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Abstract. The spatial layout of images plays a critical role in natural scene anal-
ysis. Despite previous work, e.g., spatial pyramid matching, how to design op-
timal spatial layout for scene classification remains an open problem due to the
large variations of scene categories. This paper presents a novel image repre-
sentation method, with the objective to characterize the image layout by vari-
ous patterns, in the form of randomized spatial partition (RSP). The RSP-based
image representation makes it possible to mine the most descriptive image lay-
out pattern for each category of scenes, and then combine them by training a
discriminative classifier, i.e., the proposed ORSP classifier. Besides RSP image
representation, another powerful classifier, called the BRSP classifier, is also pro-
posed. By weighting a sequence of various partition patterns via boosting, the
BRSP classifier is more robust to the intra-class variations hence leads to a more
accurate classification. Both RSP-based classifiers are tested on three publicly
available scene datasets. The experimental results highlight the effectiveness of
the proposed methods.
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1 Introduction

Images are different from other information carriers such as texts and audios since
image patterns convey rich spatial information. Such a difference makes a number of
techniques which have been successful in the text-based applications less effectiveness
when applied to images, e.g., the popular bag-of-visual-word (BoVW) model [2-5], be-
cause the spatial information among the visual primitives in images is usually ignored.
A lot of previous work [6—10] has shown that without considering the spatial informa-
tion, the discriminative power of BoVW model is severely limited. This is especially
true when the images are composed by several semantic components with clear spatial
layout, e.g., the natural scenes in Figure 1, where the spatial configuration among the
semantic components becomes essential in describing these scenes. Therefore, how to
make use of the spatial layout information plays a critical role in natural scene recogni-
tion.

The most straightforward way to incorporate the spatial layout information is to
quantize the image space. By a pre-defined partition pattern, the two-dimensional im-
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Fig. 1. (a) Examples of inter-class variations of the image layout. The left two pictures in each
category are the original images while the right one is the optimal partition pattern to describe
their spatial layout. We can see that sharing the same partition pattern for all the categories is not
an optimal solution; (b) Examples of intra-class variations of the image layout (from 21-land-use
dataset [1]). Even for the images containing the same components, their layout may vary quite a
lot due to the changes in offset, scale, viewpoint and rotation.

age space is divided into several sub-regions. Then each visual word is encoded accord-
ing to the sub-regions it belongs to. By doing so, the spatial layout of the images is
characterized by the pre-defined partition pattern. The spatial pyramid matching (SPM)
algorithm [11] is one representative of these methods, which symmetrically partitions
the image into uniform cells at different levels of resolution. With the help of spatial
layout information to improve the discriminative power, the SPM algorithm achieves a
significant better performance, and its partition pattern, namely the spatial pyramid, is
employed in many other work [1, 12].

Despite previous success, the spatial pyramid still has several limitations in cap-
turing the spatial layout information. The first challenge comes from the inter-class
variations of the spatial layout of the images. As shown in Figure 1(a), the spatial layout
of the images in different scene categories differs a lot from each other, hence sharing
one partition pattern for all scene categories is not the optimal solution to characterize
the image layout, just as done in [11]. On the contrary, each category should have its
own partition pattern that is most descriptive, such that its spatial layout can be opti-
mally characterized. The second challenge comes from the large intra-class variations
of the image layout. From Figure 1(b) we can see that even for the images in the same
category that contain similar semantic components, their spatial layout may vary quite a
lot due to the changes in offset, scale, viewpoint and rotation. It means even if we could
find one descriptive partition pattern for each category, there will be also many outliers
in the same category which cannot be described satisfactorily.

