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Minimum Near-Convex Shape Decomposition
Zhou Ren, Junsong Yuan, and Wenyu Liu

Abstract—Shape decomposition is a fundamental problem for part-based shape representation. We propose the Minimum Near-
Convex Decomposition (MNCD) to decompose arbitrary shapes into minimum number of “near-convex” parts. The near-convex shape
decomposition is formulated as a discrete optimization problem by minimizing the number of non-intersecting cuts. Two perception
rules are imposed as constraints into our objective function to improve the visual naturalness of the decomposition. With the degree of
near-convexity a user specified parameter, our decomposition is robust to local distortions and shape deformation. The optimization can
be efficiently solved via Binary Integer Linear Programming. Both theoretical analysis and experiment results show that our approach
outperforms the state-of-the-art results without introducing redundant parts, and thus leads to robust shape representation.

Index Terms—Shape decomposition, shape representation, discrete optimization.
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1 INTRODUCTION

PART-based representation has shown promising results in

object recognition and detection. Instead of characterizing

an object as a whole, visual parts serve as intermediate

components to represent an object and are robust to articulated

movement and partial occlusions [2].

In this work we study the problem of decomposing an

arbitrary object shape into a number of natural parts. To

ensure a meaningful decomposition, each decomposed part is

preferred to have a convex shape, namely a simple polygon

whose interior is a convex set. Due to the nice geometric

property of convex shape, it brings two advantages. First, a

convex part is visually natural and geometrically simple [3]

[4], thus can serve as a satisfactory primitive for recognition.

Second, many complicated operations, although not feasible

to apply to arbitrary shape, can be easily applied to its convex

parts [5] [6].

Although strict convex decomposition has been well-studied

in computational geometry [9] [10], because of its sensitiv-

ity to small variations of the shape, it cannot bring stable

decomposition, thus limits its application in real problems.

For example, a small local distortion on the contour, caused

by imperfect image segmentation or shape deformations, can

lead to completely different decomposition result. Moreover,

to satisfy the strict convex requirement, it is like to result in a

large number of redundant small parts, thus does not lead to

stable decomposition either.

To address these problems, near-convex decomposition has

been proposed [7]. As illustrated in Fig.1, instead of requiring

each part to be strictly convex, it allows near-convex parts. In

[7] [11], Lien et al. proposed a divide-and-conquer strategy

for near-convex decomposition, which partitions the most

concave feature in the shape until all the parts satisfy the
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Fig. 1. The first column shows the same objects with
different degrees of local distortions. The second column
shows the near-convex decomposition results using our
method. The third column shows the shape represen-
tations by replacing each part with its convex hull. De-
spite severe local distortions, as our method decomposes
a shape into minimum number of near-convex parts,
it avoids introducing redundant parts and thus brings
consistent decomposition results. The last two columns
are the results of the existing near-convex decomposition
methods: [7] and [8], respectively.

convexity constraint. A recent method proposed by Liu et

al. [8] formulated the near-convex decomposition as a linear

programming problem by minimizing the total length of cuts.

As it can tolerate local non-convex distortions, near-convex

decomposition usually leads to more robust representation.

Despite previous works in near-convex shape decomposi-

tion, there still remain two unsolved problems. First of all,

existing methods cannot avoid introducing redundant parts. For

example, the greedy algorithm proposed in [7] [11] inevitably

results in redundant parts and unstable decomposition. By only

optimizing the total cut length, the method of [8] generates

redundant parts and is not stable either, as illustrated in the last

two columns of Fig.1. Secondly, without any priori knowledge

of the object, it is difficult to obtain visually natural parts

through an unsupervised decomposition.
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To address these two problems, we present the Minimum

Near-Convex Decomposition (MNCD) to decompose an arbi-

trary shape into minimum number of parts. To achieve this

goal, we first construct the candidate cut set, and then decom-

pose the shape by selecting a subset of cuts from the candidate

set. In our new formulation, the decomposition is optimized

by selecting the best subset which has both the minimum size

and high degree of visual naturalness. To improve the visual

naturalness, two perception rules, the minima rule [12] and the

short cut rule [13], are imposed into the objective function. In

order to solve the discrete optimization problem efficiently, we

formulate our problem as Binary Integer Linear Programming

(BILP), which can be solved in seconds while still guarantee

the optimal solution.

Our shape decomposition method provides a compact and

effective way to represent shapes. For example, as shown in

the third column of Fig.1, we can approximately represent the

original shapes by replacing each part with its convex hull.

Based on this representation method, we have validated its

superiority in the application of hand gesture recognition using

Kinect sensor [14] [15], which achieves the state-of-the-art

recognition accuracy.

