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a b s t r a c t

Mobile devices have been widely used not only as a communication tool, but also a digital assistance to

our daily life, which imposes high security concern on mobile devices. In this paper we present a

natural and non-intrusive way to secure mobile devices, i.e. a complete and fully automated face

verification system. It consists of three sub-systems: face detection, alignment and verification. The

proposed subspace face/eye detector locates the eyes at a much higher precision than Adaboost face/

eye detector. By utilizing attentional cascade strategy, the proposed face/eye detector achieves a

comparable speed to Adaboost face/eye detector in this ‘‘close-range’’ application. The proposed

approach that determines the class-specific threshold without sacrificing the training data for the

validation data further boosts the performance. The proposed system is systematically evaluated on

O2FN, AR and CAS-PEAL databases, and compared with many different approaches. Compared to the

best competitive system, which is built upon Adaboost face/eye detector and ERE approach for face

recognition, the proposed system reduces the overall equal error rate from 8.49% to 3.88% on the O2FN

database, from 7.64% to 1.90% on the AR database and from 9.30% to 5.60% on the CAS-PEAL database.

The proposed system is implemented on O2 XDA Flame and on average it takes 1.03 s for the whole

process, including face detection, eye detection and face verification.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Mobile devices have been widely utilized in our daily life. A large
amount of private information are stored on mobile devices, e.g.
personal videos, pictures, documents or even financial transaction
records. Thus, it imposes high security concerns on mobile devices.
Traditionally, mobile devices are secured by password. Short pass-
word is easily attacked and long password is difficult to remember.
In contrast, biometrics cannot be lost, stolen, shared, forgotten or
easily duplicated. Particularly, face recognition has several advan-
tages over others, e.g. it is natural, non-intrusive and easy to use.
Fingerprint authentication system has been successfully implemen-
ted on mobile devices. However, it may be uncomfortable to the
user to release fingerprint due to its usage in law force. Face
recognition has less such concern. In addition, an embedded sensor
is required to capture the fingerprint, whereas no additional hard-
ware is required to capture the face image since currently most
mobile phones are equipped with a camera.

The proposed face recognition system consists of three sub-
systems: face detection, alignment and verification. It has been
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shown that the performance of a fully automated face recognition
system highly depends on face alignment accuracy [1]. Subspace
approaches are widely used in face recognition and superior perfor-
mance has been demonstrated in [2–12]. However, high precision of
face alignment is required for subspace face recognition. Although
we can provide guidance for the user to position the camera to get
the face aligned, it is not an easy task to get the face precisely aligned
even for an experienced user. For a complete face recognition system,
it is not trivial to build a fast and accurate face/eye detector.

Mobile face detection for verification introduces both chal-
lenges and opportunities. On one side, mobile phones have
limited computational power and memory compared to PC, and
hence it imposes higher requirement on the detection speed. On
the other side, as users are trying to pass the verification system,
they intend to capture a large face in the self-taken photo. It
results in a ‘‘close-range’’ face detection, where the face occupies
a significant portion of the image. Different from general face
detection, where millions of scanning windows are required, only
a limited number of scanning windows are required for mobile
face detection. Thus, it imposes lower requirement on the detec-
tion speed. The number of scanning windows for eye detection is
also limited as eyes are detected within the face window. In fact,
many face detection tasks belong to ‘‘close-range’’, e.g. in face
tracking, after the first detection, the face can be detected within
a small neighborhood in the subsequent frames.
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In this paper, a subspace face/eye detector is proposed. Subspace
approaches have been successfully applied in object classification
and have demonstrated impressive classification performance
[2,13]. However, it is not widely used in object detection due to
the speed limitation, e.g. it requires large matrix multiplication to
derive subspace features. Inspired by Viola & Jones’ face detector
[14], an attentional cascade structure is proposed for subspace
approach to speed up the detection process. Classifiers built from
a few subspace features are utilized in the early stages to fast filter
out most of the negative samples and only those tough samples are
evaluated by classifiers with more subspace features in the latter
stages. On O2 XDA Flame, it only takes 0.26 s to detect both eyes for
the proposed face/eye detector. The proposed subspace face/eye
detector is optimized for mobile face verification, which aims to
achieve higher detection accuracy at a comparable speed with
respect to Adaboost face/eye detector.

For face verification sub-system, a novel approach to deter-
mine the class-specific threshold (CST) is proposed, which greatly
improves the performance of the system. Naturally, some faces
are easy to be recognized and some are difficult. Therefore, a CST
in general provides better performance than a global threshold
(GT). Traditionally, a separate validation dataset is needed to
determine the CST. However, separating a portion of the dataset
as the validation dataset results in less training data, and hence
the performance may degrade. The proposed approach deter-
mines the CST based on the training data only. The experimental
results on O2FN, AR [15] and CAS-PEAL [16] databases demon-
strate the superior performance of the proposed approach.

In order to evaluate the performance of the proposed system
on mobile device, the O2FN database1 is built. It contains 2000
images from 50 persons, each with 40 images. The variations in
facial expressions are minimized. It mainly contains illumination
variations and in-plane rotations. The database will be released to
other researchers as a common evaluation dataset for face
recognition system on mobile devices.

The proposed system is implemented on O2 XDA Flame, on
which it takes 1.03 s to recognize a face. Comprehensive experi-
mental results on O2FN, AR [15] and CAS-PEAL [16] databases
demonstrate the superior performance of the proposed system
compared to the system built upon Adaboost face/eye detector.

The rest of the paper is organized as follows: the related work
is discussed in Section 2; the proposed algorithms are described
in Section 3; the creation of the O2FN mobile face database is
given in Section 4; experimental results are in Section 5; finally,
conclusion and future work are in Section 6.
2. Related work

The related work on each sub-system, e.g. face detection,
alignment and verification is discussed first, followed by a review
of several complete systems.

In [17–21] Adaboost face detector [14] was built on mobile
devices. The main advantage of Adaboost face detector is its
speed, which is critical in general face detection. Due to the
limited discrimination power of rectangular features, a huge
amount of samples are required to train a Viola & Jones’ face
detector, and hence training is time consuming. The proposed
face detector detects faces more precisely at a comparable speed
with respect to Adaboost face detector on ‘‘close-range’’ face
images. In addition, the proposed face detector has the advan-
tages of fast training and easy implementation.
1 ‘‘O2’’ stands for ‘‘O2’’ XDA Flame; ‘‘F’’ stands for ‘‘front’’ camera; ‘‘N’’ stands

for ‘‘native’’ setting, e.g. no advance image processing enabled during capturing.
Face alignment is critical to subspace face recognition. The face is
often aligned through eye locations. In [17,20] Adaboost eye detector
was built. Tao & Veldhuis extended it to detect more fiducial
points [19]. Eyes are detected within the detected face window,
and hence the location and scale of eyes are roughly known. Only a
limited number of scanning windows are needed. Thus, Adaboost
eye detector may not be the best choice due to its limited accuracy.