This paper contributes to addressing the two challenges mentioned above: 1) we
propose a novel image representation approach based on randomized spatial partition
(RSP). Instead of partitioning the images by the pre-defined pattern, e.g., the symmetric
spatial pyramid, we randomly partition the images multiple times and obtain a pool of
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independent partition patterns that can be selected later. As a result, the image layout can
be characterized by various partition patterns; 2) to address the inter-class variations, an
effective RSP-based classifier via optimal selection (ORSP) is proposed to mine the
most discriminative partition pattern for each category. By representing each category
of images in its own partition pattern, the spatial layout of different image categories
is better described hence the ORSP classifier improves the classification accuracy; 3)
furthermore, a more powerful RSP-based classifier via boosting (BRSP) is proposed,
in which a sequence of partition patterns are weighted according to their discriminative
abilities and finally boosted into the strong classifier. Since it allows to characterize the
spatial layout of one image using multiple patterns, this classifier is more robust to the
large intra-class variations of the image layout. We apply both RSP-based classifiers
for scene recognition on three publicly available datasets: the 15-scene dataset [13], the
8-event dataset [14], and the 21-land-use dataset [1]. The comparison with the state-of-
the-art methods highlights the effectiveness of our RSP-based image classifiers.

2 Related Work

The bag-of-visual-word (BoVW) model [3,4, 15, 13, 14] has been widely adopted in
visual recognition although it has an obvious drawback of quantizing high-dimensional
descriptors into visual words. In general, there are two ways to address the quantization
error incurred by the BoVW model. One is to match individual descriptors in the fea-
ture space directly, e.g., the Naive-Bayes Nearest Neighbor (NBNN) classifier proposed
in [16, 17]. However, the NBNN-based algorithms are under the Naive-Bayes assump-
tion that each feature point is independent from the others, therefore they can fail when
the assumption is violated. Besides, without considering the spatial information, match-
ing individual features can not provide satisfactory recognition results.

Taking advantage of the spatial information is another way to mitigate the quan-
tization error. By bundling the co-occurred visual words within a constrained spatial
distance into a visual phrase or feature group as the basic unit for matching, the spatial
context information is incorporated to enhance the discriminative power of visual words
and leads to a better performance in object recognition [18-20]. To group local features,
spatial random partition has been used in [21, 22] for common object discovery and vi-
sual object search. However, these methods only characterize the relative location of
the visual words rather than their absolute location, hence their descriptive abilities are
limited on the images which have clear spatial layout, such as natural scenes. As one of
the most popular methods in scene recognition, the spatial pyramid matching algorith-
m [11, 1, 12] divides the image space into uniform cells at different levels of resolution,
and quantizes the continues coordinates of the visual words into discrete cells. Thus,
the location of the visual words is encoded and the spatial layout of the images is char-
acterized by the spatial pyramid. However, the pre-defined spatial pyramid could not be
the optimal pattern to describe the image layout of all the categories. In [23], a specific
partition pattern is learnt for each category by a series of recursive axis aligned splits of
cells, but it is still under the one-pattern-per-category restriction, that is, the images in
the same category share the same pattern to describe their image layout.
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3 Image Representation

In this section, we first briefly describe the original spatial pyramid matching (SPM)
algorithm [11], then introduce a novel randomized spatial partition-based (RSP-based)
image representation scheme.

3.1 Original SPM Image Representation

Given an image I, we denote by {f} all the local features extracted from it. In gen-
eral each local feature f is represented as f = (z,y,d), where (z,y) is the location
coordinates and d is the continuous high-dimensional descriptor, e.g., 128-dimensional
SIFT [24]. Then in the BoVW framework, each local descriptor d is quantized into
a discrete visual word using a vocabulary of V' words, while the location coordinates
(x,y) are discarded. Finally, each image I can be represented as a histogram with V'
bins which records its word-occurrence frequency.

