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Abstract—Traditional text data mining techniques are not di-
rectly applicable to image data which contain spatial infomation
and are characterized by high-dimensional visual featuresilt is
not a trivial task to discover meaningful visual patterns from
images, because the content variations and spatial depenusy in
visual data greatly challenge most existing data mining métods.
This paper presents a novel approach to coping with these
difficulties for mining visual collocation patterns. Specfically, the
novelty of this work lies in the following new contributions: (1) a
principled solution to the discovery of visual collocationpatterns
based on frequent itemset mining; and (2) a self-supervised
subspace learning method to refine the visual codebook by fdimg
back discovered patterns via subspace learning. The expeniental
results show that our method can discover semantically mean
ingful patterns efficiently and effectively.

Index Terms—image data mining, visual pattern discovery,
visual collocation pattern.

I. INTRODUCTION

that are composed of discrete elements without much ambi-
guity (i.e. predefined items and vocabularies), visual patterns
generally exhibit large variabilities in their visual appances.

A same visual pattern may look very different under differ-
ent views, scales, lighting conditions, not to mention iphrt
occlusion. It is very difficult, if not impossible, to obtain
invariant visual features that are insensitive to thes@tians
such that they can uniquely characterize visual primitives
Therefore although a discrete item codebook can be folgeful
obtained by clustering high-dimensional visual featulesg.(

by k-means clustering), such “visual items” tend to be much
more ambiguous than the case of transaction and text data.
Thus the imperfect clustering of visual primitives bringsge
challenges when directly applying traditional data mining
methods to image data. Specifically, the ambiguity lies ia tw
aspects:synonymyand polysemy[8]. A synonymous visual
item shares the same semantic meanings with other visual
items. Because the corresponding underlying semantigdiis s

Motivated by the previous success in mining structurethd represented by multiple visual items, synonymy leads to
data (e.g., transaction data) and semi-structured datp, (egver-representatlc_)ns. On tr_\e other hanq, a polysemoualvisu
text), it has aroused our curiosity in finding meaningfutem may mean different things under different contextsusTh

patterns in non-structured multimedia data like images ap@lysemy leads to under-representations. Both phenomena

videos [1] [2] [3] [4] [5]. For example, as illustrated in F{,

appear quite often when clustering visual primitives tigiou

once we can extract some invariant visual primitives su@hn unsupervised way. The root of these phenomena is the
as interest pointg [6] or salient regions [7] from the imageirge uncertainties within non-structured visual data he t
we can represent each image as a collection of such vishigh-dimensional space. Therefore, it is crucial to adglres

primitives characterized by high-dimensional featuretoes
By further quantizing those visual primitives to discretestal
items” (also known as “visual words”) through clusteringsk

the uncertainty issues. One possible solution to resolee th
ambiguity of polysemous visual words may be to put them
into a spatial context. In other words, thisual collocation(or

high-dimensional features][1], each image is represengeal bco-occurrencgof several visual items is likely to be much less

set of transaction records, where each transaction camelsp

ambiguous. Therefore, it is of great interest to autombyica

to a local image region and describes its composition ofatisudiscover these collocation visual patterns. Once suchabisu

items. After that, data mining techniques can be applied

¢ollocation patterns are discovered, they can help to learn

such a transaction database induced from images for discbetter representation for clustering visual primitives.

ering visual collocation pattern.

However, since visual patterns exhibit more complex struc-

Although the discovery of visual patterns from image8ire than transaction and text pattern, the difficulty in-rep
appears to be quite exciting, data mining techniques that &senting and dlscover_lng .spat|al patterns in images ptsve
successful in transaction and text data may not be simgitfaightforward generalization of traditional data mgmeth-

applied to image data that contain high-dimensional festurods that are applicable for transaction data. For example,
and have spatial structures. Unlike transaction and teta d&nlike traditional transaction database where recordsnaie>
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pendent of each other, the induced transactions genergted b
image patches can be correlated due to spatial overlap. This
phenomenon complicates the data mining process for spatial
data, because simply counting the occurrence frequengies i
doubtable and thus a frequent pattern is not necessarily a
meaningful pattern. Thus special care needs to be taken.
Although there exist methods|[9] [10] [11] for spatial cello

cation pattern discovery from geo-spatial data, they cahao



: metric learning, to distinguish the object of interestsrirthe
.. Images cluttered background. Then the visual primitives can béebet

clustered in the learned subspace. To this end, we propose a

| Feature self-supervised subspace learning of visual items. Byntaki

Extraction advantage of the discovered visual patterns, such a toprdow

Visual refinement procedure helps to reduce the ambiguities among
Primimitives visual items and better distinguish foreground items frown t

background items. Our experiments on three object categjori
Feature from the 101 Caltech dataset demonstrate the effectivemess
“| Quantization efficiency of our proposed method.
——_— The rest of the paper is organized as follows. We discuss the

related work in Sectiofilll, followed by the overview of our
approach in Sectionll. The discovery of visual collocatio
N D?éftcrll patterns is presented in Sectibn] IV. After that we discuss
L how to refine the discovered patterns via metric learning in
Section[¥. The experiments are conducted in Secfich VI
followed by the conclusion in Sectidn VII.