The main contributions of this paper include: (1) we propose

minimum near-convex shape decomposition which decom-

poses an arbitrary 2D shape into minimum number of near-

convex parts; (2) our decomposition method is stable, can well

handle local shape distortions and shape deformation, and is

visually more natural. Extensive experiments on benchmark

shape datasets and the comparisons with the state-of-the-

art methods validate the advantages of our decomposition

algorithm, MNCD.

The rest of the paper is organized as follows. We introduce

the related work of shape decomposition in Section 2. In

Section 3 we present the formulation of MNCD. Then we

discuss the properties of our formulation and present the BILP

solution of MNCD in Section 4. And in Section 5, experiments

of MNCD on 2D shapes in terms of decomposed parts number,

visual naturalness, decomposition robustness and applications

are demonstrated. Finally we draw conclusion in Section 6.

2 RELATED WORK

Shape decomposition is a fundamental step toward shape

analysis and understanding [3] [16]. Such representation

method is widely used in shape recognition [14] [15] [17],

shape retrieval [18] [19], skeleton extraction [20] [21] [22],

and motion planning [23] [24].

We can classify most shape decomposition methods into two

categories. One category is based on geometric constraints.

The other category is motivated by psychological studies.

In the first category, the most popular geometric constraint

is convexity constraint. This is not only because convex parts

have nice topological and geometric properties that allow for

certain operations and improve the efficiency of algorithms,

but also because convexity plays an important role in human

perception [3]. There are two main indices to evaluate the

performance of convex decomposition methods. One index is

the time complexity. In this area, Keil et al. proved the time

bound of convex decomposition to O(n+r2min(r2, n)), where

n is the number of vertices and r is the number of notches

[9]. The other index is the number of decomposed parts. In

this area, Snoeyink proposed minimum convex decomposition

that can decompose 2D shapes into minimum number of

strict convex parts [10]. However, strict convex decomposition

always produces an unmanageable number of parts and is very

time consuming. Besides, there is no need to find the strict

convex parts; a certain degree of approximation is enough

to satisfy practical processes and can lead to a much more

robust representation. Lien and Amato proposed Approximate

Convex Decomposition in [7] [11], which decomposes 2D

and 3D shapes into approximately convex parts. Liu et al.

proposed Convex Shape Decomposition [8] to minimize the

total length of cuts. In our previous work [1] we proposed

a quadratic programming formulation to decompose a shape

into minimum number of parts. In these methods, they ignored

small concave features and made the decomposition more

robust and efficient.

The second category, motivated by psychological studies,

aims to decompose shapes into natural parts. The meaning of

natural parts depends on human perception and thus has no

objective definition. However, there are some basic perception

rules from cognitive science. In [12], Hoffman proposed the

minima rule, which pointed out that human visual system

was interested in boundaries at negative minima of principal

curvature or concave creases. Another major perception rule

is the Short cut rule, proposed by Singh, Seyranian, and

Hoffman [13], which stated that human preferred the shortest

possible cuts for decomposition.

The aim of our method is to decompose a shape into

minimum number of near-convex parts. And the two major

perception rules are also imposed to guide the decomposition,

in order to ensure high degree of visual naturalness.

3 PROBLEM FORMULATION

3.1 Overview
In near-convex decomposition, each decomposed part may

not be strictly convex, thus the user has to specify a pa-

rameter ψ which indicates the near-convex tolerance of the

decomposed parts. Formally, a ψ-near-convex decomposition

of a shape S, Dψ(S), is defined as a decomposition that only

contains ψ-near-convex non-overlapping parts, i.e.:

Dψ(S) = {Pi|
⋃
i

Pi = S, ∀i�=jPi ∩ Pj = ∅, concave(Pi) ≤ ψ}, (1)

where Pi denotes the decomposed part; concave(Pi) is the

concavity of Pi. We say Pi is ψ-near-convex if concave(Pi)
≤ ψ. Pi is strictly convex if concave(Pi)=0. According to the

definition, near-convex decomposition has two constraints: the
non-overlapping constraint, ∀i�=jPi∩Pj = ∅; and the convexity
constraint, ∀Pi, concave(Pi)≤ ψ.

