
Propagative Hough Voting for Human Activity
Recognition

Gang Yu1, Junsong Yuan1, and Zicheng Liu2

1 School of Electrical and Electronic Engineering, Nanyang Technological University
gyu1@e.ntu.edu.sg, jsyuan@ntu.edu.sg
2 Microsoft Research Redmond, WA, USA

zliu@microsoft.com

Abstract. Hough-transform based voting has been successfully applied
to both object and activity detections. However, most current Hough
voting methods will suffer when insufficient training data is provided. To
address this problem, we propose propagative Hough voting for activity
analysis. Instead of letting local features vote individually, we perform
feature voting using random projection trees (RPT) which leverages the
low-dimension manifold structure to match feature points in the high-
dimensional feature space. Our RPT can index the unlabeled testing
data in an unsupervised way. After the trees are constructed, the label
and spatial-temporal configuration information are propagated from the
training samples to the testing data via RPT. The proposed activity
recognition method does not rely on human detection and tracking, and
can well handle the scale and intra-class variations of the activity pat-
terns. The superior performances on two benchmarked activity datasets
validate that our method outperforms the state-of-the-art techniques not
only when there is sufficient training data such as in activity recognition,
but also when there is limited training data such as in activity search
with one query example.

1 Introduction

Hough-transform based local feature voting has shown promising results in both
object and activity detections. It leverages the ensemble of local features, where
each local feature votes individually to the hypothesis, thus can provide robust
detection results even when the target object is partially occluded. Meanwhile,
it takes the spatial or spatio-temporal configurations of the local features into
consideration, thus can provide reliable detection in the cluttered scenes, and
can well handle rotation or scale variation of the target object.

Despite previous successes, most current Hough-voting based detection ap-
proaches require sufficient training data to enable discriminative voting of local
patches. For example, [7] requires sufficient labeled local features to train the
random forest. When limited training examples are provided, e.g., given one or
few query examples to search similar activity instances, the performance of pre-
vious methods is likely to suffer. The root of this problem lies on the challenges
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of matching local features to the training model. Due to the possibly large varia-
tions of activity patterns, if limited training examples are provided, it is difficult
to tell whether a given local feature belongs to the target activity or not. Thus
the inaccurate voting scores will degrade the detection performance.

In this paper, we propose propagative Hough voting for activity analysis.
To improve the local feature point matching, we introduce random projection
trees [18], which is able to capture the intrinsic low dimensional manifold struc-
ture to improve matching in high-dimensional space. With the improved match-
ing, the voting weight for each matched feature point pair can be computed more
reliably. Besides, as the number of trees grows, our propagative Hough voting
algorithm is theoretically guaranteed to converge to the optimal detection.

Another nice property of the random projection tree is that its construction is
unsupervised, thus making it perfectly suitable for leveraging the unlabeled test
data. When the amount of training data is small such as in activity search with
one or few queries, one can use the test data to construct the random projection
trees. After the random projection trees are constructed, the label information
in the training data can then be propagated to the testing data by the trees.

Our method is explained in Fig. 1. For each local patch (or feature) from
the training example, it searches for the best matches through RPT. Once the
matches in the testing video are found, the label and spatial-temporal config-
uration information are propagated from the training data to the testing data.
The accumulated Hough voting score can be used for recognition and detection.
By applying the random projection trees, our proposed method is as efficient as
the existing Hough-voting based activity recognition approach, e.g., the random
forest used in [7]. However, our method does not rely on human detection and
tracking, and can well handle the intra-class variations of the activity patterns.
With an iterative scale refinement procedure, our method can handle small scale
variations of activities as well.

We evaluate our method in two benchmarked datasets, UT-interaction [10]
and TV Human Interaction [19]. To fairly compare with existing methods, we
test our propagative Hough voting with (1) insufficient training data, e.g., in
activity search with few query examples, and (2) sufficient training data, e.g.,
in activity recognition with many training examples. The superior performances
over the state-of-the-arts validate that our method can outperform them in both
conditions.

2 Related work

Based on the successful development of video features, e.g., STIP [1], cuboid-
s [13], and 3D HoG [22], many human activity recognition methods have been
developed. Previously, [15][7][16][11] rely on the human detection or even human
pose estimation for activity analysis. But human detection, tracking, and pose
estimation in uncontrolled environments are challenging problems.