Transactions

Collocation
Patterns

' . ) o _ 1. RELATED WORK
Fig. 1. The illustration of collocation visual patterns fidmages. There

are two kinds of imperfectness when translating image dzta transaction By characterizing an image as a collection of primitive
data for data mining. First, the visual primitives can begxdstected in the . Lo . . .
feature extraction process, due to the occlusion, baditightonditions or visual features that highlight the local image invariarssgd
the unreliable detectors. Secondly, even if a visual pimiis extracted, clustering these primitive features into discrete visuatds,
it can be wrongly clustered info a visual item due to visualysemy and \ye can translate an image to a visual document. Such a “bag
synonymy. A direct pattern mining on the noisy transactiatatase cannot M . . .
obtain satisfactory results. of words” model bridges the text data mining and image data
mining research, and has been extensive applied in image
retrieval [12], recognition[[13], as well as image data min-
directly applied to image data which are characterized gi-hi ing [1] [14] [15]. As a similar treatment of texts, previouext
dimensional features. Moreover, the spatial co-occugsmd information retrieval and data mining methods can be agplie
the items do not necessarily indicate the real associatidasimage data. For example, if_[16], text-retrieval methods
among them, because a frequent spatial collocation patsern are applied to search visual objects in videos. Statistical
be generated by the self-repetitive texture in the imagelaml natural language models, such as probabilistic Latent Stena
is not semantically meaningful. Thus, finding frequentgais Analysis (0LSA) and Latent Dirichlet Allocation (LDA), are
may not always output meaningful and informative pattemns &pplied to discover object categories from images [L7] [8].
image data. Although it brings many benefits by representing images
Given a collection of images, our objective of image datas visual documents, the induced visual vocabulary tend to
mining is to discover meaningful visual patterns that appebe much more ambiguous than that in text. To learn a
repetitively among the images. Compared with the backgtoubetter visual vocabulary| [18] discusses the limitationkef
clutters, such visual patterns are of great interests thosld means clustering and propose a new strategy to build the
be well treated in clustering visual items. For exampleegia codebook. However, unsupervised learning of a good visual
few face photos of different persons, can we discover theavis vocabulary is difficult. As a treatment to resolve the amitigu
collocations like eyes and noses that can interpret the fagfepolysemous and synonymous visual words, spatial context
category? Moreover, once these visual patterns are dissveinformation in image is taken into consideration. It is ribte
can they help to learn a better feature representation Vit theco-occurrenceof visual words, namely a composition
subspace learning? of visual items, has a better representation power andedylik
To address these problems, this paper presents a ndwebe less ambiguous, such as the visual phréases [19] [20],
bottom-up approach to discovering semantically meaningfuisual synset[[21] and dependent regians [22].
visual patterns from images. As shown in Hig. 1, an image To discover visual patterns, some other methods consider th
is represented by a collection of visual items after clilster spatial configuration among the visual features when mogeli
visual primitives. To discover visual collocation patterra the spatial image pattern. 1h [23], attributed relationapns
new data mining criterion is proposed. Instead of using tH&RG) are applied to model the spatial image pattern. EM
co-occurrence frequency as the criterion for mining themmeaalgorithm is used for parameters learning. Inl[24], spatial
ingful collocation patterns in images, a more plausilikual relations are defined in terms of the distance and direction
collocation miningbased on likelihood ratio test is proposed tbetween pair of detected parts. In_[25], both geometry and
evaluate the significance of a visual itemset. Secondlyg tiie  appearance information of generic visual object categsry i
visual collocation patterns (foreground items) and baskgd coded in a hierarchical generative model. A constellation
items are discovered, we can feed them back into the clagtermodel is used to model a visual object category_ in [26]. The
procedure by learning a better subspace representation piaposed probabilistic model is able to handle all kinds of



variations of the objects, such as shape, appearancesaotiu D
and relative scale. However, the structure of the model hed 1 \ 3
object parts need to be manually selected.In [27], a treeaino
is proposed to discover and segment visual objects thahelc
to the same category. Despite its powerful modeling ability
training of these generative models is usually time-cornsgm
When using the EM algorithm for learning, it is easy to b
trapped by the local optimality. In_[28], a generative mode
called active basis model, is proposed to learn a deforma
template to sketch the common object from images. The act
basis consists of a small number of Gabor wavelet eleme
at selected locations and orientations.

Instead of using top-down generative model to discover \
sual patterns, these are also data-driven bottom-up agipgea
To perform efficient image data mining, frequent itemse"

mining is applied in [29] [30] by translating each local inaag Fig. 2._ ||Iustrations of the visual groups ‘and the discoverfyvisgal
N - locations. Each circle corresponds to a spatial groamgly a transaction),

ion into a t tion. In order t ider the spatid)
reglqn n O a transac 'On'_ n 0'_’ er 0‘ consiaer the _Spa ich is composed of 5-NN visual items. An image can geneaxatellection
configuration among the visual items, in_[31], semantics as€such groups for data mining. A and B are discovered vise#ibcation