The partition {Pi} is formed by some cuts. For any two

vertices p, q on the contour, if the line connecting p and

q locates inside the shape, line pq is a cut. As shown in

Fig.2(b), the red lines are some sampled cuts. We denote the

complete set of all possible cuts in shape S as the candidate
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Fig. 2. Illustration of near-convex decomposition. (a) The original image. (b) The extracted shape with some sampled
candidate cuts inside. (c) An incorrect near-convex decomposition, which does not satisfy the non-overlapping
constraint, as the purple line ab intersects with the cyan line cd, causing the part abc overlaps with the part bcd.
(d) An incorrect near-convex decomposition which does not satisfy the convexity constraint, as concave(P1) > ψ. (e)
A near-convex decomposition of 7 parts. (f) A minimum near-convex decomposition of 5 parts. (g) Another minimum
near-convex decomposition of 5 parts, but looks more natural.

cut set, C(S). Therefore, as shown in Fig.2, a near-convex

decomposition of S is to select a subset of cuts from C(S) to

form {Pi} such that the two constraints in Eq.1 are satisfied:

1) as illustrated in Fig.2(c), to ensure the non-overlapping

constraint, the selected cuts cannot intersect with each other;

and 2) as illustrated in Fig.2(d), to ensure the convexity

constraint, we restrict ∀Pi, concave(Pi) ≤ ψ.

Fig. 3. At the concave contour, some lines (such as
v1v2, v1v3) intersect with the contour or locate outside the
contour, which form the mutex pairs; while vertices v2, v3
are not a mutex pair.

In order to measure concave(Pi), we use the shape feature

mutex pair in proposed [8]: for any two vertices on a shape

contour, v1 and v2, if the connecting line between v1 and v2
intersects with the contour or locates outside the contour, (v1,

v2) is a mutex pair. As shown in Fig.3, (v1, v2) and (v1, v3)

are two mutex pairs. The concavity of a part Pi is defined as

the maximal concavity of the mutex pairs in the part:

concave(Pi) = max
(v1,v2)∈Pi

{concavem(v1, v2)}, (2)

where (v1, v2) denotes the mutex pair in Pi; concavem(v1, v2)
is the concavity of mutex pair (v1, v2).

Hence, we can measure concave(Pi) by measuring all

concavem(v1, v2) in Pi. We use the same method proposed

in [8] to measure concavem(v1, v2): by projecting the shape

contour in multiple Morse functions, the concavity of a mutex

pair is defined as the maximal perpendicular distance between

line v1v2 and the corresponding concave contour. As in Fig.3,

concavem(v1, v2), concavem(v1, v3) are shown as the blue

dotted lines, and concavem(v1, v2) > concavem(v1, v3).

To ensure the convexity constraint: ∀Pi, concave(Pi) ≤ ψ,

according to Eq.2, the concavities of all the mutex pairs

in each part Pi must be smaller than ψ. Therefore, for a

ψ-near-convex decomposition, we need to separate all the

mutex pairs in S whose concavities are greater than ψ into

different parts to ensure concave(Pi) ≤ ψ. As illustrated in

Fig.3, cut pq separates the heart shape into two parts, and

the mutex pair (v1, v2) as well as (v1, v3) are separated. Thus

concavem(v1, v2) and concavem(v1, v3) will not affect the

concavities of these two parts.

3.2 Minimum Near-Convex Decomposition
As illustrated in Fig.2(e), Fig.2(f) and Fig.2(g), in order

to decompose a shape into minimum number of parts with

high degree of visual naturalness, we need to optimize the

selection of cuts. Assume there are in total n possible cuts

in a shape S, namely C(S) = {cut1, ..., cutn}. The final

decomposition consists of a subset of the cuts from C(S),
denoted by C ′(S) ⊆ C(S). We assign a binary variable xi to

each cuti in C(S) where:

xi =

{
1 cuti ∈ C ′(S),
0 cuti �∈ C ′(S).

(3)

Thus xn×1 =(x1, x2, ..., xn)
� is a binary vector indicating

the selection/rejection of cuts from C(S).
With the two constraints in Eq.1, and by minimizing the

number of cuts and imposing perception rules, we formulate

the ψ-MNCD as a Binary Integer Linear Programming prob-

lem as follows:

min ‖ x ‖0 + λw�x,

s.t. Ax ≥ 1, Bx ≤ 1, x ∈ {0, 1}n, (4)

where ‖x‖0 is the zero-norm of vector x, which counts the

number of the selected cuts in C ′(S). λ ≥ 0 is a parameter

introducing the visual naturalness regularization w�x to the

decomposition, in order to regularize the cuts selection by

favoring the cuts with higher visual naturalness. We will

discuss λ in Section 4.1. Different from [1], we present a

new definition of intersection matrix B, thus propose a Binary

Integer Linear Programming formulation. Now we explain our

formulation.