Without relying on auxiliary algorithms such as human detection, [12][5][6]
perform activity recognition by formulating the problem as a template matching
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Fig. 1. Propagative Hough Voting: The left figure illustrates our implicit spatial-temporal shape
model on a training video. Three sample STIPs from the testing videos are illustrated with blue
triangles in the right figure. Several matches will be found for the three STIPs given the RPT. We
choose three yellow dots to describe the matched STIPs from the training data in the middle figure.
For each training STIP (yellow dot), the spatial-temporal information will be transferred to the
matched testing STIPs (blue triangle) in the testing videos. By accumulating the votes from all the
matching pairs, a sub-volume is located in the right figure. The regions marked with magenta color
refer to the low-dimension manifold learned with RPT, which can built on either training data or
testing data. (Best viewed in color)

process. In [12], it learns a spatial-temporal graph model for each activity and
classifies the testing video as the one with the smallest matching cost. In [5],
temporal information is utilized to build the “string of feature graph”. Videos are
segmented at a fixed interval and each segment is modeled by a feature graph.
By combining the matching cost from each segment, they can determine the
category of the testing video as the one with the smallest matching cost. In [6],
similar idea of partitioning videos to small segments is used but video partition
problem is solved with dynamic programming. There are several limitations in
these matching based algorithms. First, the template matching algorithms, e.g.,
graph matching [12][5], are computationally intensive. For example, in order
to use these template based methods for activity localization, we need to use
sliding-windows to scan all the possible sub-volumes, which is an extremely large
search space. Despite the fact that [6] can achieve fast speed, the proposed
dynamic BoW based matching is not discriminative since it drops all the spatial
information from the interest points. Similarly, in [12][5], the temporal models
are not flexible to handle speed variations of the activity pattern. Third, a large
training dataset will be needed to learn the activity model in [12][6]. However,
in some applications such as activity search, the amount of training data is
extremely limited.

To avoid enumerating all the possible sub-volumes and save the computation-
al cost, Hough voting has been used to locate the potential candidates. In [7],
Hough voting has been employed to vote for the temporal center of the activi-
ty while the spatial locations are pre-determined by human tracking. However,
tracking human in unconstrained environment is a challenging problem. In con-
trast, our algorithm does not rely on tracking. In our algorithm, both spatial
and temporal centers can be determined by Hough voting and the scale can be
further refined with back-projection. Besides, the trees in [7] are supervisedly
constructed for the classification purpose while our trees are trying to model
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the underlying data distribution in an unsupervised way. Furthermore, our trees
can be built on the test data which allows our propagative Hough voting to well
handle the limited training data problem.

3 Activity Recognition by Detection

Spatial-temporal interest points (STIP) [1] are first extracted from each video.
For each STIP, we describe it with Histogram of Gradient and Histogram of
Optical Flow. In total, the feature dimension is 162. We represent each train-
ing video with implicit spatial-temporal shape model based on extracted STIP
points as shown in Fig. 1. Although we only apply sparse STIP feature in our
experiments, our method is also applicable to dense local features. We refer to
the training data as R : {dr = [fr, lr]; r = 1, 2, · · · , NR}, where fr and lr are the
descriptor and 3D location of interest point dr, respectively. NR is the number
of interest points.

Suppose we have a set of testing videos, denoted by S = {V1,V2, · · · ,VNS},
we want to recognize and locate the specific activity in the training video set
R, where R can be one or more training examples. Our goal is to find a video
sub-volume, V ∗, to maximize the following similarity function:

maxV SV⊂S(V,R) = maxx,t,ρS(V (x, t, ρ),R), (1)

where V (x, t, ρ) refers to the sub-volume with temporal center t and spatial
center x; ρ refers to the scale size and duration; S(·, ·) is the similarity measure. In
total, we have 6 parameters (center position x, y, t, and width, height, duration)
to locate the optimal sub-volume V ∗. For the problem of multi-class activity
recognition (suppose we have K classes), Eq. 1 will be searched K times with
training data R from different categories. Later, the class with the highest score
of V ∗ will be picked as the predicting label for the testing video V.