In the SPM algorithm, the spatial locations are integrated to enhance the descriptive
power of BoVW model. As in Figure 2, the two-dimensional image space is divided
symmetrically into uniform cells at different levels of resolution, forming the spatial
pyramid. The higher level of the pyramid generates the smaller cells. Let us consider
the current level [ (0 < [ < L—1), at which all the local features are assigned to 4 cells
according to their location coordinates. Essentially, for each local feature f = (z,y,d),
we quantize its location coordinates (z, y) into these discrete cells, just like quantizing
the continuous descriptor d into discrete visual words. Therefore, the image I can be
represented as a histogram k! with 4! x V bins at the [ level, and finally represented as
a long histogram with Zle_ol 4'V bins combining k' at all levels. Note that the weights
associated with different levels are inversely proportional to the cell sizes. Intuitively,
the histogram bin associated with a larger cell is penalized because it corresponds to a
coarser quantization.
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Fig. 2. Toy example of a three-level SPM image representation method (adapted from [11]). Es-
sentially, the SPM method quantizes the location coordinates (z, y) into discrete cells using sym-
metric patterns.
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Fig. 3. Illustration of our RSP-based image representation.

3.2 RSP-based Image Representation

As reported in [11], with the help of spatial layout information, the SPM algorithm out-
performs the BoVW model. However, quantizing the image space using the pre-defined
spatial pyramid is empirical and arbitrary, and may not be optimal to describe the s-
patial layout information of an image. Therefore, we propose an image representation
method based on randomized spatial partition, with the objective to better characterize
the spatial layout of the images.

Let us consider a single level [ first. Instead of symmetrically dividing the image s-
pace into uniform cells, we randomly partition the image space into 2! x 2! sub-regions
of various sizes and shapes. Such randomized partition is performed K times indepen-
dently. In this way, the image space is quantized by these K random patterns, denoted
by ©! = {#F}EK_ | where 64 is a single 2! x 2 partition pattern. Now for any image
I;, it will be I?artitioned into 4! image patches by each #*, and be represented as a
histogram hi»’ with 4! x V bins, denoted as: hi’k = p(L;, 9““). Therefore, in total we
form a partition pattern pool © = Uf:_ol ©' combining all levels, by which the image
I; is represented as a histogram collection M;:

M; = p(1;,0) = | J{p(T:,0)}. )
0co
In this paper we not only use the upright partition patterns as in [11], but also introduce
the rotated ones to enrich the variety of our pattern pool. Figure 3 gives an illustration
of the RSP-based image representation method.

The benefits of the RSP-based image representation are two-fold: 1) from the image
layout point of view, we randomly generate many spatial partitions so that can discover
the descriptive partition patterns to better present the spatial configuration of the se-
mantic components of a scene category; 2) from the local feature point of view, similar
to the original SPM algorithm, the proposed RSP-based method also encodes the local
features by quantizing the two-dimensional image space. However, different from SPM
where each local feature is hard-quantized into the unique sub-region at each level, the
RSP-based method provides many partition patterns in the same level, such that each
local feature can be soft-quantized into multiple sub-regions. This will make the image
representation more robust as it is less sensitive to the spatial quantization error.
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4 Image Classification

Now given a collection of labeled images, denoted by & = {(I;,¢;)}, where ¢; €
{1,2,...,C} is the category label of the image I;, and a pool of independent partition
patterns ©, we propose two approaches to obtain the robust classifier () using the
labeled training set.

4.1 RSP-based Classifier via Optimal Selection

Our intention is straightforward: for each category we seek for an optimal pattern with
best discriminative power to separate this category from the others, and then combine
these optimal patterns together to train the final classifier. We summarize this procedure
in three steps as follows:

Step 1, training and validation. First we divide the entire training set ¢ into two
subsets @; and @,,. Then for each pattern 6, the images in both @, and @,, are represented
as the corresponding histograms, and C' binary classifiers { f§(-) ¢ | are trained on &,
which is done with the support vector machine (SVM). After that, the classifier fg(-) is
validated on &, and its classification error errg is recorded:

errg = > I(f§(L,) # o)+ > I(f5(L) =), 2

cy=cC cyFC

where (I, ¢,,) is the sample in @, and I(0) = 1 if o is true; otherwise I(o) = 0;
Step 2, pattern selection. The best pattern with minimum validation error is selected
as the optimal description of spatial layout information for the images of category c:

Ot = arg Igéiél errg. 3)

We finally select C best patterns which are supposed to have the strongest discriminative
power for each category;

Step 3, classifier recasting. After obtaining the best patterns {9§est}f:1 , We re-train
the binary classifiers £, (-) on the entire set ¢ for each 6;,,. Finally the multi-class
classification is implemented using the C binary classifiers and taking the class of high-
est classification score.