represented as visual elements and geometric relatiansHigHerns
between them. An efficient mining method is proposed to find
pair-wise associations of visual elements that have ctamis
geometric relationships sufficiently often. In [32], an @#fnt . > ,
image pattern mining approach is proposed to handle the scfimensional featureg’; € Dz into M classes throughk-
translation, and rotation variations in mining frequenatiy Means clustering, a codebook of visual primitid@scan be
patterns in images. I [33], contextual visual word is pregmy ©Pt@ined. We call every prototyp@ in the codebook? =
to improve the image search and near duplicate copy demectiéwlv T WM} avisual item Because_: each visual primitive is
There are also related works in data mining. It is of gre%l”'quely assigned fo one of the V|s_ual ites, the group
interests to discover frequent patterns in data miningarese ~* can be transformed into 'manNsactlonZ-. More formally,
For example, frequent itemset mining (FIM) and its extensiog'ven_the group datas€r = {G;},-, generated fron_DI and
[34] [35] [36] have been extensively studied. However, N V|su_al item codebook? (/2| = M),_we can induce a
highly frequent pattern may not be informative or intenmsgti transactlon databaS_E = {Zi}. Such an_mduced transaction
thus a more important task is to extract informative an(a""tabaSe IS e_zssennally b_ased on d:!eetnc_reference_ featL_Jre
potentially interesting patterns from the possibly noistad modelfor mining association rulefs [10]. leen_the V|_sual item
This can be done by mining meaningful patterns eithertHnouEOdebOOkQ’ a sub-setp C Q2 IS called avisual |tgmset
post-processing the FIM results or proposing new data mini te_msgt for short). For a given itemsgt, the tr_ansactllorﬂg
criteria, including mining compressed patterns! [37] [289]] which |ncIudes7>_ is called anoccurrenceof P, i.e. 7; is an
approximate patterns [40] [41] [42] and pattern summaiopat occurrence of?, if P C 7;. Let T(P) denote the set of all the

[43] [44] [45]. These data mining techniqgues may discov§Feurrences oP in T, and thefrequencyof P is the number

meaningful frequent itemsets and represent them in a cdmp%\fc'ts occurrences denoted as:

way. frq(P)=IT(P)| =[i:VjiePtiy =1}, (1)

wheret;; = 1 denotes that the,, item appears in thé,,
transaction, and;; = 0 otherwise.
A. Notations and basic concepts For a given threshold, called aminimum supportitemset
) ) ) . P is frequentif frq(P) > 6. Itis not a trivial task to discover

Each image in the database is described by a set ffhe frequent itemsets given dataSgtbecause the number
visual primitives:Z = {v; = (fi,:vi,yi)}, where f; de- of possible itemsets is exponentially large with respedhe®
notes the high-dimensional feature afid;,y;} denotes the codebook size. For example, the codebébkas in total2!
spatial location ofv; in the image. We treat these visuaktandidates for frequent itemsets, therefore exhaustigelcts
primitives as theatomic visual patternsFor each visual infeasible for large codebooks. Also, if an itemgetappears
primitive v; € Z, its local spatial neighbors form group frequently, then all of its sub-se8’ c P will also appear
Gi = {vi,vi, Vi, -,V t. FOr example,G; can be the frequently,i.e. frq(P) > 6 = frq(P’) > 6. For example,
spatial K-nearest neighborsi{-NN) or e-nearest neighbors a frequent itemse composed withn items can generate
(e-NN) of v; under the Euclidean distance. As illustrated ia™ frequent sub-itemsets including itself and the null itemse
Fig. [2, the image databas®r = {7}, can generate a To eliminate this redundant representati@ipsed frequent
collection of such groups, where each graiipis associated itemsetds introduced([456]. Thus this guarantees that no visual
with a visual primitive v;. We want to mention that two collocations will be left out. Theclosed frequent itemsas
spatially neighbored groups may share some visual priestivdefined as follows.

Group

G12: EDABC
G13: HTABC
G67: CSABK
G78: ZTABM
G79: KFABV
G112: KSABT
G113: | KAABE
G198: ILABO
G215: | TRABW

L
-Lg

AB

due to their spatial overlap. By further quantizing all thgh

I1l. OVERVIEW



we feed back the discovered visual collocatiokisto refine
the data mining via metric learning. The experiments are
conducted in Section VI and we conclude in Secfion VII.

Car N Meaningful

ot ftierny IV. DISCOVERINGVISUAL COLLOCATION PATTERNS

wheels

A. Visual Primitive Extraction

fiarantios We apply the PCA-SIFT point5 [48] as thiisual primitives
A5 S Such visual primitives are mostly located in the informativ
B aB L c \Mfee) vy Ttemsets image regions such as corners and edges, and the features
Rl STl are invariant under rotations, scale changes, and sligt-vi
c.g. NCA e.g. FIM point changes. Normally each image may contain hundreds
New Metric: R OOI0O00) to thousands of such visual primitives based on the size

Anxd a) (8)(c

0K ™ A Wl s of the image. According tol [48], each visual primitive is a
DRG] 41 x 41 gradient image patch at the given scale, and rotated
Clisteiiia to align its dominant orientation to a canonical direction.
;105 A Principal component analysis (PCA) is applied to reduce the
dimensionality of the feature. Finally each visual pringtiis
described by a 35-dimensional feature vegﬁ)rThese visual
primitives are initially clustered into visual items thighuk-
means clustering, using Euclidean metric in the featureespa
Fig. 3. The overview for the proposed method for mining vist@location We will discuss how to obtain a better visual item codebibk

patterns. We propose a hierarchical and self-supervisagavpattern discov- Pased on the proposed self-supervised metric learningreehe

ery method to handle the imperfectness from the visual udeap and can in Sec[V.
reveal the hierarchical structure of visual patterns