To measure the similarity between V (x, t, ρ) and the training data R, similar
to [17], we define S(V (x, t, ρ),R) in Eq. 1 as follow.

S(V (x, t, ρ),R) =
∑
dr∈R p([x, t, ρ], dr)

=
∑
dr∈R p([x, t, ρ]|dr)p(dr),

(2)

where dr = [fr, lr] with fr representing the feature description and lr representing
the location of the rth STIP point in the training videos. p([x, t, ρ], fr, lr) is the
probability that there exists a target activity at position [x, t, ρ] and a matched
STIP point dr in the training data. Since it is reasonable to assume a uniform
prior over dr, we skip p(dr) and focus on the local feature voting p([x, t, ρ]|dr):

p([x, t, ρ]|dr) =
∑
ds∈S p([x, t, ρ], ds|dr)

=
∑
ds∈S p([x, t, ρ]|ds, dr)p(ds|dr)

=
∑
ds∈S p([x, t, ρ]|ls, lr)p(fs|fr).

(3)

In Eq. 3, p(fs|fr) determines the voting weight which relies on the similarity
between fs and fr. We will elaborate on how to compute p(fs|fr) in Section 4.
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On the other hand, p([x, t, ρ]|ls, lr) determines the voting position. Suppose dr =
[fr, lr] ∈ R matches ds = [fs, ls] ∈ S, we cast the spatial-temporal information
from the training data to the testing data with voting position lv = [xv, tv]:

xv = xs − ηx(xr − cxr )
tv = ts − ηt(tr − ctr),

(4)

where [xs, ts] = ls, [xr, tr] = lr, [cxr , c
t
r] is the spatio-temporal center position of

the training activity and η = [ηx, ηt] refers to the scale level and duration level
(the scale size of the testing video, i.e., ρ, over the scale size of the matched
training video).

Once the voting position for testing sequence is available, we can compute
p([x, t, ρ]|ls, lr) as:

p([x, t, ρ]|ls, lr) =
1

Z
e−
||[xv−x,tv−t]||2

σ2 , (5)

where Z is a normalization constant and σ2 is a bandwidth parameter.

4 Propagative Interest Point Matching

The matching of local features p(fs|fr) plays an essential role in our Hough
voting. According to Eq. 3, as each dr ∈ R will be matched against all ds ∈ S,
an efficient and accurate matching is essential. We propose to use the random
projection trees [18] (RPT), which is constructed in an unsupervised way, to
model the underlying low-dimension feature distribution, as the light magenta
regions shown in Fig. 1. Compared with traditional Euclidean distance which
ignores the hidden data distribution, RPT can give a more accurate evaluation
of p(fs|fr) with the help of underlying data distribution.

RPT has three unique benefits compared with other data structures, e.g.,
[21]. First of all, as proven in [18], random projection trees can adapt to the
low-dimension manifold existing in a high dimension feature space. Thus, the
matching found by random projection trees is superior to the nearest neighbor
based on Euclidean distance. This advantage is further validated by our exper-
imental results in Section 6. Second, similar to BoW model, we quantize the
feature space by tree structures. Rather than enumerating all the possible in-
terest point matches, we can efficiently find the matches by passing the query
interest point from the root to the leaf nodes. This can save a lot of compu-
tational cost. Third, we can make more accurate estimation by increasing the
number of trees. Later, we will prove that our random projection tree based
Hough voting generates optimal solution when the number of trees approach-
es infinity. In the following section, we describe how to implement the random
projection trees.

4.1 Random Projection Trees

Depending on the applications, our random projection trees can be built on (1)
training data only, e.g., standard action classification and detection, (2) testing
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data only, e.g., activity search, (3) both training and testing data. The trees are
constructed in an unsupervised way and the labels from the training data will
only be used in the voting step. Assume we have a set of STIPs, denoted by
D = {di; i = 1, 2, · · · , ND}, where di = [fi, li] as defined in Section 3 and ND is
the total number of interest points. The feature dimension is set to n = 162, so
fi ∈ Rn.