The visual naturalness regularization: w�x
We employ both the minima rule [12] and the short cut

rule [13] to ensure high degree of visual naturalness for the

decomposition. A cost is assigned to each cuti ∈ C(S) to

evaluate its own visual naturalness, and a smaller cost means

a higher degree of visual naturalness:

wpq =
dist(pq)

1 + β · |min{cur(p), 0}+min{cur(q), 0}| , (5)
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where cut pq is a candidate cut in C(S); dist(pq) is the

normalized distance between vertices p and q. This corre-

sponds to the short cut rule: a shorter cut has a smaller

cost. cur(p) denotes the normalized curvature of the vertex

p, which corresponds to the minima rule: a cut decomposing

at positions with greater negative curvatures has a smaller

cost. We normalize the negative curvature among concave

vertices and ignore the convex vertices. β is a parameter

balancing these two rules. As both rules are critical for natural

decomposition, we set β = 1 in our experiments.

We denote wn×1=(w1, w2, ..., wn)
� as the costs of n can-

didate cuts. From Eq.5, we know that the cuts separating at

positions with greater negative curvatures and with shorter

lengths have smaller costs. Thus by minimizing w�x, those

cuts with higher visual naturalness are more likely to be

selected.

The convexity constraint: Ax≥1
As mentioned in Section 3.1, to ensure the convexity con-

straint: ∀Pi, concave(Pi) ≤ ψ, we need to separate all the

mutex pairs whose concavities are greater than ψ into different

parts. So we first obtain the ψ-mutex set of S, Mψ(S),
which is defined as the set of mutex pairs whose concavities

are greater than ψ. Then we separate all the mutex pairs in

Mψ(S) with the selected cuts from C(S). A candidate cut

may separate several mutex pairs, such as the cut pq in Fig.3.

For every candidate cut in C(S), cuti, the mutex pairs it can

separate form a subset of Mψ(S), denoted by M ′
i . In this way,

we obtain {M ′
i , i = 1, ..., n}.

Suppose there are m mutex pairs in the ψ-mutex set,

Mψ(S) = {mp1, ...,mpm}. For each mutex pair in Mψ(S),
mpi, among all the cuts that can separate it, at least one

cut must be in set C ′(S). Thus, for each mpi, this gives a

constraint:
n∑
j=1

aijxj ≥ 1, where aij =

{
1 mpi ∈ M ′

j ,

0 mpi �∈ M ′
j .

(6)

Let us denote Am×n=(aij |i = 1, ...,m; j = 1, ..., n),
1m×1=(1, ..., 1)�. Consider all the m mutex pairs in Mψ(S),
we have the convexity constraint: Ax≥1, which is also used

in [8].

The non-overlapping constraint: Bx≤1
Any two cuts in C(S) may intersect with each other at an

intersection. Now we define an intersection matrix, Bt×n to

indicate the intersection relations in C(S), where t is the total

number of intersections. Suppose cuti and cutj intersect at

the gth intersection, then we define the gth row of matrix B
as:

bgz =

{
1 z = i or j,

0 otherwise.
(7)

As mentioned in Section 3.1, to ensure the non-overlapping

constraint ∀i�=jPi ∩ Pj= ∅, the selected cuts in C ′(S) cannot

intersect with each other, namely ∀g=1,...,t

∑n
z=1 bgzxz ≤

1. Thus we have the intersection constraint: Bx≤1, where

1t×1=(1, ..., 1)�.

4 SOLUTION

4.1 Selection of Parameter λ

As mentioned earlier, λ is an important parameter introduc-

ing the visual naturalness regularization to the decomposition.

If we do not consider the visual naturalness of the decompo-

sition, while only focus on minimizing the number of parts,

the problem can be reformulated by setting λ = 0, i.e.:

min ‖ x ‖0 s.t. Ax ≥ 1, Bx ≤ 1, x ∈ {0, 1}n. (8)

The solution x of this formulation is not unique, but it

ensures exactly minimum number of parts. Although with dif-

ferent objective functions, we can prove that our formulation

in Eq.4 can obtain the same minimum number of parts as Eq.8

if λ is selected appropriately. Theorem 1 tells the relationship

between Eq.8 and our formulation in Eq.4:

Theorem 1 Minimum Decomposition Rule

We consider two objective functions as follows:{
f(x) =‖ x ‖0 +λw�x, s.t. Ax ≥ 1, Bx ≤ 1, x ∈ {0, 1}n,
g(x) =‖ x ‖0, s.t. Ax ≥ 1, Bx ≤ 1, x ∈ {0, 1}n,

Let:

x′ = argmin
x

f(x), x′′ = argmin
x

g(x).