B. Finding Meaningful Visual Collocations

Given an image datasdDz and its induced transaction
Definition 1: closed frequent itemset databaseT, the task is to discover the visual collocation
If for an itemsetP, there is no other items&® O P that can patterns? c Q (|P| > 2). Each visual collocation is
satisfy T(P) = T(Q), we sayP is closed For any itemset composed by a collect of visual items that occur together
PandQ, T(PUQ) =T(P)NT(Q), and if P C Q then spatially. To evaluate the qualification of 2 C £, simply
T(Q) C T(P). checking its frequencyrq(P) in T is far from sufficient. For
example, even if an itemset appears frequently, it is narcle
To find frequent itemsets, we apply the FP-growth algavhether such co-occurrences among the items are stdltistica
rithm to discoverclosedfrequent itemsets [47]. The numbersignificant or just by chance. In order to evaluate the sieais
of closed frequent itemsets is much less than the frequeidnificance of a frequent itemsé®, we propose a new
itemsets, and they compress information of frequent itésnséikelihood ratio test criterion. We compare the likelihothzat
in a lossless formj.e. the full list of frequent itemsets P is generated by the meaningful pattern versus the liketihoo
F = {P,} and their corresponding frequency counts cathat? is randomly generatede. by chance.
be exactly recovered from the compressed representation ofore formally, we perform the likelihood ratio test to
closed frequent itemsets. As FP-tree has a prefix-treetsteuc measure a visual collocation based on the two hypotheses,
and can store compressed information of frequent itemsetere
it can efficiently discover all the closed frequent sets from
transaction dataser. Hy: occurrences o are randomly generated;
H,: occurrences of? are generated by the hidden pattern.

B. Overview of our method ) ) o )
Given a transaction databa3& the likelihood ratioL(P)

We present the overview of our visual pattern discoveré/ : : [P
o : ; : f a visual collocatiori? = {W;},”} can be calculated as:
method in Fig[B. Given a collection of images, we detect the w = {Wikim

local interest features, followed by clustering them ingyaup P(P|Hy) Zf’zl P(P|T;, H,)P(T;|Hy)
of visual items. The spatial dependences of these visuabite L(P) = P = [P - (2
) e Sk > (P|Ho) 1.2, P(W;|Hy)

are discovered via using the proposed data mining methods.
Once these spatial collocation patterns are discoverexynit Here P(7;|H,) = + is the prior, andP(P|T;, Hy) is the like-
guide the subspace learning in finding a better feature spdibeod thatP is generated by a hidden pattern and is observed
for visual item clustering. Finally, the discovered visiteams at a particular transactiod;. Therefore P(P|7;, H1) = 1,
are further grouped to recover the visual patterns. if 7 C 7;, and P(P|7;, H;) = 0, otherwise. Consequently,

In Section[1V, we present our new criteria for discoveringased on Ed.]1, we can calculd®éP|H,) = fqu(P) We also
visual collocation pattern®; C €. After that in Sectior 'V, assume that the itemid’; € P are conditionally independent




under the null hypothesi#ly, and P(W;|Hy) is the prior of  2) pair-wisely cohesive t({W;, W;}) > 7,Vi,j € P;
item W; € €, i.e. the total number of visual primitives that 3) significant: L(P) > ~.
are labeled witH¥; in the image databade;. We thus refer
L(’P) as the “significance” score to evaluate the deviation of . .
a visual collocation patter®. If P is a second-order itemset,C- Spatial Dependency among Induced Transactions
then L(P) degenerates to the pointwise mutual information Suppose primitives); and v; are spatial neighbors, their
criterion, e.g, the lift criterion [46]. induced transactioff; andZ; will have large spatial overlap.
It is worth noting thatZ () may favor high-order colloca- Due to such spatial dependency among the transactions, it

tions even though they appear less frequently. Téble | ptesecan cause over-counting problem if simply calculatjiig(P)
such an example, where 90 transactions have only itdmsfrom Eq.[1. Fig[% illustrates this phenomena whére(P)
and B; 30 transactions have,B andC’; 61 transactions have contains duplicate counts.
D and E; and 19 transactions have and E.

Image Composed of Visual Items

TABLE | Transaction
TRANSACTION DATABASET'; . Database F L
transaction]| number [ L(P) ID Z
AB 90 1.67 T1 |ABCE \\11‘>
ABC 30 1.70 72 |[ABDF | @ G A
DE 61 25 T3 <r2\>
— K c

From Tablelll, It is easy to evaluate the significant scores
for P = {A, B} and P, = {A, B,C} with L(P;) = 1.67 Fig. 4. lllustration of the frequency over-counting caussdthe spatial
_ ; indi overlap of transactions. The items¢#, B} is counted twice byZ; =
.a”d L(PQ) o 1'.7.0 = L(Pl)' This result mdlcates_ th??Q A,B,C,E} and7> = {A, B, D, F}, although it has only one instance in
is a more significant pattern thaR; but counter-intuitive. the image. Namely there is only one pair.4fand B that co-occurs together,
This observation challenges our intuition beca®eis not such thatd(A, B) < 2e with e the radius of7;. In the texture region where
a cohesive pattern. For example, the other two sub-pattel’ﬁga' primitives are densely sampled, such over-couritlarijely exaggerate