Compared with SPM algorithm that shares the empirical and fixed partition pattern
for all the categories, this approach selects one optimal partition pattern for each cate-
gory, which can describe this category discriminatively. Therefore, it is more in accord
with the fact that each image category has its own image layout pattern. Though the
idea is straightforward, it contributes to a considerable improvement of classification
accuracy in the experiment.

4.2 RSP-based Classifier via Boosting

In the above, we present how to train a RSP-based classifier via optimal selec-
tion (ORSP classifier for short). Despite the advantages in describing spatial layout of
each category, the ORSP classifier is still under the one-pattern-per-category restric-
tion hence it is not robust to the intra-class variations of image layout. Therefore, in
the following we adopt the data-driven weighting strategy to train another RSP-based
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Algorithm 1 Training RSP-based Classifier via Boosting
Input:
A collection of labeled images: & = {(I;, ¢;) }i¥,.
A pool of independent partition patterns: © = {6}.
The target classification accuracy: oarget-
Output:
A robust image classifier F'(-). Give an unlabeled image I, we have ¢ = F(I), where ¢ €
{1,...,C} is the predicted label of I.

1. Forallf € ©:
— Randomly sample a subset 9 C P, and represent the images in @y in pattern 6.
— Train a multi-class classifier fo(-) on the random subset @4 using SVM.

_1

2. Initialize the weight w; = & N

for each images I;, where [N, is the number of the
images with label ¢;; the current iteration number j = 0; the current accuracy o®) = 0.

3. While (6 < 04arget)
-Vi=1,...,N,w; ﬁ;jej—kl.
i=1 "1
- V0 € O, calculate its classification error on @: errg = 37, g wi - I(fo(Li) # ci).
— Select the pattern 0%) with minimum error err), and then calculate the weight for
(4) gq- .
0% as: 0 _ 1—err®
)
- Vi=1,...,N,w; + w; -exp(aD) - 1(f,i) (L) # ).
— Generate the strong classifier as:

J
F(I)=arg max Z o™ . I(foemy (1) = c),

m=1 .
and calculate its classification accuracy on @: o) = Eue@ I(F(I;) = ¢;)/N.

+log(C —1).

classifier via boosting (BRSP classifier for short), in which a sequence of patterns are
weighted in proportional to their discriminative power.

Since Algorithm 1 has illustrated our BRSP in detail, here we only discuss it briefly:
first, to promote the independence among the weak classifiers, the bootstrapping is
adopted in Step 1, i.e., each weak classifier fy(-) is trained on a random subset &y C P;
second, in Step 2, the weight of each image is initialized inversely proportional to its
category size to prevent the problem of unbalanced sample sizes; third, the SAMME Ad-
aboost algorithm [25] is employed to address the multi-class cases; finally, we set the
stop condition of the loop as a target training accuracy oqrget, rather than the number
of iterations. The reason is that in the experiment, we find only a few patterns (gen-
erally less than 30) will be enough to make a good classification. Therefore, to avoid
overfitting, we will stop the iterations before the training error becomes 0.

We can see several benefits of the BRSP classifier: first of all, a data-driven weight-
ing strategy is adopted instead of the uniform weighting strategy. That is, the parti-
tion patterns are weighted according to their recognition performances on the training
dataset. Next, it breaks the one-pattern-per-category restriction and allows to describe
the spatial layout of one image in multiple partition patterns. Therefore, it can better
deal with the categories with large intra-class variations. Finally, taking the advantages



8 Yuning Jiang, Junsong Yuan and Gang Yu

of boosting algorithm, these confusing images which are likely to be classified mistak-
enly will be picked out hence the final classifier is more robust to those outliers.