Although tons of face verification algorithms are proposed in
literature, very few are suitable for mobile applications. In [22],
superior performance is achieved for SIFT features, but the
recognition speed is extremely slow. Sparse representation [3]
demonstrated impressive performance on recognizing partially
occluded faces. However, due to the huge computational cost on
iterative optimization, it is not suitable for mobile applications.
Simple features, e.g. local binary pattern (LBP) [19,20], Haar wavelet
features [23], DCT coefficients [17], Fourier coefficients [18] and LRP
features [24] are extracted for classification on the resource-con-
straint devices. Correlation filter [21,25] is another option due to its
simplicity and tolerance to noise. However, those approaches do not
yield optimal recognition performance. Subspace face recognition
approaches have demonstrated superior performance in [2–12].
Yang et al. [26] ported direct linear discriminant analysis [27] into
mobile devices. In this work, various subspace approaches are
implemented and tested on the O2FN database. The best performed
one is built into our system.

Several complete face verification systems on mobile devices
have been proposed in literature. Ng et al. implemented a real-time
face verification system on O2 XDA IIi [21], using Viola & Jones’ face
detector and unconstrained minimum average correlation energy
(UMACE) filter for face verification. It was tested on a database of 25
subjects and the overall equal error rate (EER) is 8.49%. Schneider
et al. implemented FaceScry on Nokia 6630 [28], but they only
performed a sampling check on their system. Hadid et al. imple-
mented a system on Nokia N90 [20], using Viola & Jones’ face/eye
detector and LBP features for face verification. Tao & Veldhuis
implemented a system on Eten M500 Pocket PC [19], using Viola
& Jones’ detector for face/facial landmark detection and a simplified
LBP filter for face verification. It was tested on a database of 20
subjects, and the EER was 2% by fusing the results from 450 frames.
However, it is not practical to take a video of 30 s for authentication.
Adaboost face detector [19–21] and Adaboost eye detector [19,20]
are popular because of its fast speed. UMACE filter [21], geometric
features [28] and LBP features [19,20] are used for face verification
because of their simplicity. However, they do not yield optimal
recognition performance. In the following sections, we will show
that the proposed system achieves much higher recognition accu-
racy at a comparable speed.
3. The proposed face verification system on mobile devices

The proposed face verification system consists of three sub-
systems: face detection, eye detection and face verification as
shown in Fig. 1. In view of the asymmetric nature of face/eye
detection, by studying the eigen-spectrum of the covariance
matrices of face/non-face class and eye/non-eye class, a subspace
face/eye detector is proposed. An attentional cascade structure is
proposed to speed up the detector. Various subspace face recog-
nition algorithms are studied and the one most suitable for
mobile devices is built into our system with the proposed
mechanism of class-specific decision.

3.1. Face detection

Asymmetric PCA (APCA): Face detection can be formulated as a
two-class classification problem: face class and non-face class.



Fig. 1. Block diagram of the proposed face verification system on mobile devices.
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Traditionally, PCA treats two classes equally. As pointed in [2,13],
the role of PCA in pattern classification is to remove the unreliable
dimensions that are harmful to accurate classification. Since the
training samples of two classes may have different reliability, we
should weight them according to the class reliability when
applying PCA. The covariance mixture Ra is defined as

Ra ¼ aRpþð1�aÞRqþRm ð1Þ

where Rp, Rq are the covariance matrices of face/non-face class;
Rm is the between-class scatter matrix; a is the weighting factor
of Rp and 0rar1.

Face detection is highly asymmetric in nature. In general face
detection it is relatively easy to collect representative face samples,
but not easy to collect representative negative samples, since the
non-face is ‘‘everything else except face’’. However, in ‘‘close-range’’
face detection the non-face samples are well defined, e.g. mainly the
cropped partial faces. As a result, Rq can be estimated as reliable
as Rp. Furthermore, much more non-face samples than face samples
can be collected, and hence Rq can be more reliably estimated.
Dimensions corresponding to the small eigenvalues of the covariance
matrix of unreliable class should be removed. Therefore, we assign a
large weight a to Rp. PCA is applied on Ra, and the eigenvectors Um

corresponding to first m largest eigenvalues are extracted. By assign-
ing a large weight to Rp, more dimensions corresponding to the
unreliable small eigenvalues of Rp are removed, and hence better
generalization performance is achieved.

Asymmetric discriminant analysis (ADA): APCA is effective to
alleviate over-fitting problem by removing the unreliable dimen-
sions of covariance mixture matrix. For a fast classification,
discriminant analysis is necessary to extract a compact feature
set from the reliable APCA subspace. Linear discriminant analysis
(LDA) is commonly used to extract discriminant features. How-
ever, for two-class classification problem, only one feature can be
extracted. Covariance discriminant analysis (CDA) [29] can pro-
vide more dimensions, but the asymmetric nature of training data
reduces the effectiveness of CDA. In fact, these two approaches
can be combined in one discriminant evaluation. In asymmetric
principal and discriminant analysis (APCDA) algorithm [13], ADA
is applied in the APCA subspace, which aims to maximize the
Bhattacharyya distance [30] defined in the following equation:

D¼
1

8
ðM̂p�M̂qÞ

T R̂pþR̂q

2

 !�1

ðM̂p�M̂qÞþ
1

2
ln

9ðR̂pþR̂qÞ=29ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9R̂p99R̂q9

q ð2Þ

where M̂p, M̂q, R̂p, R̂q are the mean vectors of the face/non-face
class and the covariance matrices of the face/non-face class in
APCA subspace, respectively.
The first term of Bhattacharyya distance is maximized by LDA
in Eq. (3), where R̂m is between-class covariance matrix in APCA
subspace:

R̂mU¼ ðR̂pþR̂qÞUK ð3Þ

It is proven in [31] that the second term of Bhattacharyya
distance is maximized in the subspace spanned by the general-
ized eigenvectors corresponding to the largest lkþ1=lk, where lk

is the generalized eigenvalue of matrix pair either ðR̂p,R̂qÞ or
ðR̂q,R̂pÞ, or equivalently ðR̂p,R̂pþR̂qÞ. However, covariance matrix
R̂p,R̂q are still biased even after APCA, thus the generalized
eigenvalue problem is modified as in Eq. (4), where 0:5obr1
is determined by prior knowledge about the asymmetry of the
two classes:

R̂pU¼ ðR̂pþbR̂qÞUK ð4Þ

Then, Eqs. (3) and (4) are combined, e.g.