We have ‖ x′ ‖0=‖ x′′ ‖0 when 0 ≤ λ ≤ 1/
∑n
i=1 wi.

x′′ is the solution of Eq.8 whose zero-norm is minimized,

and x′ is the solution of our formulation in Eq.4. Therefore,

our formulation can decompose a shape into minimum number

of parts when 0 ≤ λ ≤ 1/
∑n
i=1 wi. It is worth mentioning

that although Eq.4 and Eq.8 both minimize the number of

parts, their cuts are not necessarily the same subset from C(S),
since Eq.4 favors visually more natural cuts.

Proof of Theorem 1

In order to prove ‖ x′ ‖0=‖ x′′ ‖0, when 0 ≤ λ ≤ 1/Σni=1wi,
first we have:

min
x

f(x) =‖ x′ ‖0 +λw�x′ ≤‖ x′′ ‖0 +λw�x′′, (9)

min
x

g(x) =‖ x′′ ‖0≤‖ x′ ‖0, (10)

As wi > 0, so when 0 ≤ λ ≤ 1/Σni=1wi, ∀ x ∈ {0, 1}n,

0 ≤ λw�x ≤ 1. Therefore, from Eq.9 we further have Eq.11,

and from Eq.10 we further have Eq.12:

‖ x′ ‖0 +λw�x′ ≤‖ x′′ ‖0 +1. (11)

‖ x′′ ‖0≤‖ x′ ‖0 +λw�x′. (12)

Combining Eq.11 and Eq.12, we have:

‖ x′′ ‖0≤‖ x′ ‖0 +λw�x′ ≤‖ x′′ ‖0 +1.

As 0 ≤ λw�x′ ≤ 1, and ‖ x′ ‖0, ‖ x′′ ‖0 are integers, thus

‖ x′ ‖0=‖ x′′ ‖0 when 0 ≤ λ ≤ 1/Σni=1wi.
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ACD [7] CSD [8] MNCD
a NCD with the a NCD with minimum number ofObjective a NCD without optimization

minimum length of cuts parts and high visual naturalness
Candidate cut set complete set of all possible cuts incomplete set from Reeb graph complete set of all possible cuts
Perception rules minima rule and short cut rule short cut rule minima rule and short cut rule

non-overlapping constraint non-overlapping constraintConstraints
convexity constraint

convexity constraint
convexity constraint

Solution greedy algorithm Linear Programming Binary Integer Linear Programming

TABLE 1
The comparison among ACD, CSD and MNCD, where NCD denotes near-convex decomposition.

Algorithm 1: MNCD(S, ψ)

Input: A shape, S, and a concavity tolerance, ψ;

Output: ψ-MNCD of S, {Pi}.

1 � compute the candidate cut set, C(S);
2 � shrink the candidate cut set, C(S);
3 � compute ψ-mutex set of S→Mψ(S);
4 foreach mpi in Mψ(S) do
5 foreach cutj in C(S) do
6 check whether cutj separates mpi → aij ;

7 foreach cuti in C(S) do
8 compute its cost → wi;
9 foreach cutj in C(S) do

10 check whether cuti intersects with cutj → bgz;

11 � obtain the optimized solution by solving Eq.13→ {Pi}.

4.2 Binary Integer Linear Programming

We can optimize our formulation in Eq.4 efficiently via

Binary Integer Linear Programming. Now we prove Eq.4 is

a Binary Integer Linear Programming problem. Note that the

vector x is binary, thus the objective function in Eq.4 can be

expressed as a linear form ‖x‖0+λw�x = (1�+λ w�)x, where

1n×1=(1, ..., 1)�.

We define a matrix D(m+t)×n as D =

[
−A
B

]
, and a vector

u(m+t)×1 as u =

[
−1
1

]
, where −1m×1=(−1, ..., −1)� and

1t×1=(1, ..., 1)�, thus Eq. 4 can be represented as a Binary

Integer Linear Programming problem:

min (1� + λw�)x ,

s.t. Dx ≤ u, x ∈ {0, 1}n. (13)

We can solve this linear programming problem efficiently

using standard discrete optimization techniques, such as

CPLEX, Lingo, or integer relaxation. We use CPLEX in our

experiments.

4.3 Implemental Details and Time Complexity

Algorithm 1 shows the overall procedure of our method.

In the implementation of computing the C(S), to save the

memory, we shrink the candidate cut set in the first stage.

Specifically, we discard the cuts whose endpoints are both

convex vertices, since they cannot separate mutex pairs apart.

To compute C(S), we consider all pairs of vertices on

the contour. Thus the time complexity of computing C(S)
is O(v2), where v is the number of vertices. According to [8],

the time complexity of computing Mψ(S) is O(Tvr), where

r is the number of notches in the shape, and T is the number

of Morse functions we used to compute Mψ(S), which we

set as 16 in our experiments. With C(S) and Mψ(S), we can

obtain the value of matrixes A in O(mn) time and matrix

B in O(n2) time, where m is the number of mutex pairs

in Mψ(S) and n is the number of candidate cuts in C(S),
where n 
 m,T, v, and r. Thus the total time complexity of

our algorithm is O(v2 + Tvr +mn+ n2)=O(n2).

