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ABSTRACT

By considering visual tracking as a similarity matching prob-

lem, we propose a self-supervised tracking method that incor-

porates adaptive metric learning and semi-supervised learning

into the framework of object tracking. For object representa-

tion, the spatial-pyramid structure is applied by fusing both

the shape and texture cues as descriptors. A metric learn-

er is adaptively trained online to best distinguish the fore-

ground object and background, and a new bi-linear graph is

defined accordingly to propagate the label of each sample.

Then high-confident samples are collected to self-update the

model to handle large-scale issue. Experiments on the bench-

mark dataset and comparisons with the state-of-the-art meth-

ods validate the advantages of our algorithm.

Index Terms— tracking, metric learning, semi-supervised

learning, online learning 1

1. INTRODUCTION

Visual tracking is to find an object in the consecutive image

frames, which matches the given template properly, and it

is also broadly applied as a key step in many applications,

such as video surveillance, Unmanned Aerial Vehicle [1], and

human-computer interactions. Without considering the issue

of object representation, matching the visual appearances of

the target in an image sequence is the most critical problem

in video based object tracking, i.e. the selection of distance

metric to determine the closet match in the feature space.

Most existing tracking methods employ a fixed pre-specified

metric, e.g. the Euclidean metric, the Matusita metric [2],

the Bhattacharyya coefficient [3], the Kullback-Leibler diver-

gence [4], the information-theoretic similarity measures [5]

and a combination of them [6]. However, simply using such

a pre-defined metric is problematic in practice, which often

leads to a false positive match that fails the tracker. In or-

der to choose a robust metric adaptively, metric learning is

incorporated recently [7, 8, 9]. Once the similarity metric is

determined, visual tracking can be considered as a Nearest-

neighbor (NN) searching problem using metric learning for
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Fig. 1. The illustration of the training sample collection pro-

cess.

similarity search. For NN-searching based visual tracking,

besides choosing suitable parameters, the accuracy can be

severely degraded by the presence of the noisy or irrelevant

features, which will affect the performance of tracking in turn.

To overcome this, our motivation is why not apply both train-

ing samples and testing samples to make a better decision, i.e.

incorporate semi-supervised learning.

Thus, in this paper, we consider tracking as a similarity

learning issue and propose a self-supervised online tracking

method. In comparison with most existing methods, our pro-

posed method not only learns the metric adaptively but also

improves NN-searching into the label propagation using our

defined bi-linear graph. The main contributions are listed be-

low: i) Firstly, combining online metric learning and semi-

supervised label propagation, we propose a general model for

online self-supervised similarity measurement. ii) Secondly,

we define a bi-linear graph to measure the pairwise similarity

for graph-based label propagation without tuning any param-

eters. iii) Finally, we propose an object tracking framework,

which need less computational resource and can self-update

online to address large-scale data.
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2. FORMULATION AND A GENERAL MODEL

We propose an online learning framework for visual track-

ing. Two key issues need to be considered here: 1) the pair-

wise similarity measurement depending on metric learning;

2) discriminative criterion using graph-based semi-supervised

learning to propagate the label of each testing samples via our

new bi-linear graph. For specific, we first learn a matrix W
for similarity measurement, then classify new unlabeled data

using W , lastly adds those new labeled data with high confi-

dence scores to update W accordingly. Such a process iterates

for online processing.

2.1. Online Metric Learning

The goal of Online Metric Learning (OML) is to learn a sim-

ilarity function with a bi-linear form as:

sW (pi, p j)≡ pT
i W p j, (1)

where pi, p j ∈ R
d are the feature vector, W ∈ R

d×d and sW
assigns higher scores to more similar pairs of feature vectors.

To estimate W , we have the following convex model with a

soft margin:

W i = argmin
W

1

2
‖W −W i−1‖2

Fro +Cξ

s.t. lW (pi, p+i , p−i )≤ ξ and ξ ≥ 0,
(2)

where ‖ · ‖Fro is the Frobenius norm (point wise L2 norm), C
is the tuning parameter, pi and p+i belong to the same class

and pi and p−i vice verse. In the ith iteration, W i is updated

to optimized a trade-off between staying close to the previous

parameter W i−1 and minimizing the loss on the current triplet

lW (pi, p+i , p−i ) = max
(
0,1− sW (pi, p+i )+ sW (pi, p−i )

)
. The

passive-Aggressive algorithm [10, 11] is adopted to solve the

above model iteratively (C = 0.2):

⎧⎪⎨
⎪⎩

W =W i−1 + τVi

τ = min
{

C,
lW i−1(pi, p+i , p−i )

‖Vi‖2

}
.