ðR̂pþgR̂mÞU¼ ðR̂pþbR̂qÞUK ð5Þ

where g is a constant that weights the discriminatory information
of the class mean against the covariance. ADA is applied in the
APCA subspace and extracts d eigenvectors ~Ud corresponding to
the d largest maxðlk,1�lkÞ, where lk is the generalized eigenvalue
of Eq. (5).

Cascade APCDA (C-APCDA) face detector: Most non-face samples
are significantly different from the face samples. It is possible to
filter out a large number of non-face samples and preserve most face
samples by utilizing a few APCDA dimensions. Thus, cascade APCDA
(C-APCDA) is proposed to boost the detection speed. Easy samples
can be processed extremely fast and only those tough samples will
be evaluated at the latter stages with more dimensions.

After ADA, feature dimensions are sorted according to their
discriminant power in the descending order. The proposed
C-APCDA face detector consists of l stages. At stage i, it is an
APCDA face detector Oi of di dimensions, i¼ 1;2, . . . ,l. We choose
first di eigenvectors from ~Ud to construct the projection matrix
Ui ¼ ½

~F1
~F2 . . . ~Fdi

�, where ~Fi is i-th eigenvector of ~Ud. As the stage
number increases, the number of dimensions increases, and
better classification performance is expected. Here, the face
detector at each stage is constructed from the first di eigenvectors,
as these feature dimensions are un-correlated. For each scanning
window, we define its score [13] as

si ¼ ð
~Xi�

~Mq Þ
T
ðb ~RqÞ

�1
ð ~Xi�

~Mq Þ�ð
~Xi�

~Mp Þ
T ~R
�1

p ð
~Xi�

~Mp Þ ð6Þ

where ~X i, ~Mp, ~Mq, ~Rp, ~Rq are testing sample, the mean vector of
face/non-face class, the covariance matrix of face/non-face class
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in the APCDA subspace, respectively. If siZTj, where Tj is the
threshold at j-stage, it is a face sample, otherwise it is a non-face
sample. The optimal threshold at each stage is determined as
follows: assume the target false rejection rate (FRR) is EF , and each
stage has equal FRR E, then E can be estimated by ð1�EÞl ¼ 1�EF .
The threshold at each stage is adjusted accordingly to achieve
desired E. As there is only one face in the image, at the last stage
Ol, the scanning window with maximum score is detected as the
face window.

The procedures to build the proposed C-APCDA face detector
are summarized as follows:
1.
 Perform APCA on Ra as defined in Eq. (1) to remove the
unreliable dimensions.
2.
 Perform ADA in the APCA subspace, and choose generalized
eigenvectors ~Ud of Eq. (5) corresponding to d largest max
ðlk,1�lkÞ.
3.
 Select the first di APCDA dimensions to construct the face
detector Oi at i-stage of the C-APCDA face detector.
4.
 At the last stage Ol, the scanning window with maximum
score as defined in Eq. (6) is detected as the face window.

3.2. Eye detection

Although the eye detector can be built in a similar approach to
the C-APCDA face detector, there are some differences between
these two. Eye detection is to precisely locate two eyes, while face
detection is to roughly locate the face region. Eye localization
should be as accurate as possible so that the face can be aligned
precisely, whereas much larger margin is allowed for face detec-
tion. For eye detection, only the cropping window at the precise
eye location can be used as an eye sample. The scale of eyes is
roughly known since eyes are detected within the detected face
window. Therefore, only one eye sample can be generated for
each eye. In order to determine the precise eye locations, the
scanning windows that are very close to the eyes are included in
the non-eye database. Lastly, eye detection is more sensitive to
obstacles, e.g. wearing or not wearing glasses is not critical to face
detection, but it is critical to eye detection. Similarly, open eyes,
half-open eyes or closed eyes greatly affect the appearance of the
eyes. All these increase the intra-class variations.

Eye detection is modeled as a two-class classification problem,
e.g. positive eye class and negative non-eye class. The non-eye is
not ‘‘everything else except eye’’, but the scanning windows
within the face region. Thus, the covariance matrix of the non-
eye class can be estimated as reliable as that of the eye class.
Furthermore, much more non-eye samples can be collected, and
hence the covariance matrix of the non-eye class can be estimated
more reliably. A larger weight should be put on the less reliable
covariance matrix of the eye class so that more unreliable
dimensions from the eye class can be removed.

The face is assumed to be almost upright. Thus, the left eye is
detected in the left-up quarter and the right eye is detected in the
right-up quarter. Right eyes are left–right flipped and only the left
eye detector is built. The procedures similar to the C-APCDA face
detector are adopted to build the proposed C-APCDA eye detector.

3.3. Face verification

Many face recognition algorithms have been proposed in
literature. Due to the limited resources on mobile devices, many
are not suitable for mobile applications. In contrast, subspace
approaches require less memory and computational power, and
work well on low-resolution images. Thus, they are more suitable
for mobile applications. Subspace approaches have demonstrated
state-of-the-art performance in face recognition [2,5–10]. Our
face verification sub-system is based on subspace approaches.

Subspace face recognition can be formulated as global formulation
or class-specific formulation. In global formulation, one unified
projection matrix is trained for all the classes through constructing
a pooled covariance matrix [32]. In class-specific formulation, a class-
specific projection matrix is trained for each class [33]. Similar to the
training process, to determine whether a user is a genuine user or an
imposter user, either a global threshold (GT) or a class-specific
threshold is needed. Now the question is: Which combination of

formulation and threshold should be used for face verification? In class-
specific formulation, the genuine model generated from the limited
number of training samples of each class may not be able to fully
capture high complexity of face manifold, and may be easily over-fit
to the training data. Those small eigenvalues of the class-specific
covariance matrix are largely deviated from their true values [2,13].
The inverses of those small unreliable eigenvalues are used to weight
the features, which causes severe over-fitting problem. In contrast, in
global formulation the within-class scatter matrix is constructed by
summing up the class-specific covariance matrix of each class, and
hence it can be better estimated. As a result, better generalization
performance is achieved for global formulation. For class-specific
formulation, n2 (n is face dimensionality) free parameters of the class-
specific covariance matrix need to be estimated from very few
training samples of each class, whereas only one parameter needs
to be estimated for the CST. Thus, CST will not cause severe over-
fitting. Naturally, some faces are easy to be recognized, and hence a
small threshold will be sufficient, whereas others may need a large
threshold. Thus, CST in general provides better performance than GT.
Therefore, we propose to train the face verification system based on
global formulation and make the decision based on CST. In the latter
section, a novel approach is proposed to determine the CST without
sacrificing part of the training data as the validation data, which
further boosts the performance of the system.