. he number of repetitions for a texture pattern.
of Py, Ps = {A,C} and P, = {B,C}, contain almost P P

independent itemsL(P;) = L(Ps) = 1.02. Actually, P> |n order to address this transaction dependency problem,
should be treated as a variation Bf as C' is more likely e apply a two-phase mining scheme. First, without consid-
to be a noise. The following equation explains what causgging the spatial overlaps, we perform closed FIM to obtain
the incorrect result. We calculate the significant scoréPof 5 candidate set of frequent itemsets. For these candidates
as. F = {P; : frq(P;)) > 6}, we re-count the number of

L(Py) = P(A,B,C) _L(Py) % P(C|A, B) 3) their real instances exhaustively through the originalgema

2 P(A)P(B)P(C) ! P(C) databaséDz, not allowing duplicate counts. This needs one

Therefore when there is a small disturbance with the distf20re scan of the whole database. Without causing confusion,
bution of C' over T; such thatP(C|A, B) > P(C), Py will W€ denotefrq(P) as the occurrence nqmber #f and use
competeP; even thoughP; is not a cohesive pattere..C it to update frq(P). Accordlngly,Awe adjust the calculation
is not related to eithed or 3). To avoid those free-riders suchof P(P|H:) = {4P), where N = N/K denotes the
asC for Py, we perform a more strict test on the itemset. F@pproximated independent transaction number withthe
a high-orderP (|P| > 2), we perform the t-test for each pairaverage size of transactions. In practice, Jésis hard to
of its items to check if itemdV; and W; (W;, W, € P) are estimate, we ran; according to their significant valug(P)
really dependent (see Appendix A for details.) A high-ordénd perform the top-K pattern mining.
collocationP; is meaningful only if all of its pairwise subsets Integrating all the steps in this section, we present our
can pass the testi, j € P, t({W;,W;}) > 7, wherer is the algorithm to discover meaningful visual collocations in- Al
confidence threshold for the t-test. This further reduces tBorithm[l.
redgndancy among the disc_overed item;ets_. _ Algorithm 1: Visual Collocation Mining

Finally, to assure that a visual collocatighis meaningful, input_: Transaction datasek, parameterstd, 7, )

we also require it to appear relatively frequentin the dasab  ,,1hut: a collection of meaningful visual collocations:
i.e. frq(P) > 6, such that we can eliminate those colloca- T = {P;}
tions that appear rarely but happen to exhibit strong dpatia ’

dependency among items. With these three criteria, a vishdnit: closed FIM with frq(P;) > 0: F = {P;}, ¥ «—— 0,
collocation pattern is defined as follows. 2 foreach P; € F do Get Real | nst anceNunber ()

3 for P; e F do

Definition 2: Visual Collocation Pattern 4 | if L(P;) >~ A PassPairwiseTtest (P;) then
An itemsetP C Qs a(6, 7, v)-meaningful visual collocation, ° L Ve—TUP;
iFitis: 6 Returnw

1) frequent: frq(P) > 6;



V. SELF-SUPERVISEDREFINEMENT OFVISUAL ITEM We apply the nearest component analysis (NCA) [49] to
CODEBOOK improve the clustering results by learning a better Mahathén
A. Foreground V.S. Background distance metric in the feature space. Similar to the linear
h(iiisc:riminative analysis (LDA), NCA targets at learning a
relies on the quality of the visual item codebofk A bad gYobaI linear projection matri¥d. However, unlike LDA, NCA
does not need to assume that each visual item class has a

clustering of v!sual primitives prmgs large q“a”t'za?"‘“".'ors Gaussian distribution and thus can be applied to more genera
when generating the transactions. Such a quantizatiom erfQ

: L S cases. Given two visual primitiveg andv;, NCA learns a
will affect the data mining results significantly. Thus a goonew metric A and the distance in the transformed space is:

Q is required. To improve the codebook construction, w R R P 7 p
proposeqto use the disgovered collocation patterns to giseer Agz;i’vj) = (Fi= [T AT A= 1) = (Afi = Af)T(Afi -
the cl_ust_erlng progess. Alth_ough there 'S NO supervisiailav 'Ij'he objective of NCA is to maximize a stochastic variant
able initially, the unsupervised data mining process dkytuaof the leave-one-out K-NN score on the training set. In the
discover useful information for supervision. Thus it isledl transformed space. a poi lect h int. : i
self-supervised refinement. . ! space, ._po.lm selects another poin; as 1is
We notice that each image contains two layers: a foregrou'ﬂ‘(aill(‘:]hbOr with probability:
pbject and the_ background clutters. Giv_en a collection of o exp(_HAﬁ-_Aﬁ-”?) o (4
images containing the same category of objects, the fovegiro  Pis = S oex (_”Af_ — Af HQ)v pi = 0. (4)
objects are similar, while the background clutters arecdiit ki CTP ! F
from each other. The discovered visual collocations are sup Under the above stochastic selection rule of nearest neigh-
posed to be associated with the foreground object. As eddrs, NCA tries to maximize the expected number of points
image is composed of the visual items, we can partition tig@rrectly classified under the nearest neighbor classifier (
codebook into two part§ = Q1 U Q~, where items i+ average leave-one-out performance):
are more likely to appear in the foreground object, whilene F(A) = Z Z -
in ~ are more likely to appear in the background. Thus it a Pij;
provides information to learn a better codebook.
By discovering a set of visual collocation® = {P;}, we WhereC; = {j|c; = ¢;} denotes the set of points in the
define theforeground item codeboaks follows: same class as By differentiatingf, the objective function can
be maximized through gradient search for optindal After
obtaining the projection matrixd, we update all the visual
Definition 3: foreground codebook Q-+ features ofv; € Dz from f; to Af;, and re-cluster the visual
Given a set of visual collocation® = {P;}, an item primitives based on their new features;.
W, € Q2 is a foreground item if it belongs to any collocation
pattern’? € ¥, namely,3P € ¥, such thatW; C P. All . Clustering of Visual Collocations
of the foreground items compose the foreground codeboo
ot =P,