Algorithm 1 Trees = ConstructRPT (D)

1: for i = 1→ NT do
2: BuildTree(D, 0)
3: end for

4: Proc Tree = BuildTree(D, depth)
5: if depth < δd then
6: Choose a random unit direction v ∈ Rn
7: Pick any x ∈ D; find the farthest point y ∈ D from x
8: Choose γ uniformly at random in [−1, 1] · 6||x− y||/

√
n

9: Rule(x) := x · v ≤ (median({z · v; z ∈ D}) + γ)
10: LTree ← BuildTree({x ∈ D;Rule(x) = true}, depth+1)
11: RTree ← BuildTree({x ∈ D;Rule(x) = false}, depth+1)
12: end if

We implement random projection trees [18] as shown in Algorithm 1. There
are two parameters related to the construction of trees. NT is the number of
trees and δd is the maximum tree depth. Each tree can be considered as one
partition of the feature space to index the interest points.

At the matching step, p(fs|fr) in Eq. 3 will be computed as:

p(fs|fr) =
1

NT

NT∑
i=1

Ii(fs, fr), (6)

where NT refers to the number of trees and

Ii(fs, fr) =

{
1, fs, fr belong to the same leaf in tree Ti
0, otherwise

(7)

Thus, Eq. 2 becomes

S(V (x, t, ρ),R) ∝
∑
dr∈R

NT∑
i=1

∑
ds∈S

Ii(fs, fr)p([x, t, ρ]|ls, lr)

∝
∑
dr∈R

NT∑
i=1

∑
ds∈S && Ii(fs,fr)=1

p([x, t, ρ]|ls, lr),
(8)

where ds ∈ S && Ii(fs, fr) = 1 refers to the interest points from S which fall in
the same leaf as dr in the ith tree. Based on Eq. 5, we can compute the voting
score as:

S(V (x, t, ρ),R) ∝
∑
dr∈R

NT∑
i=1

∑
ds∈S && Ii(fs,fr)=1

e−
||[xv−x,tv−t]||2

σ2 . (9)
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4.2 Theoretical Justification

The matching quality of Eq. 6 depends on the number of trees NT . To justify
the correctness of using random projection trees for interest point matching, we
show that, when the number of trees is sufficient, our Hough voting algorithm can
obtain the optimal detection results. For simplicity, we assume our hypothesis
space is of size W×H×T , with W,H, T refer to the width, height and duration of
the testing data, respectively. Each element refers to a possible center position
for one activity and the scale ρ is fixed. We further assume there is only one
target activity existing in the search space at the position l∗ = [x∗, t∗]. So in
total there are NH = W×H×T−1 background positions. To further simplify the
problem, we only vote for one position for each match rather than a smoothed
region in Eq. 5. That is,

p(l∗|ls, lr) =

{
1, l∗ = lv
0, otherwise

(10)

We introduce a random variable x(i) with Bernoulli distribution to indicate
whether we have a vote for the position l∗ or not in the ith match. We refer to the
match accuracy as q and therefore p(x(i) = 1) = q. We introduce another random
variable with Bernoulli distribution y(i) to indicate whether we have a vote for
the background position lj (where lj 6= l∗) or not in the ith match. Suppose each
background position has an equal probability to be voted, then p(y(i) = 1) =
1−q
NH

. We prove the following theorem in the supplementary material.

Theorem 1. Asymptotic property of propagative Hough voting: When
the number of trees NT → ∞, we have S(V (l∗),R) > S(V (lj),R) with proba-

bility 1 − Φ(
−(q− 1−q

NH
)
√
NM

σxy
). Specifically, if q ≥ 1

NH+1 , we have S(V (l∗),R) >

S(V (lj),R) when the number of trees NT →∞.

In Theorem 1, Φ(x) = 1√
2π

∫ x
−∞ e−

x2

2 dx and σxy refers to the variance. NM refers

to the number of matches according to Eq. 8: NM = NT ×NR ×NL if we build
our RPT on the testing data, and NM = NT × NS × NL if we build our RPT
on the training data. NL, referring to the average number of interest points in
each leaf, can be estimated as NL ≈ ND

2δd
where δd denotes the tree depth and

ND the size of the data for building RPT. Based on our empirical simulation
experiments, q is much larger than 1

NH+1 . Thus the asymptotic property is true.