Subspace approaches share the same framework, e.g. origi-
nated from linear discriminant analysis. They aim to find the most
discriminant dimensions by maximizing the Fisher ratio. Face
dimensionality n is often larger than the number of samples N.
SwARn�n is singular since its rank rrN�c, where c is the number
of class. Many approaches are proposed to solve this singularity
problem. Fisherface [9] solves the singularity problem of Sw by
applying PCA on St to reduce the feature dimensionality to N�c.
However, discriminant information also resides in those dimen-
sions being thrown away. Null space approach (NLDA) [10] only
utilizes the null space of Sw, but the discriminant information in
range space is ignored. In fact, discriminant information resides in
both subspaces. The features in the range space can be weighted

by their discriminant power, e.g. fw
k =

ffiffiffiffiffiffi
lw

k

q
, where fw

k , lw
k are k-th

eigenvector and eigenvalue of Sw. However, for the features in the

null space, lw
k ¼ 0. It is not feasible to directly combine the

features from those two subspaces. In addition, in the range
space, only the eigenvectors corresponding to leading largest
eigenvalues are reliable. Those dimensions corresponding to small
eigenvalues are not reliable, but a large amount of discriminant
information resides in those dimensions.

In eigenfeature regularization and extraction (ERE) approach
[2,5], it not only alleviates the problem of unreliable small and
zero eigenvalues caused by noise, but also enables discriminant
evaluation to be performed in the full dimension of the image
data under one unified discriminant criteria. The subspace
spanned by eigenvector fw

k of Sw is decomposed into three
subspaces: reliable range space F¼ ffw

k g
m
k ¼ 1, unreliable range

space N¼ ffw
k g

r
k ¼ mþ1 and null space |¼ ffw

k g
n
k ¼ rþ1, where r is

the rank of Sw as defined early, and dimension fw
mþ1 is the

starting dimension of unreliable range space. The face component



Fig. 3. Illustration for determining the class-specific threshold based on the

training data. The small stars, circles, squares and diamonds represent samples

of Classes 1–4, respectively. The big ones represent the class centers. The distance

of a class center to its nearest class center is used as the indicator of the CST.
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in F decays rapidly and can be viewed as the outliers of the whole
spectrum. Median operator works well in separating outliers from
a dataset. To determine the start point of unreliable range space,
we first find a point near the center of unreliable range space by
lw

med ¼medianf8lw
k 9krrg. The distance between lw

k and the smal-
lest nonzero eigenvalue is dm,r ¼ lw

med�l
w
r . The upper bound of the

unreliable eigenvalues is estimated by lw
medþdm,r . More generally,

lw
mþ1 can be estimated by

lw
mþ1 ¼maxf8lw

k 9l
w
k olw

medþmðl
w
med�l

w
r Þg ð7Þ

where m is a constant and m� 1. The optimal m may vary for
different applications. For simplicity, m¼ 1 is used for all the
experiments.

In reliable range space F, the eigenvalues remain unchange. In
unreliable range space N, the new eigenvalues are determined by
fitting the eigenvalues in reliable range space F into a nonlinear

model, e.g. ~l
w

k ¼ a=ðkþbÞ. Although not limited from other possi-

ble fitting, a and b are determined by letting ~l
w

1 ¼ lw
1 and ~l

w

m ¼ lw
m,

which yields

a¼ lw
1 l

w
mðm�1Þ

lw
1�l

w
m

, b¼
mlw

m�l
w
1

lw
1�l

w
m

As a result, the over-fitting problem caused by those unreliable

dimensions is alleviated. In null space |, the new eigenvalues are
chosen as the first eigenvalue of the nonlinear model in null space

|. As a result, the singularity problem of Sw is alleviated. In

summary, the eigen-spectrum lw
k is regularized by an eigen-

spectrum model:

~l
w

k ¼

lw
k if krm
a

kþb
if mokrr

a
rþ1þb

if rokrn

8>>>>><
>>>>>:

ð8Þ

Discriminant information is extracted in the full image dimen-
sion under one unified discriminant criteria. Now the features are
weighted by ~l

w

k as

~Uw ¼ fw
1 =

ffiffiffiffiffiffi
~l

w

1

q
,fw

2 =

ffiffiffiffiffiffi
~l

w

2

q
, . . . ,fw

n =

ffiffiffiffiffiffi
~l

w

n

q� �
ð9Þ

Different eigen-spectrum models can be built. The optimal
model is application-dependent. For simplicity, the original model
in [5] is used, as no free parameter selection is needed.

Then, discriminant analysis is applied to extract a compact
feature set. The between-class scatter matrix Sb is projected as
~Sb ¼

~U
T

wSb
~Uw. Then, we perform eigen-decomposition on ~Sb, i.e.
Fig. 2. Block diagram
~Sb ¼
~Ub

~Kb
~U

T

b . The first d eigenvectors ~U
d

b corresponding to d

largest eigenvalues of ~Sb are selected. Finally, the projection
matrix is obtained as ~P ¼ ~Uw

~U
d

b.
The procedures of ERE approach are summarized in Fig. 2.
Class-specific decision based on training data: Conventionally, a

validation set is needed to find the optimal threshold of each
class. Separating a validation set from the training set results in
less training samples, and hence the overall performance of the
system may degrade. Instead, we propose to determine the CST
based on the training data.

The proposed approach is based on the following observation:
for the imposter classes whose training samples are very close to
the claimed class center, their testing samples are also likely close
to the claimed class center, and hence easily falsely accepted. In
view of this, we can use the distances from the claimed class
center to other class centers as the indicator of the CST, e.g.
di,j ¼DðMi,MjÞ, ia j, where Mi is the claimed class center, Mj is the
class center of j-th class, and D is a distance measure. We can
choose the distances to k-nearest class centers and use the
average as the indicator of the CST. For simplicity, we choose
k¼1. The illustration for determining the CST based on the
training data is shown in Fig. 3. Imposter samples that are close
to the claimed class center are easily falsely accepted. Thus, the
of ERE approach.
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distance from the claimed class center to its nearest class center is
chosen as the indicator of the CST, i.e. di ¼minjðdi,jÞ. As shown in
Fig. 3, d1;2, d2;3, d3;2 and d4;1 are the indicators for Classes 1, 2, 3, 4,
respectively. Based on this distance, the CST is calculated as
ti ¼ diR, where RZ0 is used to control the security level of the
system. If a high security level is required for some applications,
i.e. a low false acceptable rate is desirable, user can choose a small
value of R. If a low false rejection rate is desirable, user can choose
a large value of R. In this way, the proposed approach determines
the CST without a validation dataset. More samples can be used in
training, and hence a better performance is expected.