4.4 Comparison with Other Methods
Table 1 presents a comparison between MNCD and the

state-of-the-art methods: ACD [7] and CSD [8]. Our method

aims at the minimum number of parts with high degree of

visual naturalness for robust shape representation.
Specifically, CSD is a special case of our formulation in

Eq.4 if discarding the ‖x‖0 term and setting β = 0 in Eq.5. The

‖x‖0 term in our formulation guarantees the minimum number

of decomposed parts, which eliminates all the redundant

parts in near-convex decomposition. This term is essential for

robust shape representation and can improve the efficiency

of further processes, as shown in Fig.1. Parameter β in Eq.5

imposes the minima rule and short cut rule on our near-convex

decomposition scheme. Setting β = 0 means discarding the

minima rule. This term is essential as well because these

two perception rules are introduced for high degree of visual

naturalness which guarantees better recognition primitives.

And the minima rule can inhibit cuts at positions with small

negative curvatures or even at convex points.

5 EXPERIMENTS
In order to evaluate our shape decomposition method

MNCD on 2D shapes, we test the MPEG-7 shape dataset [25],

the Animal dataset [26], and the NTU-Microsoft Kinect

HandGesture dataset [14]. Excluding simple shapes such as

the heart shape that can be easily decomposed, we select

20 complex shape categories from the MPEG-7 dataset, in

which each category has 20 shapes (20×20 = 400 shapes), 8

complex shape categories from the Animal dataset, in which

each category has 100 shapes (8×100 = 800 shapes), and

9 complex hand shape categories from the NTU-Microsoft

Kinect HandGesture dataset, in which each category has 100

shapes (9×100 = 900 shapes). Fig.4 shows an example for

each selected category.
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MPEG-7 ψ=0.005R ψ=0.01R ψ=0.03R ψ=0.06R
dataset ACD↓ CSD↓ ACD↓ CSD↓ ACD↓ CSD↓ ACD↓ CSD↓

bat 14.3% 8.9% 20.8% 11.3% 16.2% 6.8% 8.6% 6.5%

beetle 23.8% 10.3% 22.9% 9.0% 21.9% 16.0% 19.3% 14.4%

bird 18.5% 13.6% 23.8% 12.5% 12.8% 7.6% 17.4% 10.6%

butterfly 4.4% 5.8% 13.1% 7.2% 16.9% 8.8% 32.7% 12.9%

camel 16.1% 10.5% 15.2% 3.3% 21.1% 9.5% 21.3% 4.8%

carriage 5.5% 3.7% 13.8% 9.2% 15.6% 9.5% 18.4% 13.3%

cattle 24.9% 14.6% 24.5% 10.7% 27.4% 8.9% 23.0% 12.3%

chicken 19.0% 10.0% 23.1% 15.2% 24.0% 10.5% 3.1% 5.2%

chopper 8.9% 7.7% 16.2% 10.4% 22.1% 10.7% 17.4% 11.3%

crown 16.0% 9.2% 20.7% 11.9% 27.8% 14.6% 19.4% 16.7%

deer 18.0% 14.5% 24.2% 10.5% 15.3% 4.2% 22.6% 13.3%

dog 23.8% 15.4% 18.8% 7.6% 24.5% 9.2% 15.7% 10.5%

elephant 24.1% 12.0% 24.0% 8.9% 24.9% 9.7% 25.2% 7.8%

fly 11.9% 9.2% 8.9% 5.6% 4.2% 3.9% 10.6% 8.4%

horse 20.1% 8.0% 23.8% 5.1% 19.8% 1.1% 18.8% 6.1%

horseshoe 26.1% 18.6% 21.9% 11.7% 23.5% 14.8% 12.2% 12.2%

lizard 18.2% 10.4% 15.9% 10.0% 27.5% 15.2% 11.7% 7.3%

Misk 29.8% 30.7% 24.2% 11.9% 25.8% 20.3% 13.2% 15.4%

Mickey 24.6% 13.4% 14.0% 10.5% 19.8% 12.9% 17.3% 8.5%

spring 22.6% 12.6% 25.1% 13.7% 24.5% 15.8% 25.7% 6.9%

TABLE 2
The average reduction rate of MNCD comparing with

ACD [7] and CSD [8], on the MPEG-7 dataset, where R
is the radius of the shape’s minimum enclosing disk.