S Experiment

In this section, we report our experimental results on three publicly available datasets:
the 15-scene dataset [13], the 8-event dataset [14], and the 21-land-use dataset [1]. All
experiments are repeated 3 times with different randomly selected training and test
sets, and the average recognition rates are recorded as the final results. The SVMs are
implemented using the LIBSVM package.'

5.1 The 15-Scene Dataset

First, we perform our algorithm for natural scene recognition on the 15-scene datasets,
which is one of the most complete scene category datasets collected gradually by several
research groups [13, 11,26]. The 15-scene dataset is composed of fifteen natural scene
categories: bedroom, suburb, industrial, kitchen, livingroom, coast, forest, highway, in-
sidecity, mountain, opencountry, street, tallbuilding, office and store. Each category has
216 to 400 images with resolution around 300 x 250. As in [11], from each image the
dense SIFT descriptors of 16 x 16 pixel patches computed over a grid are extracted
with spacing of 8 pixels. Then, 100 images per category, 1500 images in total, are ran-
domly selected out as the training set @, while the rest is prepared as testing set. We
randomly sample 450 images from the training set @, and perform k-means clustering
on all the SIFT descriptors of these 450 images to generate a vocabulary with V' = 400
visual words, by which all the SIFT descriptors from the 15-scene dataset are quantized
into discrete words.

We set the randomized spatial partition parameters as follows: the highest level L
is set to 3,i.e., I = 0,1,2. We choose L = 3 because [11] has shown that a higher
level (I > 3) may lead to a decrease in accuracy due to over subdivision. For both
I = 1,2 levels, the randomized partition number K is set to 100. For [ = 0 level the
partition number is K = 1 since in fact no division is made at this level. To make a
fair comparison with the SPM algorithm [11], in which only upright spatial pyramid
is used, we do not introduce the rotated partition patterns for this dataset. Therefore, a
pool of upright patterns @,, is formed which contains 201 random partition patterns in
total.

After the preparation step on image representation, now both two types of RSP-
based classifiers proposed in Section 4 are trained. Linear kernel is incorporated for all
SVMs as in [11]. For the ORSP classifier, we set two subsets of the @: ¢, for training
and &, for validation, respectively, which are in the same size, |9;| = |®,|. For the
BRSP classifier, we also keep |Pg| = 50% x |P| for all the patterns. The target training
erTor is set as oyqrger = 98%. Table 1 reports the classification accuracy of these two
types of RSP-based classifiers and compares with the results of the SPM algorithm.

The results shown in Table 1 is analyzed as follows: first, by comparing the per-
formance of the original SPM algorithm (2,4 column) and the ORSP classifier (3,4

! http://www.csie.ntu.edu.tw/ cjlin/libsvm/.
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[level | Original SPM [11] | ORSP Classifier | BRSP Classifier
=0 74.8% - -

=1 78.8% 80.7% 86.4%
1=2 79.7% 82.6% 87.1%
1=0,1,2 81.4% 83.9% 87.2%

Table 1. Comparison with SPM at different levels on the 15-scene dataset.
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Fig. 4. The curves of training error and testing error of the BRSP classifiers in different conditions,
with the number of boosted patterns increasing.

column), we can see that the latter one leads to a significant increase in classification
accuracy while the only difference between these two methods is the way to divide the
image space. This comparison supports our claim that quantizing the image space by
symmetric divisions is not optimal to describe the spatial layout information, and it can
be improved by the RSP-based image representation. Second, compared with the OR-
SP classifier, the BRSP classifier (4;;, column) has shown more discriminative power,
especially at the low levels (3,4 row and 54, row). In fact, it is the main advantage of
the BRSP classifier: the final decision can be made more robustly after combining the
votes from several patterns, even though the descriptive power of each single pattern is
limited.