In literature, to the best of our knowledge, when the CST is
used, no receiver characteristic curve (ROC) is provided except for
some discrete operational points. When a validation dataset is
used to determine the CST, the number of operational points is
determined by the limited number of genuine validation samples
in each class. Therefore, only a limited number of operational
points can be determined. For the proposed approach, ROC can be
easily generated by varying the control parameter R.

In order to determine the CST, a large amount of training
samples of each user are required. For general face recognition
tasks, a large number of users use a public system. Thus, it is very
difficult to collect such a large amount of training images per each
user. However, for mobile applications, the mobile device is
personalized. Thus, a user can comfortably collect a large number
of his/her own photos gradually during the usage of the system,
which can be used to compute a reliable CST.
Table 1
Partition of the O2FN database.

Sub-system 40 subjects 10 subjects

20 odd images 20 even images 40 images

Face detection Training Testing Testing

Eye detection Training Testing Testing

Face verification Training Genuine matching Imposter matching
4. O2FN mobile face database creation

In order to evaluate the proposed face verification system, the
O2FN mobile face database is built. It contains 2000 face images of
size 144�176 pixels from 50 subjects. The images are self-taken
photos. The users are told to take roughly 20 indoor images and 20
outdoor images, with minimum facial expression variations and
out-plane rotations. As shown in Fig. 4, the O2FN database mainly
contains in-plane rotations and illumination variations.

The O2FN database is then used to generate the training and
testing databases to evaluate each sub-system. For the face
detection sub-system, 53 924 face samples and 477 097 non-face
samples are generated and normalized to the size of 24�28
pixels. For the eye detection sub-system, the detected faces are
Fig. 4. Sample images of
first normalized to 96�112 pixels, and then 4000 eye samples
and 207 331 non-eye samples of size 35�25 pixels are generated
from the detected faces. To evaluate the face verification sub-
system, face images are cropped, rotated to the same horizon and
normalized to the size of 82�96 pixels based on the manually
marked eyes. In the system-level evaluation, face images are
normalized based on the eye locations determined by face/eye
detector. An ellipse mask is applied to remove the unwanted
corner, and the final face vector is of length 6634. Histogram
equalization is applied to reduce illumination variations and the
face vector is normalized to zero mean and unit variance.
5. Experimental results

In this section, the proposed face verification system is firstly
systematically evaluated on the O2FN database. Then, it is further
compared with the system built upon Adaboost face/eye detector
on the AR database [15] and the CAS-PEAL database [16]. Superior
performance of the proposed system is demonstrated.

The O2FN database is partitioned in a consistent way as shown
in Table 1. The performance on each sub-system is evaluated in a
pilot run, where 20 odd images of the first 40 subjects are used in
training. Then, in the system-level evaluation, the experiment is
repeated five times. For each trail, 40 subjects are randomly
selected and used in training.

5.1. Face detection results on the O2FN database

In this section we show the gradual performance improve-
ment, i.e. PCA - APCA - APCDA - C-APCDA face detector on the
O2FN database. Then, the proposed C-APCDA face detector is
compared with Adaboost face detector.
the O2FN database.
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Fig. 5. Experimental results on the O2FN database. (a) Eigen-spectrum plot for the eigenvalue lp
k , lq

k of the face/non-face covariance matrix, and the corresponding variance

vp
k
, vq

k
of the face/non-face testing samples, (b) the EER for the APCA/APCA face detector and (c) the EER for the APCDA face detector.

Table 2
Comparisons of APCA, APCDA, C-APCDA face detector and Adaboost face detector

on the O2FN database.

Algorithm RO Z85% (%) ROZ70% (%) Dimensions required

APCA300 97.25 99.58 300

APCDA100 97.00 99.83 100

C-APCDA 97.00 99.67 17

Adaboost face detector 96.17 99.17 –
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To study the reliability of face/non-face training samples, we
analyze the eigen-spectrums of Rp and Rq. We perform eigen-
decomposition on Rp, Rq, and obtain corresponding eigenvalue lp

k ,
lq

k and eigenvector Fp
k , Fq

k . Then, face/non-face testing samples are
projected onto Fp

k , Fq
k , respectively. Corresponding variance vp

k , vq
k

are calculated. We present lp
k , vp

k in the descending order, and lq
k ,

vq
k in the ascending order as shown in Fig. 5(a). lq

k and vq
k are

almost overlapped, and hence non-face training samples can well
represent testing samples. On the other hand, lp

k and vp
k differ

significantly after dimension 300, and hence face training samples
cannot well represent face testing samples. A large weight a¼ 0:9
is assigned to Rp so that more unreliable dimensions from the
face class can be removed by APCA. When a¼ np=ðnpþnqÞ � 0:1,
it is a standard PCA face detector. np, nq are the number of face/
non-face training samples.

Then, we test the PCA/APCA face detector on extracted testing
samples, and plot the EER vs. dimensions as shown in Fig. 5(b).
APCA consistently outperforms PCA after dimension 60. It is
consistent with our analysis in Section 3.1. By assigning a large
weight to the unreliable face class, more dimensions from the
unreliable covariance matrix of the face class are removed. Thus,
better generalization performance is achieved.

The objective of ADA in APCDA is to find the most discriminant
dimensions within the APCA subspace. The EER of the APCDA face
detector of different dimensions is shown in Fig. 5(c). The EER of
the APCDA face detector is comparable to that of the APCA face
detector, but with much less dimensions. With 60 dimensions,
the lowest EER of 2.73% is achieved for the APCDA face detector.
Even with the first dimension only, the EER of 5.32% is achieved.