Fig. 4. An example of each shape category selected from
the MPEG-7 dataset [25] (the first two rows), the Animal
dataset [26] (the third row), and the NTU-Microsoft Kinect
HandGesture dataset [14] (the last row) is displayed.

5.1 Evaluation of Parameters

In our algorithm, there are 2 parameters, ψ and λ, where

ψ is the user specified concavity tolerance for near-convex

decomposition, and λ is the parameter introducing the visual

naturalness term.

The parameter ψ tells how small degree of concave features

the user wants to ignore in near-convex decomposition. In

Fig.5, it shows the average number of decomposed parts using

our method at 4 different values of ψ, 0.005R, 0.01R, 0.03R,

and 0.06R respectively, on the 1200 shapes from datasets [25]

[26], where R is the radius of the shape’s minimum enclosing

disk. As we see, when we increase the value of concavity toler-

ance ψ, the average number of decomposed parts decreases. A

small ψ means that the decomposed parts are almost strictly

convex, which will introduce a large number of small parts

to ensure the convexity constraint, thus is not robust to local

distortions. When ψ increases, the decomposition can tolerate

more severe distortions. Fig.6 shows the decomposition results

at 4 different values of ψ.

The parameter λ introduces the visual naturalness term to

the decomposition in Eq.4. Fig.7 shows the decomposition

Animal ψ=0.005R ψ=0.01R ψ=0.03R ψ=0.06R
dataset ACD↓ CSD↓ ACD↓ CSD↓ ACD↓ CSD↓ ACD↓ CSD↓

cat 16.7% 8.7% 24.4% 12.6% 21.9% 10.2% 22.8% 11.1%

crocodile 15.7% 14.4% 22.3% 15.9% 21.7% 11.2% 22.5% 5.9%

duck 21.1% 12.5% 25.2% 13.2% 19.0% 6.4% 15.1% 8.0%

flyingbird 7.1% 3.7% 13.2% 7.9% 21.1% 11.8% 15.6% 8.2%

monkey 18.5% 9.9% 25.5% 4.5% 21.2% 12.7% 30.5% 7.0%

rabbit 24.0% 9.4% 23.9% 6.3% 20.0% 4.9% 18.0% 11.1%

rat 24.2% 7.3% 23.5% 10.7% 12.2% 8.6% 15.3% 12.9%

spider 11.4% 5.1% 11.3% 6.2% 4.7% 5.2% 3.1% 4.1%

TABLE 3
The average reduction rate of MNCD comparing with

ACD [7] and CSD [8], on the Animal dataset, where R is
the radius of the shape’s minimum enclosing disk.

Fig. 5. The average number of parts decomposed by
MNCD with different concavity tolerances.

Fig. 6. The decomposition results of MNCD when
λ=1/

∑n
i=1 wi, with ψ= 0.005R, ψ=0.01R, ψ=0.03R, and

ψ=0.06R, from left to right, respectively.

results of MNCD at 3 different values of λ. If 0 ≤ λ ≤
1/

∑n
i=1 wi, the number of parts by MNCD is minimized.

But a larger λ leads to a more natural decomposition since

it counts more weight of the visual naturalness regularization

term in Eq.4. In our experiments below, we set λ as the upper

bound 1/
∑n
i=1 wi.

5.2 Evaluation of the Number of Parts
One advantage of our method is that it does not introduce

redundant part as it decomposes the shape into minimum

number of parts. In terms of the number of parts, table 2

presents the average reduction rate comparing our method

with ACD [7] and CSD [8] at 4 different ψ, on the MPEG-

7 dataset and the Animal dataset respectively. The average

reduction rate scores are defined as:

Fig. 7. The decomposition results of MNCD when
ψ=0.03R, with λ= 0, λ=0.5/

∑n
i=1 wi, λ=1/

∑n
i=1 wi, from

left to right, respectively.
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Fig. 8. Some decomposition results of ACD [7], CSD [8] and MNCD. Our MNCD method produces the least number
of near-convex parts and our decompositions are visually more natural.

Fig. 9. The robust decomposition results of MNCD. The first row is the results of shapes with local distortions; and
the second row is the results of shapes with deformation. Without introducing redundant parts and by considering
perception rules, MNCD is robust to local distortions and shape deformation.

ACD ↓= (#ACD−#MNCD)/#ACD ,

CSD ↓= (#CSD−#MNCD)/#CSD .