Next, we study how the number of boosted patterns, as well as the effectiveness of
each single weak classifier, affects the overall performance of the final BRSP classifier.
Here we change the conditions when training the weak classifiers, and make two com-
parisons: in the first comparison, the weak classifiers are trained using only the level 1
or the level 2 patterns, corresponding to the 3,4 and 4, rows in Table 1, respectively; in
the second comparison, we increase the size of the random subset |@y| for weak classi-
fier training, from 50% x |®| to 70% x |P|, hence obtain weak classifiers with different
powers. The comparison results are given in Figure 4, in which both of the testing error
and training error are plotted with the number of weak classifiers increasing. We can
see that in each comparison, the gap of discriminative power between the two BRSP
classifiers narrows after convergence, despite comparably big difference existing at the
very beginning. Moreover, both curves show a sharp decrease in the first ten iterations,
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nearly 9% in testing error, which means more than 250 initially mis-classified images
are corrected by the latter weak classifiers. It once again validates the advantage of the
BRSP classifier.

Finally, the proposed algorithms are compared with the state-of-the-art techniques,
as shown in Table 2. Though only the simplest SIFT feature and linear-SVM are adopt-
ed, the recognition accuracy of our RSP-based algorithms is already better than the best
of the previous work [12,27], which validates the effectiveness of the RSP-based im-
age representation. Also a confusion matrix is given in Figure 5(a). Similar to the results
in [11], the top three confusing pairs are: coast/opencounty, bedroom/livingroom and
insidecity/industrial. Several mis-classified examples are shown in Figure 5(b).

lMethod [Avg. Accuracy‘
SPM + SIFT with 400 clusters [11] 81.4%
SPM + SIFT with 400 concepts [28] 83.3%
DSP + SIFT with 1000 clusters [23] 80.7%
SP-pLSA + SIFT with 1200 topics [29] 83.7%
CENTRIST + RBF-SVM [12] 83.9%
CENTRIST + LCC + Boosting [27] 87.8%
RSP + Optimal Selection 83.9%
RSP + Boosting (|®g|/|®| = 50%) 87.2%
RSP + Boosting (|Pe|/|®| = 70%) 88.1%

Table 2. Comparison with the state-of-the-art methods on the 15-scene dataset.

bedroomPEM = o065 T T T T T T ]
suburb ; B
industrial - : 0.04 0.05 0.04 0.08
kitchen|
livingroom 0.
coast|
forest|
highway -
insidecity
mountain|
opencountry |
street -
tallbuilding -
office
storef

opencountry livingroom bedroom

mis-classification rate = 11% mis-classification rate = 5.5% mis-classification rate = 4%
(b)

Fig. 5. (a) The confusion matrix of 15-scene recognition by BRSP classifier. Only rates higher
than 3% are shown; (b) Examples of the top 3 confusing pairs in the 15-scene dataset.
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Fig. 6. Examples of the images in the 8-event dataset.

[Method |Avg. Accuracy|
Scene Model + SIFT [14] ~ 60%
Scene Model + Object Model + SIFT [14] 73.4%
PACT + RBF-SVM [12] 78.2%
SPM + RBF-SVM 74.0%
RSP + Optimal Selection 77.9%
RSP + Boosting 79.6%

Table 3. Comparison with the state-of-the-art methods on the 8-event dataset.

5.2 The 8-Event Dataset

The 8-event dataset [14] is composed of eight sport classes: badminton, bocce, croquet,
polo, rock climbing, rowing, sailing, and snowboarding (see Figure 6). Each class has
137 to 250 high-resolution images (from 800 x 600 to thousands of pixels per dimen-
sion). Following [14, 12], we randomly select 70 images per class for training, and 60
for testing. Although more complex PACT features are used in [12], here we only ex-
tract the same features as in [14], i.e., the SIFT descriptors of 12 x 12 pixel patches
computed over a grid with spacing of 10 pixels, and then cluster them into a vocabulary
of V' = 300 visual words. As in [12], the RBF kernel replaces the linear kernel in SVM
training, and kernel parameters are chosen by a three-fold cross validation on the train-
ing set. The other experimental conditions, e.g., the partition parameters, are the same
as those in the 15-scene dataset.