5 Scale Determination

To estimate ρ in activity localization, we propose an iterative refinement method,
which iteratively applies the Hough voting and scale refinement. The reason we
use the iterative algorithm is that we have 6 parameters to search for. This
cannot be well handled in traditional Hough voting [17], especially when there
is not sufficient amount of training data. We have two steps for the iterative
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refinement: 1) fix the scale, search for the activity center with Hough voting; 2)
fix the activity center, and determine the scale ρ based on back-projection. We
iterate the two steps until convergence.

The initial scale information ρ is set to the average scale of the training
videos. Based on the Hough voting step discussed in Section 3, we can obtain
the rough position of the activity center. Then back-projection, which has been
used in [17][14] for 2D object segmentation or localization, is used to determine
the scale parameters.

After the Hough voting step, we obtain a back-projection score for each
testing interest point ds from the testing video based on Eq. 2:

sds =
∑
dr∈R p(l

∗|ls, lr)p(fs|fr)

= 1
Z

∑
dr∈R e

− ||l
∗−ls||2

σ2 p(fs|fr),
(11)

where l∗ is the activity center computed from last round; Z and σ2 are, respec-
tively, normalization constant and kernel bandwidth, which are the same as in
Eq. 5. p(fs|fr) is computed by Eq. 6. The back-projection score sds represents
how much this interest point ds contributes to the voting center, i.e., l∗. For each
sub-volume detected in previous Hough voting step, we first enlarge the origi-
nal sub-volume in both spatial and temporal domains by 10%. We refer to the
extended volume as V l

∗

W×H×T , meaning a volume centered at l∗ with width W ,

height H and duration T . We need to find a sub-volume V l
∗

w∗×h∗×t∗ to maximize
the following function:

max
w∗,h∗,t∗

∑
ds∈V l

∗
w∗×h∗×t∗

sds + τw∗h∗t∗, (12)

where τ is a small negative value to constrain the size of the volume.
We assume each interest point which belongs to the detected activity would

contribute in the Hough voting step, i.e., it should have a high back-projection
score sds . Thus, for those interest points with low back-projection scores, we
consider them as the background. This motivates us to use the method in Eq. 12
to locate the optimal sub-volume V l

∗

w∗×h∗×t∗ .
Once we obtain the scale information of the sub-volume, we replace ρ in Eq. 1

with [w∗, h∗, t∗] computed from Eq. 12 and start a new round of Hough voting.
The process iterates until convergence or reaching to a pre-defined iteration
number.

For activity classification, since the testing videos have already been seg-
mented, the scale ρ can be determined by the width, height and duration of the
testing video. The similarity between the training activity model and testing
video defined in Eq. 1 is S(V (x∗, t∗, ρ),R) where [x∗, t∗] refers to the center
position of the testing video.

6 Experiments

Two datasets are used to validate the performance of our algorithms. They are
UT-Interaction [10] and TV Human Interaction dataset [19]. We perform two
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types of tests: 1) activity recognition with few training examples but we have a
large testing data (building RPT on the testing data), and 2) activity recognition
when the training data is sufficient (building RPT on the training data).

6.1 RPT on the Testing Data

In the following experiments, we first show that our algorithm is able to handle
the cases when the training data is not sufficient. Experiments on UT-Interaction
dataset and TV Human Interaction validate the performance of our algorithm.
In these experiments, we build RPT using the testing data without labels. The
reason why we do not train our RPT with both the training and testing data is
that we need to handle the activity search problem, where we do not have the
prior knowledge on query (training) data initially.

Method [10] [12] NN + HV RPT + HV

Accuracy 0.708 0.789 0.75 0.854

Table 1. Comparison of classification results on UT-Interaction (20% training).

Activity classification on UT-Interaction dataset with 20% data for
training We use the setting with 20% data for training and the other 80%
for testing on UT-interaction dataset. This evaluation method has been used
in [10][12]. Since the training data is not sufficient, we build our random pro-
jection trees from the testing data. We list our results in Table 1. “NN + HV”
refers to the method that nearest neighbor search is used to replace RPT for
feature points matching. It shows that our algorithm has significant performance
advantages compared with the state-of-the-arts.