As discussed earlier, our image data mining method hig

(5)

i jeC;

k'I'he discovered visual collocations may not be complete
patterns. There is redundancy among them as well. Give a
patternH = {A, B, C}, it is possible to obtain many incom-
plete visual collocations such &s!, B}, {A,C}, {B,C} due

to image noises and quantization errors. Therefore we reeed t
handle this problem.

If two visual collocationsP; and P; are correlated, their

With the foreground codebook, theackground codebook
becomesQ~ = Q\Q*. Each visual primitive belongs to
either the foreground object (positive class) or the baokgd
clutter (negative class).

Our goal now is to use the data mining results to refine t ; _ _
codebook€t and 2, such that they can better distinguisrﬂ%nsacnon sef(P;) and T(P;) (Eq.[) should also have

the two classes. For the negative class, any visual prieitist r}jl large overlapl[43], implying that they may be generated

belongs to2~ can be the negative training example Howevelf[:]om the same patterdi. As a result,vi,j € ¥, we can
o . . o easure their similarity(, j), which depend not only on their
for the positive clas§2™, not all of items inQ2* are qualified y(i, j) P y

to be positive samples. We only choose those instances of Le"at?/\tj:grfﬁséﬁr(zﬁiaiggnf 2’%5(77?-)),a?1%tT5i(l7539) tr\;\?e Zogg‘la'attr';“
visual collocations. i ) Yy

Jaccard distance to estimate, j) [50]:

1
B. Learning a better metric for clustering [T(P) T (P;)]

, - . . s(4,7) =exp TTPOOTET (6)
With these training examples via data mining, we transfer

the unsupervised clustering problem into semi-supendiess ~ Given a collection of visual collocation¥ = {P;} and
tering to obtain a better codebodk. Our task is to cluster their pair-wise similarity s(i, j), we cluster them intokX
all the visual primitivesy; € Dz. Now some of the visual classes using normalized clt [51]. Each class= {7»1-}‘]31"
primitives are already labeled according to the discoveréda group of visual collocations, calledwasual part Each
visual collocations and the background visual items. Thas W, € H is an variation of{, due to the image noises or
can use these labeled primitives to help cluster all of Visuthe quantization error of the codebook. By grouping visual

primitives. collocations, we end up with a collection of visual parts:



H = {H;}. These visual parts can be further constructed io the foreground objects, and (2) the precision{®f: p~
recover the whole visual object. denotes the percentage of meaningless itéfisc 2~ that
Algorithm 2: Main Algorithm are located in the background. Fig. 5 illustrates the cotscep
of our evaluation. In the ideal situation, #f- = p— = 1, then
every P; € W is associated with the interesting objece.
located inside the object bounding box; while all meanisgle
items W; € Q~ are located in the backgrounds. In such a
case, we can precisely discriminate the frequently appeare
foreground objects from the clutter backgrounds, through a
unsupervised learning. Finally, we use retrieval rateto

input : Image dataseDz,
e or K for searching spatiad-NN or K-NN,
parameter{0, T,7),
number of semantic patternd]|,
number of maximum iteratioh
output: A set of semantic pattern¥ = {H,}

1 Init: Get visual item codebooR’ and induced denote the percentage of retrieved images that contairastt le
transaction DBTg; i «— 0; one visual collocation. Since for the airplane categorysimo

2 while i <ldo airplanes appear in the clean background, its precisioh wil

3 | ¥'=MMTg); /* visual collocation mining be high because there is much less interest points located in
oxl ) the background. To make a fair evaluation, we thus only test

4 | Q) =U;P;, whereP; € ¥ the accuracy of the car and face categories, where the sbject

5 A" =NCA (2} \Tg); [+ get newnetric */ are always located in a cluttered background. We only test

6 | UpdateQ’ andT' based onA'/ = re-clustering </ the airplane category for the discovery of high-level visua

7 if little change ofQ2* then patterns.

8 | break;

9 1e—1+1

10 S = Get Si mvatri x (P?);
11 H =NCut (S, |H|); /* pattern summarization */
12 ReturnH;

Fig. 5.  Evaluation of visual collocations mining. The highlt bounding

VI. EXPERIMENTS box (yellow) represents the foreground region where therdésting object is
. located. In the idea case, all the ¥, € ¥ should locate inside the bounding
A. Dataset Description boxes while all the meaningless iteri®; € Q~ are located outside the

Given a large image datasBl; = {Z;}, we first extract Pounding boxes.
the PCA-SIFT points[[48] in each imadg and treat these
interest points as the visual primitives. We resize all issg
by the factor of2/3. The feature extraction is on averaged : . .
0.5 seconds per image. Multiple visual primitives can bgatlons (&), selected by theid,(P). When selecting more
located at the same spatial location, but with various scalf

| isual collocations, the precision score W, p™, decreases
and orientations. Each visual primitives is representec asﬁrom 1.00 to 0.86), while the percentage of retrieved images
35-d feature vector after principal component analysis. Théh

In Table[dl, we present the visual collocations from the car
atabase. The first row indicates the number of visual collo-

increases (from.11 to 0.88). The high precision ofp™

k-means algorithm is used to cluster these visual featutes ir|]n_d|cates that the dlscoyered V|_sual collocation are aam_nt
. . . with the foreground objects. It is also noted that meanihgfu

a visual item codebookK2. We select three categories from 4o .