(3)

Depending on this, we define the bi-linear graph as:

Definition 1 Bi-linear Graph: Assume the similarity of pair-
wise points ∀ i, j, 1 ≤ i, j ≤ N, i �= j is defined as

Si, j = max(0, Sw(i, j)) = max(0, pT
i W p j). (4)

For pi ∈ P, i ∈ [1, . . . ,N], we obtain a matrix {Si j, 1 ≤ i, j ≤
N}, where symmetric version is Si, j = (Si, j +S j,i)/2.

In comparison with other graph models, e.g. k−NN or ε−NN

graph, our bi-linear graph can maintain the accuracy without

tuning parameters or prior knowledge of the topology graph.

2.2. Label Propagation via Bi-linear Graph

To detect the object, we use the graph-based semi-supervised

learning, also called label propagation. We first define graph

G = (V ,E ), where nodes V denotes N = n+m feature vec-

tor (n and m are the number of training and testing samples

and m = 1 in our case); and E is the similarity of pairwise

nodes of bi-linear graph S. We define a N × N probabil-

ity transition matrix Pi j =
Si j

∑n
k=1 Sik

, which can be split into

labeled and unlabeled sub-matrices P =
[

Pll Plu
Pul Puu

]
. Let F =(Fl

Fu

)
, where Fl = [ f1, f2, . . . , fn] denotes the labeled data, and

Fu = [ fn+1, fn+2, . . . , fn+m] is the unlabeled data. We have

Fu ← PuuFu +PulFl , which leads to

Fu = lim
t→∞

(Puu)
tF0

u +(
t

∑
i=1

(Puu)
(i−1))PulYl , (5)

where F0
u is the initial value of Fu. Since the sum of each

row of P equals to 1, we have (Puu)
n converge to zero, i.e.

(Puu)
nF0

u → 0. Using the Taylor Equation, the second item

can be written as Fu = (I −Puu)
−1PulYl . Due to Puu is a fixed

real number in our case, (I−Puu)
−1 is also a real number and

invertible, so Fu ∝ PulYl . Thus, Fu can be calculated using the

largest values of each row, which is also consistent with the

simplified function:

c�x = argmax
c

Ec(x), Ec(xi) =
n

∑
j=1

δc( j)Si, j, (6)

where c ∈ {1, . . . ,K} (K is the number of class, K = 2 here),

xi is the query sample and δc(i) is a indicate function. Ec(x) is

the energy function, which measures the cost of x belonging

to class c. Thus, given x, the optimal solution of c is the one

with maximize the cost of Ec(x).

3. OUR TRACKING FRAMEWORK

3.1. Object Representation

We use a two-level spatial pyramid to reserve spatial context,

where the first level is the whole object candidate and the sec-

ond level is to split each object into 2× 2 sub-regions, then

we concatenate them into a whole feature vector. The ap-

pearance of each sub-region is represented by combining both

Edge Orientation Histogram (EOH) and Local Binary Pattern

(LBP) histogram. For EOH, we quantize each pixel into 9

bins with the first bin for non-edge regions and the others for

8 directions. Then, for LBP histogram, we quantize it into

32-bin histogram. Therefore, the total dimension is d = 205

in this paper. Moreover, we adopt the modified version of in-

tegral histogram to make the computational complexity of the

histogram calculation for linear.
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Algorithm 1 Online Metric Learning Tracker (OMLTrack)

Input: Object p, Query sample q
Output: W �

1: Initialization: Get samples p+i and p−i
2: Train the metric learner W
3: for each testing sample q do
4: Generate Bi-linear Graph S
5: c∗q = argmax

c∈C
Ec(q)

6: Refine Localize q by mean-shift

7: if E(cq)/E(cq)> Tξ then
8: W = Update (q)

9: end if
10: end for
11: return W � =W

12: Function W = Update (q)

13: while i < ITER-MAX
⋂ ‖W i −W i−1‖Fro < Tw do

14: Get sample q+i ∈ cqi and q−i ∈ cqi

15: Update W by Eq. (3)

16: i = i+1

17: end while

3.2. Algorithm Details

For initialization, we extract the foreground object and it-

s nearest neighborhood to generate the positive objects

p+i , i ∈ [1 · · ·N+] (N+ = 10 in this paper) and its surrounding

background to generate the negative objects p−i , i ∈ [1 · · ·N−]
(N− ≈ 30), as the green and red rectangles in Fig. 1. Then,

we train the metric learner of matrix W by Eq. 3 through

iterative random sample p+i and p−i .