Activity classification on UT-Interaction dataset with one video clip
only for training [5] provided the result of activity classification with training
on only one video clip for each activity type and testing on the other video clips.
To compare with [5], we performed the same experiments with just a single video
clip as the training data for each activity type. We obtain an average accuracy of
73% which is significantly better than the average accuracy of 65% as reported
in [5].

Activity Search with Localization on UT-Interaction dataset The ac-
tivity search experiments are tested on the continuous UT-Interaction dataset.
In the application scenario of activity search, there is usually just a few or even
a single training sample available that indicates what kind of activity the user
wants to find. Following the requirement of such an application scenario, we test
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Fig. 2. Activity search results on UT-Interaction dataset.

our algorithm with only one query sample randomly chosen from the segmented
videos. But if more training samples are available to our algorithm, the perfor-
mance will be further boosted. With the help of our iterative activity search
algorithm, we can efficiently locate all similar activities in a large un-segmented
(continuous) video set. To compute the precision and recall, we consider a correct

detection if: Volume(V ∗∩G)
Volume(V ∗∪G) >

1
2 where G is the annotated ground truth subvolume,

and V ∗ is the detected subvolume.

Fig. 2 shows the results of different algorithms. The difference between our
activity search and previous work is that we are only given one query video clip.
Our system has no prior information about the number of activity categories in
the database. In contrast to [10][5], for every activity type, there is at least one
video clip provided as training data. As previous works of activity search do not
provide precision-recall curves, we only compare with the following algorithms:
Branch&Bound [20][2] (magenta curve) and nearest neighbors+Hough voting
without scale determination (green curve). We use the same code provided by [20]
to run the results. We list two categories of our results: 1) red curves: results after
one step of Hough voting without scale refinement and 2) blue curves: results
after one round of iteration (including both Hough voting and scale refinement).
Compared with NN search, we can see the clear improvements by applying RPT
to match feature points. Besides, back-projection refines the results from Hough
voting. Since the dataset does not have very large spatial and temporal scale
changes, we only present the results after one round of our iterative algorithm.
The performance does not improve significantly when we further increase the
number of iterations.
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Fig. 3 provides sample results of our activity search algorithm. One segmented
video (sample frame for each category is shown in the first column) is used as
the query and three detected results (marked with red rectangle) are included
from the second to the forth column of Fig. 3.

Fig. 3. Activity search results on the UT-Interaction Dataset. we show two categories of results in
each row. For each category, the first image is from the query video and the following three images
are sample detection results. The red regions refer to our detected sub-volumes.

Activity Search on TV Human Interaction dataset Since UT-Interaction
is recorded in controlled environments, we use the TV Human Dataset [19] to
show that our algorithm is also capable of handling activity recognition in uncon-
trolled environments. The dataset contains 300 video clips which are segmented
from different TV shows. There are four activities: hand shake, high five, hug
and kiss.

We have performed an experiment on the TV Human dataset for the perfor-
mance evaluations on different number of training samples. We take the experi-
ment with the following setting: 100 videos (25 videos for each category) as the
database and randomly select a number of other videos as queries. RPT is built
on the database (testing data). Fig 4 (Left) compares our results with those
of NN + Hough voting. It shows the performance benefits of our RPT based
matching compared with nearest neighbor based matching.

6.2 RPT on the Training Data

We have two experiments to further show that our algorithm can also have
promising results for the traditional activity recognition problem, i.e., the train-
ing data is sufficient. One is tested on UT-Interaction dataset with Leave-one-out
cross validation and another is on TV Human dataset.

Activity classification on UT-Interaction dataset with Leave-one-out
validation This setting was used in the activity classification contest [8]. It is
a 10-fold leave-one-out cross validation. Table 2 lists the published results on
two different sets of videos. Since enough training data is provided, we build our
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Fig. 4. Left: Average precision versus different number of training videos provided on TV Human
Dataset (testing on a database with 100 videos). Right: PR curves for activity recognition on TV
Human Dataset (25 videos for each activity used for training).

unsupervised random projection trees from the training data without using the
labels. The experimental results show that our algorithm outperforms the state-
of-the-art methods on the classification problem when the amount of training
data is sufficient.