In view of the discriminant power of first few APCDA dimen-
sions, a cascade APCDA face detector is built. It consists of eight
stages with 1, 2, 3, 6, 12, 24, 48, 96 dimensions at each stage.
A large amount of negative samples are filtered out by the
classifier built from the first APCDA dimension. The proposed
C-APCDA face detector is tested on 1200 face testing images. Let
us define the overlap ratio RO as the ratio of the overlapped region
over the union area. 97.00% and 96.50% of faces are detected for
ROZ85% when E¼ 0:5% and E¼ 1%, respectively. For ROZ70%,
almost perfect detection rate is achieved: 99.67% and 99.25%,
respectively. Unless otherwise stated, the face detection rate is
calculated based on ROZ70%. In terms of time saving, the
proposed C-APCDA face detector with E¼ 0:5% is 5.7 times faster
than the APCDA face detector of 96 dimensions.

The proposed face detector is further compared with Adaboost
face detector. As it requires a huge number of samples and
tremendous time to train an optimal Adaboost face detector, we
utilize pre-trained face detectors in OpenCV library [34]. We test
four Adaboost face detectors and the one with best performance
(haarcascade_frontalface_alt_tree.xml) is reported. Table 2 sum-
marizes the experimental results of the APCA face detector of 300
dimensions, the APCDA face detector of 100 dimensions, the
proposed C-APCDA face detector and Adaboost face detector.
The number of dimensions required for the C-APCDA face detec-
tor is estimated as 96=5:7� 17. Among three subspace face
detectors, the C-APCDA face detector needs much less dimensions
compared to the other two for roughly the same detection rate.
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Fig. 6. Experimental results on the O2FN database. (a) Eigen-spectrum plot for the eigenvalue lp
k ,lq

k of the eye/non-eye covariance matrix, and the corresponding variance

vp
k
,vq

k
of the eye/non-eye testing samples, (b) the comparison of the PCA/APCA eye detector in terms of EER and (c) the EER of the APCDA eye detector.

Table 3
Eye detection rate on the O2FN database for the C-APCDA eye detector of E¼ 0:5%,

1% and Adaboost eye detector on the detected face images under different

tolerances.

Tolerance C-APCDA eye detector

E¼ 0:5% (%)

C-APCDA eye detector

E¼ 1% (%)

Adaboost eye

detector (%)

T¼1 53.33 53.67 37.33

T¼2 83.25 84.00 77.42

T¼3 93.17 93.42 90.33

T¼4 96.42 96.50 94.25

T¼5 97.75 98.00 95.92
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Compared to Adaboost face detector, the C-APCDA face detector
achieves better face detection rate.

5.2. Eye detection results on the O2FN database

In this section, we present the experimental results of the
APCA/APCDA eye detector, the proposed C-APCDA eye detector
and the comparisons to other eye detectors. Eyes are detected
within the detected face region. Thus, the detection rate reported
here is the overall detection rate of face/eye detection.

To study the reliability of eye/non-eye training samples, we
apply eigen-spectrum analysis similarly as in the face detection.
For eye samples, eigenvalue lp

k of the covariance matrix Rp and
corresponding variance vp

k of the testing samples are presented in
the descending order as shown in Fig. 6(a). For non-eye samples,
eigenvalue lq

k and corresponding variance vq
k are presented in the

ascending order. vp
k differs significantly from lp

k for k4350,
whereas vq

k in general is very close to lq
k . A limited number of

eye training samples cannot well represent the testing samples,
and hence are less reliable. A large weight is assigned to the eye
class, e.g. a¼ 0:3. It is significantly larger than the weight in PCA,
e.g. when a� 0:02, APCA is deduced to standard PCA.

Then, the PCA eye detector and the APCA eye detector are
tested on extracted samples. The results are shown in Fig. 6(b).
The APCA eye detector consistently outperforms the PCA eye
detector. By assigning a large weight to the unreliable eye class,
more dimensions from the unreliable covariance matrix of the eye
class are removed. Thus, better performance is achieved.

With much less dimensions, the APCDA eye detector can
achieve comparable performance to the APCA eye detector. The
EER of APCDA eye detector of different dimensions is shown in
Fig. 6(c). With first two dimensions only, almost the same EER as
APCA60 is achieved.
In view of the discriminant power of the first few APCDA
features, a C-APCDA eye detector is built. It consists of six stages,
with 1, 2, 3, 6, 12, 20 dimensions at each stage. It is tested on 1200
face images for E¼ 0:5% and 1%. 97.75% and 98.00% eyes are
detected within 5 pixels to the manually marked eyes, respec-
tively. Table 3 shows the detection rates under different toler-
ances. A large portion of eyes are detected within 2 pixel to the
manually marked eyes. In the latter sections, unless otherwise
states, the eye detection rate is calculated based on 5-pixel
tolerance. Compared to Adaboost eye detector [34], the proposed
C-APCDA eye detector detects the eyes at much more precise
locations.

For the C-APCDA eye detector, by utilizing the focus-attention
strategy, most of non-eye samples are rejected at the early stages
and only those tough samples are evaluated at the latter stages.
Thus, the speed is greatly improved. The computational complex-
ity of the C-APCDA eye detector is only 22.82% of the APCDA eye
detector of 20 dimensions. Table 4 shows the performance
comparison of the APCA eye detector of 60 dimensions, the
APCDA eye detector of 20 dimensions and the proposed C-APCDA
eye detector. For the C-APCDA eye detector, the number of
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dimensions required is calculated as 20� 22:82%� 4:6. Com-
pared to the APCA/APCDA eye detector, the proposed C-APCDA
eye detector achieves a comparable detection accuracy, but with
much less dimensions.

The proposed C-APCDA eye detector is further compared
with four feature-based eye detectors [35–38] and Adaboost eye
detector [34]. Three sets of results for the proposed C-APCDA eye
detector are presented: corresponding to scanning step sizes 1–3.
For Adaboost eye detector, the experimental results of scale factor
1.01 and 1.1 are given. The algorithms are implemented and tested
on a PC with Intel Core 2 Duo CPU @ 2.66 GHz and 2 GB RAM. The
experimental results are shown in Table 5. Feature-based eye
detectors are simple and fast, and hence suitable for mobile devices
with limited computation power. However, as shown in Table 5,
feature-based eye detectors cannot work well. The highest detection
rate is achieved for the proposed C-APCDA eye detector of scanning
step size 1. The processing time is 166.6 ms, which is longer than
Adaboost eye detector of scale factor 1.1. As shown in the last two
rows of Table 5, if we increase the scanning step size of the proposed
algorithm to 2 or 3, the proposed C-APCDA eye detector consumes
less processing time yet still achieves significantly higher detection
rate than Adaboost eye detector. In the latter sections, the scale
factor of Adaboost eye detector is set as 1.01. Some sample images
of face/eye detection results for the proposed C-APCDA face/eye
detector are shown in Fig. 7. The eyes are detected almost as
accurate as the marked eyes.

