattern variations and the cluttered backgrounds. As a
pure data-driven bottom-up approach, our method does not
depend on a top-down generative model in discovering visual
patterns. It is computationally efficient and requires no prior
knowledge of the visual pattern. Our future work will consider
how to apply the discovered visual collocations for image
search and categorization.

APPENDIX A
PAIR-WISE DEPENDENCYTEST

If Wi, Wj ∈ Ω are independent, then the process of
randomly generating the pair{Wi, Wj} in a transactionTi

is a (0/1) Bernoulli trial with probabilityP (Wi, Wj) =
P (Wi)P (Wj). According to the central limit theory, as
the number of trials (transaction numberN ) is large, the
Bernoulli distribution can be approximated by the Gaussian
random variablex, with mean µx = P (Wi)P (Wj). At
the same time, we can measure the average frequency of
{Wi, Wj} by counting its real instance number inT, such
that P (Wi, Wj) = ˆfrq(Wi, Wj)/N̂ . In order to verify if the
observationP (Wi, Wj) is drawn from the Gaussian distribu-
tion x with meanµx, the following T-score is calculated;S2

is the estimation of variance from the observation data.

t({Wi, Wj}) =
P (Wi, Wj)− µx

√

S2

N̂

=
P (Wi, Wj)− P (Wi)P (Wj)
√

P ({Wi,Wj})(1−P (Wi,Wj))

N̂

≈
ˆfrq({Wi, Wj})−

1
N̂

ˆfrq(Wi) ˆfrq(Wj)
√

ˆfrq({Wi, Wj})
.
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