Table 3 compares our RSP-based approaches with other state-of-the-art methods.
From this table we can see that: 1) spatial layout information plays a critical role in vi-
sual recognition. Although a high-level probability model is used in [14] (3,4 row), the
original SPM algorithm (57, row) still can reach a comparable accuracy with the help
of spatial layout information; 2) it once again validates that the symmetric pyramid is
not optimal to describe the spatial layout of all the categories of images, since the OR-
SP classifier (6;, row) has a remarkable improvement over the original SPM algorithm,
and obtains a comparable results with [12] in which the complex PACT features are
used; 3) the BRSP classifier (7, row) has a more discriminative power than the ORSP
classifier, and outperforms all the state-of-the-arts in this dataset.
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5.3 The 21-Land-Use Dataset

The 21-land-use dataset [1] contains 21 classes of aerial orthoimagery downloaded from
the United States Geological Survey (USGS) National Map: agricultural, airplane,
baseball diamond, beach, buildings, chaparral, dense residential, forest, freeway, golf
course, harbor, intersection, medium density residential, mobile home park, overpass,
parking lot, river, runway, sparse residential, storage tanks, and tennis courts. Each
class has 100 images with resolution 256 x 256. SIFT features are computed over the
16 x 16 patches with an 8-pixel grid spacing. As in [1], a vocabulary of V' = 100 visual
words is generated by applying k-means clustering on a random subset of the feature
pool, and then used to label all the SIFT features extracted from this dataset. For each
class, we split it into five equal sized sets. Four of the sets are used for training and the
held-out set is for testing.

We introduce the rotated partition patterns in this dataset to better describe the s-
patial layout information of the rotated cases, as shown in Figure 1(b). The rotated
partition is performed at [ = 1 level and repeated independently for K = 100 times,
which forms a pool of rotated partition patterns &, with 100 random patterns. There-
fore, the entire pool we used in this dataset is © = 6, U O, consisting of all upright
and rotated patterns. Besides, we set |@y|/|P| = 75% for training the BRSP classifiers.
The other parameters are set the same as the experiments above.

In Table 4 we compare our RSP-based approaches with other methods that use
spatial pyramid to characterize the arrangement of visual words, namely spatial pyramid
matching kernel (SPMK) in [11], spatial pyramid co-occurrence kernel (SPCK), and its
extensions SPCK+ and SPCK++ in [1]. The comparison highlights the effectiveness of
our RSP-based approaches. Moreover, Figure 7 explains how our BRSP classifier can
handle the large variations of spatial layout of images, hence achieves a more accurate
classification result.

BoVW | SPMK [11] | SPCK [1]| SPCK+ [1] | SPCK++[1]| ORSP | BRSP
Acc.| 719 74.0 73.1 76.1 773 75.5 778

Table 4. Classification accuracy for the 21-land-use dataset.

6 Conclusion

This paper presents a novel image representation method based on randomized spatial
partition, with the objective to optimally characterize the spatial layout of the images.
In contrast to the pre-defined spatial pyramid, in the RSP-based image representation
method the spatial layout of the images is characterized by the randomized partition
patterns. Furthermore, two discriminative image classifiers, the ORSP classifier and the
BRSP classifier, are proposed based on the RSP image representation. The ORSP clas-
sifier discovers the most descriptive pattern for each category of images to address the
inter-class variations of image layout, while the BRSP classifier can handle the large
intra-class variations by boosting a sequence of various patterns together. The compar-
ison with the state-of-the-art methods on three publicly available datasets validates the
effectiveness of our RSP-based methods.
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Fig.7. The classification error curve of the BRSP classifier on the testing set, with the number
of boosted patterns increasing. We show three examples of the selected patterns and the testing
images which are mistakenly classified at the beginning but corrected by the current pattern in
the red boxes. From it we can see that the BRSP classifier can well handle the large intra-class
variations of image layout (e.g., the dense residential) by representing the images using multiple
partition patterns. Note that although several bad patterns are boosted due to the bias between
the training set and testing set, the classification accuracy generally tends to be improved when
increasing the number of boosted patterns.
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