As it shows, we produce the least number of parts. Comparing

with ACD [7], up to 32.7% of redundant parts are eliminated,

and up to 30.7% of redundant parts are eliminated compared

with CSD [8]. On average, 18.99% of parts are eliminated

compared with ACD and 10.15% compared with CSD. Thus,

the efficiency of further applications on the decomposed parts

can be highly improved. On the other hand, from the table,

we notice that all the ACD↓ and CSD↓ scores are greater

than 0 on every shape category and every ψ, which means

that MNCD always produces minimum number of parts, as

proved in Theorem 1.

5.3 Decomposition Results
To evaluate the visual naturalness of our decomposition,

Fig.10 compares our method with the method proposed by

Mi and Decarlo [27]. Note that Mi’s method is specifically

designed to decompose 2D shapes into natural parts. The

Fig. 10. The first row shows the decomposition results of
[27], and the second row shows the results of MNCD.

first row are the decomposition results of their method, and

the second row are the results of MNCD. As we can see,

when considering the minima rule and short cut rule in our

formulation, our method decomposes shapes into parts with

high degree of visual naturalness comparable to the method

of [27], such as the legs, head and body of the animal, the

leaf and stem of the tree, etc.

In Fig.8, more comparisons among ACD [7], CSD [8] and

our method are provided, with ψ=0.03R. The decomposi-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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tions of our method produce the minimum and most natural

recognition primitives. At this concavity tolerance, MNCD

decomposes the animals into primitives such as head, body,

legs and tail, and avoids decomposing them into redundant

parts as in [7], [8].

Without introducing redundant parts, MNCD is robust to

local distortions, as shown in the first row of Fig.9. The

robustness of our method is demonstrated when there are large

local distortions as shown in the last row of Fig.1, where

the existing decomposition methods produce many redundant

noisy parts. Besides, our MNCD imposes two perception rules

to guide the decomposition, thus it produces parts with high

degree of visual naturalness, which makes MNCD robust to

shape deformation, as illustrated in the second row of Fig.9.

It is worth noting that in our method, the parameter ψ is

the user specified concavity tolerance. The optimal value of ψ
is application dependant.

5.4 Hand Shape Decomposition and Its Application

Fig. 11. The MNCD representations of hand shapes.

In Section 5.3, we illustrate the robustness of our MNCD

algorithm to the local distortions and shape deformation. In

order to further validate that MNCD can provide a robust shape

representation, we test our method on hand shapes from the

NTU-Microsoft Kinect HandGesture dataset [14].

In Fig.11, the decomposition results of hand shapes are

shown, with ψ=0.06R. In the first two rows and the last

two rows on the left side of the black line, we show two

sets of decomposition results. As we see, our algorithm can

represent the hands as finger parts and palm part consistently.

The shapes in the last two rows have orientation, articulation

or scale changes, and the results demonstrate the robustness of

MNCD to these changes. The rightmost column on the right

side of the black line are imperfect results. Specifically, the

second hand shape does not decompose the ring finger out, and

the rest three shapes produce one “redundant” part as shown

in the ellipse. These are due to the convexity constraint. The

algorithm needs to produce the part in the ellipse to satisfy the

convexity constraint. And for the second shape, the ring finger

and the palm make up a part that can satisfy the convexity

MNCD Our previous work [1]
Decomposition time / gesture 3.9705s 45.6132s

TABLE 4
The average computational cost of shape decomposition
using the proposed MNCD and our previous work [1] on

the NTU-Microsoft Kinect HandGesture dataset [14].

constraint, thus it is not separated. As we see, MNCD leads

to robust shape representations.

Based on this representation method, we have validated its

superiority in the application of hand gesture recognition using

Kinect sensor [14] [15], which achieves the state-of-the-art

recognition accuracy, as demonstrated in [28].

In Section 4.2, we formulate MNCD as a Binary Integer

Linear Programming problem. Compared with the quadratic

programming formulation of our previous work [1], such a

reformulation of BILP leads to significantly faster solution,

which is validated by the comparison of computational costs

on the NTU-Microsoft HandGesture dataset [14] shown in

Table 4. The computational cost in Table 4 is the average

decomposition time per hand shape, tested over all the 900

hand shapes in dataset [14].

6 CONCLUSION
In this paper, we present a novel near-convex shape de-

composition method for robust shape representation, Minimum

Near-Convex Decomposition (MNCD), which decomposes 2D

shapes into minimum number of parts with high degree of

visual naturalness. We formulate the shape decomposition

problem as a Binary Integer Linear Programming problem,

which has been theoretically proved and experimentally val-

idated that can efficiently decompose shapes into minimum

number of near-convex parts. Experiments on complex 2D

shape datasets show that the proposed method is robust to

shape distortion and deformation. Besides, the robustness of

our decomposition is demonstrated in the representation of

hand shapes in Section 5.4 and in the application of hand

gesture recognition [14] [15] [28].
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