5.3. Face verification results on the O2FN database

The proposed ERE approach [2,5] and various other subspace
face recognition algorithms, e.g. Bayesian maximum likelihood
Table 5
Comparisons of the C-APCDA eye detector with other eye detectors on the O2FN

database.

Algorithm Detection rate (%) Time (ms)

Li et al. algorithm [35] 55.63 2.8

Lin and Yang’s algorithm [36] 74.17 27.4

Ren and Jiang’s algorithm [37] 83.42 51.8

Ren and Jiang’s algorithm [38] 89.50 10.0

Adaboost [34]—SF 1.01 95.92 576.9

Adaboost [34]—SF 1.1 90.58 61.0

The proposed algorithm—step size 1 98.00 166.6

The proposed algorithm—step size 2 97.92 44.0

The proposed algorithm—step size 3 96.50 22.6

Fig. 7. The sample images of face/eye detection results for

Table 4
Performance comparison of APCA, APCDA and C-APCDA eye detector on the O2FN

database.

Eye detector Detection rate (%) Dimension required

APCA60 97.58 60

APCDA20 96.83 20

C-APCDA 98.00 4.6
(BML) [6], enhanced maximum likelihood (EML) [7], dual-space
LDA (DSL) [8], FisherFace [9], null space approach [10] and graph
embedding [12], are implemented and tested on the O2FN
database. They are tested on the face images normalized based
on the manually marked eyes (‘‘Marked eyes’’) and the detected
eyes (‘‘Detected eyes’’), and evaluated for CST and GT. ‘‘Detected
eyes’’ are determined by the proposed C-APCDA face/eye detector.
The experimental results at optimal parameters are reported in
Table 6.

In original FisherFace approach the null space of Rw may not
be removed when PCA is performed on Rt . Those dimensions
corresponding to the null space of Rw will have very large
weights, and hence dominate the matching score. Therefore, we
modify original FisherFace by performing PCA on Rw to reduce the
dimension to N�c. Much better performance is achieved. For
graph embedding, marginal Fisher analysis [12] is implemented.

Table 6 shows that the proposed ERE approach achieves the
best performance for almost all the settings. The EER is as low as
1.37% for ‘‘Marked eyes’’ and CST. When tested for ‘‘Detected
eyes’’, the EER is as low as 4.12% for CST. The eigen-spectrum
model of ERE approach alleviates the over-fitting problem caused
by the small eigenvalues in the range space of Rw, and utilizes the
discriminant information in both the range place and the null
space. Thus, better performance is achieved.

Table 6 also shows that better performance is achieved for CST
compared to GT. The CST determined by the proposed approach
greatly improves the performance. In addition, we can easily
obtain the ROC for different algorithms. E.g. the ROC for ERE
approach, ‘‘Marked eyes’’, CST is shown in Fig. 8.

Finally, Table 6 shows that subspace approaches are sensitive
to face alignment error. Previously, we achieve face/eye detection
rate as high as 98%, but the performance based on the detected
eyes still degrades significantly. Thus, an accurate face/eye detec-
tor is crucial to the performance of the complete and fully
automated face verification system.

Face recognition via sparse representation [3] has demon-
strated superior performance to handle occluded faces. We
implement it based on l1-MAGIC [39] and compare it with ERE
approach on the images normalized based on the manually
marked eyes. The original normalized image of size 82�96 pixels
the C-APCDA face/eye detector on the O2FN database.

Table 6
Comparisons of various subspace face recognition algorithms at different settings

in terms of EER on the O2FN database.

Algorithm Marked eyes Detected eyes

GT (%) CST (%) GT (%) CST (%)

BML [6] 12.16 13.52 16.03 17.76

EML [7] 9.63 11.27 13.07 15.23

Dual-space [8] 3.13 1.83 8.08 4.98

FisherFace [9] 32.53 35.37 34.43 37.91

FisherFace—modified 2.69 1.88 5.87 4.88

Null space [10] 3.16 1.90 8.24 4.98

Graph embedding [12] 5.95 3.36 11.64 10.76

ERE approach [5] 2.42 1.37 6.28 4.12
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is too large for sparse representation. Thus, we resize it to 41�48
pixels. Sparse representation is originally formulated as face
identification problem with a reject option. Sparsity concentra-
tion index (SCI) is used to reject the imposter samples. Then for
the genuine samples, Algorithm 1 in [3] is used to find the
identity. To handle the occlusion, an identity matrix is appended
after the image matrix. The EER for SCI is 2.94%, and subsequent
face recognition rate on the genuine samples is 98.25%. The
overall EER of sparse coding will surely be larger than 2.94%. On
the same image set of size 41�48 pixels, the EER of ERE approach
is 2.5% when using the global threshold and 1.78% when using the
CST. Clearly ERE approach outperforms sparse coding.

5.4. System-level comparison on the O2FN database

The proposed face verification system, i.e. the C-APCDA face/
eye detector, ERE face verification with the CST, is compared with
the system built from Adaboost face/eye detector, ERE face
verification with the global threshold. The O2FN database is
partitioned as shown in Table 1. The experiment is repeated five
times, and each time 40 subjects are randomly selected and used
in training. The average performance and standard derivation are
reported in Table 7. The performance is fairly consistent over five
trials. The EER of ERE face verification on the images normalized
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Fig. 8. The ROC for ERE approach based on the class-specific threshold.

Table 7
Performance comparison of the proposed face verification system and the system buil

face database for five trials.

Algorithm Face detection rate (%)

C-APCDA face/eye detectorþEREþCST 99.3370.19

Adaboost face/eye detectorþEREþGT 98.7370.16

Table 8
Performance comparison of the proposed face verification system and the system built

AR database.

Algorithm Face detection rate Ey

RO Z85% (%) RO Z70% (%)

C-APCDA face/eye detectorþERE 96.98 99.84 98
Adaboost face/eye detectorþERE 91.27 99.21 95
based on the manually marked eyes is 0.94%70.27%. The pro-
posed system demonstrates superior performance compared to
the competitive system. An overall EER of 3.88% is achieved for
the proposed system.

5.5. Experimental results on the AR database

Seventy-five subjects with 14 non-occluded images per subject
are selected from the AR database [15]. Those images mainly vary
in facial expressions. The first seven images of first 60 subjects
serve as the training images, and the remaining seven images of
first 60 subjects serve as the genuine testing images. The 14
images of last 15 subjects serves as the imposter testing images.
The C-APCDA face/eye detector is built based on 420 training
images and then used to determine the eye locations of the
testing samples. The face verification sub-system is based on ERE
approach. The proposed system is compared with the system
built upon the Adaboost face/eye detector as shown in Table 8.
The abbreviations are the same as defined in Table 6.