For testing, we calculate the similarity between the testing

sample q∗ and templates {p+i , p−i } by Eq.1, and propagate its

label and estimate its confident score by Eq.6. The samples

with higher confident scores are used to self-update the model

by a rough criterion:

Ec�(q)> Tξ ×Ec(q), ∀c, c /∈ c�. (7)

In this paper Tξ = 1.2. To refine the object position, we pur-

suit the final object position with the maximum likelihood by

mean shift algorithm on the confident score map.

Our tracking method can online self-update itself. Thus,

if Eq.7 is satisfied, we extract foreground objects {q+j } and

background objects {q−j } around q, and combine them with

{p+i , p−i } to update the metric learner. This selp-supervised

online procedure is processed step-by-step. Alternately, we

can also change this strategy to update the metric learner ev-

ery few frames, i.e. mini-batch updating. The computational

complexity of the entire procedure is O(d2), which is very

low and can run fast. The details of testing and online learn-

ing procedure is shown in Alg. 1.

4. EXPERIMENTS AND COMPARISONS

In this section, we systematically apply our proposed algorith-

m to several published challenging video sequences to justify

the effectiveness. We also compare our online metric learn-

ing tracking method (OMLTrack) with two recent prominent

tracking methods, i.e. Multiple Instance Learning Tracking

(MILTrack) [12] and L1 tracking [13].

Evaluation criterion: The Average Tracking Precision

(ATP) is used to evaluate the performance, which is extended

by the Average Precision (AP) used in the PASCAL grand

challenge. Assume Tj and G j are the bounding boxes of

predicted target and ground truth in frame j, respectively.

The ATP for a tracker of an object in a video clip is defined

as: ATP = 1
t ∑t

j=1 r j =
1
t ∑t

j=1 |G j
⋂

Tj|/|G j
⋃

Tj|, where r j ∈
[0,1], t is the frame number. So the greater the ATP value, the

better the tracker performs, and ATP ≡ 1 ideally.

Experiments: We perform our experiments on several

public video sequences. All the sequences are labeled the cen-

ter of the groundtruth object for every 5 frames. Each frame is

gray scale and resized to 320×240 pixels. Fig.3 demonstrates

some tracking results from our OMLTrack, L1Track and MIL-

Track. In the Coke Can video, our OMLTracker tracks the

Coke Can robustly in spite of severe occlusions in the 4th im-

age. The Surf and Sylvester video data are often used in track-

ing papers as they present difficult tracking scenarios, such

as challenging lighting, changes in scale and poses, and oc-

clusions. Nevertheless, our algorithm consistently produces

good results even in these challenging examples. The Tiger2

video contains frequent fast motions, which lead to motion-

blur sometimes. Yet our algorithm again tracks the object well

in this case. The quantitative results are summarized in Ta-

ble 1 and Fig. 2, where the average ATP of our OMLTrack is

0.612 higher than MILTrack (0.60185) and L1Track (0.2445).

Table 1. The quantitative comparison of Average Tracking

Precision (ATP) of each video data by different methods

Video #Frames L1Track MILTrack OMLTrack

CokeCan 291 0.0618 0.3173 0.4405

Sylvester 855 0.6208 0.7556 0.7941

Surf 375 0.0823 0.7106 0.7004

Tiger 364 0.2143 0.6239 0.5141

5. CONCLUSION

We propose a self-supervised object tracking method via on-

line metric learning and semi-supervised learning. Given a

number of labeled data followed by a sequential input of un-

seen testing samples, the similarity metric is firstly learnt by

our model to maximize the margin between foreground and

background samples. The pair-wise similarity is then mea-

sured by our new bi-linear graph for online label propagation

of the new data. With the most confident samples adopted to

update the model, our model can be improved incrementally
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Fig. 2. The quantitative comparison results of our OMLTrack to MILTrack and L1Track on different video data measured by

Average Tracking Precision (ATP) criterion.
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Fig. 3. The comparison of tracking results on different video data, where the green line, the red dash line and the yellow dash

line correspond to the result of our Online Metric Learning tracking (OMLTrack), Multi Instance Learning Tracking (MILTrack)

and L1 tracking, respectively.

and is also computationally efficient. Experiments on various

benchmark datasets and comparisons with other state-of-the-

art methods demonstrate the effectiveness and efficiency of

our algorithm.
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