- ; 3 item codebook2™ is only a small subset with respect to

the Caltechl01 database [26] for the experiments: facé35( Q (|Q| = 160). This implies that most visual items do not

images from23 persons), carsle3 images of different cars), elon t:) the fore roun% objects. They are noisy items from

and airplanes800 images of different airplanes). We set th he bzgck rounds 9 J ' y y

parameters for MIM as# = 1|Dz|, where|Dz| is the total 9 :

number of images, and is associated with the confidence TABLE II

level of 0.90. Instead of setting thresholg, we select the PRECISIONSCOREp" AND RETRIEVAL RATE 1) FOR THE CAR DATABASE,

top phrases by ranking thEIV(P) values. We set visual item CORRESPONDING TO VARIOUS SIZES O®. SEE TEXT FOR DESCRIPTIONS

> OF pT AND 7.
codebook sizé| = 160, 500, and300, for the car, face, and 5 T R I -
airplane categories, respectively. For generating theséretion | :n‘ﬂ | > | = | = | = | > | or | 5 |
databasedl’, we setK =5 for searchm_g spatial K-NN to W 011 T 040 050 062 | 077 085 0.88
compose each transaction. All the experiments were coaduct ot 1.00| 0.96| 0.96 | 0.91 | 0.88 | 0.86 | 0.86

on a Pentium-4.19GHz PC with1GB RAM running window

XP.
We further compare three types of criteria for selecting

] ) visual collocationsP into ¥, against the baseline of selecting
B. Evaluation of Visual Collocation Patterns the individual visual itemd¥; € € to build ¥. The three
We use two metrics to evaluate the discovered visual colleisual collocation selection criteria are: (1) occurrerice
cations: (1) the precision of: p* denotes the percentagequency:f}q(P) (2) T-score (Eg[d7) (only select the second
of discovered visual collocation®; € ¥ that are located order itemsets,P| = 2) and (3) likelihood ratioZ(P) (Eq.[2).



The comparison results are presented in[Hig. 6. It shows haw items shared by thesg visual collocations for both face
pT andp~ vary with increasing size o¥ (|¥| =1,...,30). In and car categories.e. |2*| < 10. For the foreground class,
general, the larger the size &, the lower the precisiop™, we select all of the instances of top five visual collocatiass
but the higher the precisios, because€2~ becomes smaller training samples. Considering the large number of backgtou
and purer. Meanwhile, we notice that all of the three criteritems 22—, we only select a small number of them which
perform significantly better than the baseline of chooshig thave higher probability to generated from the background.
most frequent individual items as meaningful patternssTi Specifically, from the visual primitives belonging f@—, we
not surprising because frequent items € © correspond to only select those uncommon visual primitives that cannat fin
common featurese(g.corners), therefore they appear in botimany matches in the rest of images. The number of negative
foreground objects and clutter backgrounds and exprdks litraining samples is selected according to the number of posi
discriminative ability. tive training samples, to make balanced training examples.
_Finally, Among the three criteria, occurrence frequency After learning a new metric using NCA, the inter-class
frq(P) performs worse than the other two criteria, which furdistance is enlarged while the intra-class distance isaediu
ther demonstrates that not all frequent itemsets are mgfuhin among the training samples. We then reconstruct the visual
patterns. It is also shown from Figl 6 that when only selgctirtem codebook using k-means clustering, and perform the
a few number of visual collocationise. ¥ has a small size, all visual collocation discovery again. To compare the visual
the three criteria yield similar performances. Howeveregwh collocations using the original codebook and the refined one
more visual collocations are added, the proposed liketiho&ig.[d shows the results in both car and face datasets. ltean b
ratio test method performs better than the other two, whigleen that the precisiosi™ of visual collocations is improved
shows our MIM algorithm can discover meaningful visualith the refined codebook.

patterns.
1
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Fig. 6. Performance comparison by applying three diffeceitéria to select

visual collocations, also with the baseline of selectingniequent individual

items to build®.

By taking advantage of the FP-growth algorithm for closeg

D. Clustering of visual collocations

For each object category, we select the t@p-~visual

collocations by theirL(P) (Eq.[2). All of the discovered
sual collocations are the second-order, third-ordefparth-

FIM, our pattern discovery is very efficient. As presente ey jtemsets. Each collocation pattern is a local contioosi

in Table[, it costs aroundl7.4 seconds for discovering

of visual items. These items function together as a single

visual collocations from the face database containing OvV&E,al lexical entity. By further clustering these top-visual

60,000 transactions. Compared with top-down models such @s;,qcation (0|

= 10) into visual parts, the clustering results

topic discovery for visual pattern discovery, such a botigm presented in Fig8 and Figl 9, for the face and car

pattern mining method is more efficient. Moreover, as we on
select a very small subset of visual primitives for subspagg|iocations into]H|

tegories respectively. For the face category, we clyitanl
= 6 visual parts. Five of the six visual

learning,e.g, NCA, the computational cost for metric Iearningparts are semantically meaningful: (1) left eye (2) between
eyes (3) right eye (4) nose and (5) mouth. All of the discodere

is acceptable.