The proposed C-APCDA face detector locates the faces at a
much higher precision compared to the Adaboost face detector,
e.g. 96.98% of faces are located with ROZ85%. Subsequently, the
proposed C-APCDA eye detector detects the eyes at a higher
precision compared to Adaboost eye detector, e.g. 98.73% of eyes
are detected within 5 pixels to the manually marked eyes. As a
result, compared to the system built upon Adaboost face/eye
detector, the proposed system achieves much lower EER, e.g.
4.54% for the global threshold and 1.90% for the CST. In addition, it
can be seen that the proposed approach to determine the CST
significantly improves the performance.

5.6. Experimental results on the CAS-PEAL database

There are in total 30 863 images of 1040 subjects in the CAS-
PEAL database, in which 9031 are frontal faces and 21 832 are
profile faces. We choose the frontal dataset for testing. The CAS-
PEAL database is more challenging than the AR database. Besides
variations in facial expressions, there are variations in accessory,
aging, background, distance and lighting. 2359 images of first 101
subjects are selected. Other subjects are discarded as they have
much less images per subject, and hence not suitable for face
verification task. The odd images of first 80 subjects serve as the
training images, and the even images of first 80 subjects serve as
the genuine testing images. The images of last 21 subjects serve
as the imposter testing images. The face verification sub-system is
t upon Adaboost face/eye detector, evaluated on 2000 images of the O2FN mobile

Eye detection rate (%) System overall EER (%)

96.9870.29 3.8870.27

95.4070.18 8.4970.71

upon Adaboost face/eye detector, evaluated on 1050 images of 75 subjects on the

e detection rate (%) Marked eyes Detected eyes

GT (%) CST (%) GT (%) CST (%)

.73 2.70 1.66 4.54 1.90

.71 7.64 3.37



Table 9
Performance comparison of the proposed face verification system and the system built upon Adaboost face/eye detector, evaluated on 2359 images of 101 subjects on the

CAS-PEAL database.

Algorithm Face detection rate Eye detection rate (%) Marked eyes Detected eyes

RO Z85% (%) RO Z70% (%) GT (%) CST (%) GT (%) CST (%)

C-APCDA face/eye detectorþERE 94.48 99.42 98.55 4.13 3.18 6.60 5.60
Adaboost face/eye detectorþERE 93.46 99.27 93.02 9.30 6.77
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based on ERE approach. The proposed system is compared with
the system built upon Adaboost face/eye detector as shown in
Table 9.

The proposed C-APCDA face/eye detector locates the eyes at a
much higher precision compared to Adaboost face/eye detector,
e.g. the eye detection rate increases from 93.02% to 98.55%. As a
result, the proposed system outperforms the system built upon
Adaboost face/eye detector, e.g. the overall EER is reduced from
9.30% to 6.60% for the GT. The proposed approach to determine
the CST further improves the performance. Compared to the GT,
the overall EER of the proposed system is reduced from 6.60% to
5.60% for the CST.

5.7. Implementation on mobile devices

The proposed complete and fully automated face verification
system is implemented on O2 XDA Flame, with 2 Mb camera at
the rear, one VGA video camera in front, 520 MHz IntelR PXA-270
processor, 128 Mb RAM and Windows Mobile 6 operating system.
Two techniques are employed to further speed up the system.
Firstly, we utilize the focus-attention strategy in the spatial
domain for face/eye detection, e.g. checking the face/eye at a
coarse scale first and then focus on the region of interest at a fine
scale. Secondly, in view of the discriminant power of the APCDA
face/eye detector of first few dimensions, we build the C-APCDA
face/eye detector based on down-sampled face/eye samples. The
face is down-sampled from 24�28 pixels to 6�7 pixels and the
eye is down-sampled from 35�25 pixels to 7�5 pixels. Scanning
windows are first filtered by those down-sampled C-APCDA
detector, and then only those tough samples are evaluated by
the C-APCDA detector of higher resolution. In such a way, the
detection speed is further improved. On average, it takes 110.5 ms
for face detection, 145.1 ms for eye detection and 772.5 ms for
face verification. In total, it takes 1028.1 ms to recognize a face on
O2 XDA Flame mobile phone. If the system is implemented on the
new mobile phones with more memory and computation power,
e.g. iPhone 4S, much higher speed is expected.

The core module is implemented in native Cþþ (no windows
API) and packaged in dll. The system can be easily ported into
various applications and different platforms. Several applications
have been built upon this system, e.g. mobile access control,
personalized media consumption and data/folder locker. For more
implementation details, readers can refer to [40].
6. Conclusion and future work

In order to secure the mobile devices, a complete and fully
automated face verification system is proposed in this paper. The
proposed system is systematically evaluated on O2FN, AR and CAS-
PEAL databases. Comprehensive experiments demonstrate the super-
ior performance of the proposed system compared to the state-of-
the-art technologies. The best competitive system is built upon
Adaboost face/eye detector and ERE approach for face recognition.
Compared to this system, the proposed system reduces the overall
EER from 8.49% to 3.88% on the O2FN database, from 7.64% to 1.90%
on the AR database and from 9.30% to 5.60% on the CAS-PEAL
database. The proposed system is implemented on O2 XDA Flame, in
which it takes 1.03 s to recognize a face.

The proposed cascade APCDA face/eye detector achieves better
detection rate than Adaboost face/eye detector. The eye detection
rate increases from 95.40% to 96.98% on the O2FN database, from
95.71% to 98.73% on the AR database and from 93.02% to 98.55%
on the CAS-PEAL database. The eyes are detected almost as
accurate as the manually marked eyes. Furthermore, by utilizing
the focus-attention strategy, the detection speed is greatly
improved. Compared to Adaboost face/eye detector, the proposed
C-APCDA eye face/eye detector detects the eyes at a much higher
precision and a comparable speed.

Various subspace approaches are evaluated. In ERE approach,
the eigen-spectrum of Rw is replaced by a spectrum model, which
solves the problem of the unreliable small eigenvalues in the
range space and utilizes the discriminant information in both the
range space and the null space. The proposed approach to
determine the CST from the training data instead of extra
validation data further improves the performance.

A representative database is important to the success of the
training-based face verification system. Therefore, in order to
further improve the system, a larger mobile face database is
necessary, which will be our future work.
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