Method Shake Hug Kick Point Punch Push Total

[1] + kNN 0.18 0.49 0.57 0.88 0.73 0.57 0.57
[1] + Bayes 0.38 0.72 0.47 0.9 0.5 0.52 0.582
[1] + SVM 0.5 0.8 0.7 0.8 0.6 0.7 0.683
[13] + kNN 0.56 0.85 0.33 0.93 0.39 0.72 0.63
[13] + Bayes 0.49 0.86 0.72 0.96 0.44 0.53 0.667
[13] + SVM 0.8 0.9 0.9 1 0.7 0.8 0.85
[7] 0.7 1 1 1 0.7 0.9 0.88
[6] BoW - - - - - - 0.85
Our proposed 1 1 1 1 0.6 1 0.933

Method Shake Hug Kick Point Punch Push Total

[1] + kNN 0.3 0.38 0.76 0.98 0.34 0.22 0.497
[1] + Bayes 0.36 0.67 0.62 0.9 0.32 0.4 0.545
[1] + SVM 0.5 0.7 0.8 0.9 0.5 0.5 0.65
[13] + kNN 0.65 0.75 0.57 0.9 0.58 0.25 0.617
[13] + Bayes 0.26 0.68 0.72 0.94 0.28 0.33 0.535
[13] + SVM 0.8 0.8 0.6 0.9 0.7 0.4 0.7
[7] 0.5 0.9 1 1 0.8 0.4 0.77
Our Proposed 0.7 0.9 1 0.9 1 1 0.917

Table 2. Comparison of classification results on UT-Interaction Set 1 (left) and Set 2 (right) with
leave-one-out cross validation setting.

As we can see from Table 2, results from cuboid features [13] are better than
those from STIP features [1]. Even though we use STIP features, we still achieve
better results than the state-of-the-art techniques that use cuboid features.

Action recognition on TV Human dataset We test our algorithm using the
standard setting as in [19]: training with 25 videos for each activity and testing on
the remaining videos. In addition to [19], there are other works that published
the results on this dataset. But they used additional information provided in
the dataset, e.g., actor position, head orientation and interaction label of each
person. Thus, it is un-fair for us to compare with them since we only utilize the
video data.

Following the evaluation method in [19], we also evaluate our algorithm based
on average precision. Table 3 compares our results with those reported in [19].
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“+Neg” means we add 100 negative videos that do not contain the target activ-
ities into the testing dataset. The precision-recall curves from our algorithm are
shown in Fig. 4 (Right).

100 Videos 100 Videos + 100 Neg

[19] 0.3933 0.3276
Our algorithm 0.6616 0.5595

Table 3. Comparison of activity classification on TV Human Dataset based on average precision.

6.3 Computational Complexity

Here we only discuss the online computational cost as the RPT can be built
offline. For the Hough voting step, it takes O(NM ) + O(W ′H ′T ′), where NM
refers to the number of matches, which is defined in Section 4.2, and W ′, H ′, T ′

are the width, height and duration of the testing videos, respectively. For the
back-projection step, the computational complexity is O(NM )+O(WHT ), where
W,H, T are the width, height and duration of the extended sub-volume defined
in Section 5 and T << T ′. It takes approximately 10 seconds to perform the
activity classification for each 4-second long testing video and 15 seconds for
activity search on a 1 min testing video on the UT-Interaction dataset. The
feature extraction takes a few more seconds depending on the length of the
video. The system is implemented in C++ and runs on a regular desktop PC.

7 Conclusion

Local feature voting plays an essential role in Hough voting-based detection. To
enable discriminative Hough-voting with limited training examples, we proposed
propagative Hough voting for human activity analysis. Instead of matching the
local features with the training model directly, by employing random projec-
tion trees, our technique leverages the low-dimension manifold structure in the
high-dimensional feature space. This provides us significantly better matching
accuracy and better activity detection results without increasing the compu-
tational cost too much. As the number of trees grows, our propagative Hough
voting algorithm can converge to the optimal detection. The superior perfor-
mances on two benchmarked datasets validate that our method can outperform
not only with sufficient training data, e.g., in activity recognition, but also with
limited training data, e.g., in activity search with one query example.
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