CPUCOMPUTATIONAL COST FOR VISUAL COLLOCATIONS MINING IN

TABLE Il

FACE DATABASE, WITH |\I" = 30.

visual parts have very high precision. It is interesting tden

that left eye and right eye are discovered separately, dtresto

C. Refinement of visual item codebook

To implement NCA for metric learning, we selegtvisual

# images # transactions closed FIM MIM differences of their visual appearances. The other visadl p
[Dz] |T| [47] Algll] that is not associated with the face. It corresponds to ¢srne
435 62611 1.6 sec 17.4 sec

from computers and windows in the office environment. For

the car category, we cluster them infl| = 2 visual parts:
(1) car wheels and (2) car bodies (mostly windows containing
strong edges). For the airplane category, we also cluséen th

into |H| = 3 visual parts, while two of them are semantically

collocations from® (|¥| = 10). There are in total less thanmeaningful: (1) airplane heads and (2) airplane wings.



To evaluate the clustering of visual collocations, we applyncertainties. To leap from text data mining to image data
the precision and recall scores defined as follows: Recall =#ning, we present a systematic study on mining visual eollo
detects / (# detects + # miss detects) and Precision = # det@eition patterns from images. A new criterion for discovgrin
/( # detects + # false alarms). For each visual part, the growisual collocations based on traditional FIM is proposattts
truths are manually labeled in the images. We evaluate boflsual collocations are statistically more interestingrttthe
the car and face categories in Higl. 8 and Elg. 9. It can be sdequent itemsets. To obtain a better visual codebook, fa sel
that the discovered visual parts are of high precision bwt Issupervised subspace learning method is proposed by agplyin
recall rate. The high precision rate validates the qualitthe the discovered visual collocations as supervision to learn
discovered patterns. The miss detection of many visuakpdetter similarity metric through subspace learning. BytHar
is mainly caused by the interest point miss detection and tbkeistering these visual collocations (incomplete suliepas),
guantization errors in the codebook. we successfully extract semantic visual patterns despie t

intra-pattern variations and the cluttered backgrounds.aA
E. From visual parts to visual objects pure data-driven bottom-up approach, our method does not

The discovered visual parts in Fig. 8 and Eig 9 can be furthéepend on a top-down generative model in discovering visual
composed into a high-level pattern that describes the whglatterns. It is computationally efficient and requires nmmpr
object. We treat each pak; as a high-level item and build an-knowledge of the visual pattern. Our future work will coresid
other codebook)’ = H = {,}. Based on the new codebookhow to apply the discovered visual collocations for image
¥, each image is composed of a few high-level itefysi.e., search and categorization.
visual parts. Thus each image generates a single transactio
for data mining. Then we perform visual collocation mining
on these transactions again, but with a much smaller codeboo
Q. In general, our approach can be easily extended to a multiq¢ W,
level discovery of visual patterns. Létdenotes the level, a
typical semantic pattern in layéy 7! c Q' is a composition

of simpler subpatterns (items) from the lower lewe — P(W;)P(W;). According to the central limit theory, as
{H;™" Hy ", .., Hyy,, ; which, in turn, are built from even yo nymber of trials (transaction numbaf) is large, the
simpler subpattern)’ 2 = {H{"% 1%, ... "}, }. The Bemoulli distribution can be approximated by the Gaussian
most primitive subpattern®' = {H}, H3, ..., H},, } are the random variablez, with mean u, = P(W;)P(W;). At
primitive visual items. Such a multi-level pattern discove the same time, we can measure the average frequency of
can help to reveal the hierarchical structure of visualgsat {1;, W;} by counting its real instance number |, such
and is computationally efficient. that P(W;, W;) = frq(W;, W;)/N. In order to verify if the

To explain the procedure of detecting visual parts, Eig. 18bservationP(WW;, W;) is drawn from the Gaussian distribu-
Fig.[12, and Fig T4 show some exemplar results, for the cgpn » with meany,, the following T-score is calculateds?

face, and airplane categories, respectively. Visual pEs s the estimation of variance from the observation data.
are highlighted as the green circles in each image. Then the

discovered visual collocations are highlighted by the lubog
boxes. The colors of the visual primitives inside the boagdi t({W:, W;}) = =
box distinguish different types of the visual parts. Once th \/%

visual parts are obtained, Fi§. 111, Figl 113 and Figl 15 P(W;,W;) — P(W:)P(W;)

show how these visual parts can be further constructed to = PV WD (- POWLIV,)

represent the whole object, for the car, face, and airplane \/ ' %G '

categories, respectively. Since a visual part correspaads . W) — Lo N fr .
a group of similar visual collocations = {P;}, in each fra(ivi, W;}) Nfrq(Wl)frq(W]).
image, we treat any occurrence & € H as the occur- frq({w;, W;})
rence of H. For example, according to the visual parts in
Fig. [8, there are 5 visual parts in the face categ®y:=
{left eye, right eye, between eyes, nose, mouth} in the face 1]

APPENDIXA
PAIR-WISE DEPENDENCYTEST

W; € Q are independent, then the process of
randomly generating the paffi¥;, W;} in a transactionZ;
is a (0/1) Bernoulli trial with probability P(W;, W;) =

P(WMWJ) — Mz

%
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