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Abstract In this paper we present a novel vision-based
markerless hand pose estimation scheme with the input of
depth image sequences. The proposed scheme exploits both
temporal constraints and spatial features of the input se-
quence, and focuses on hand parsing and 3D fingertip lo-
calization for hand pose estimation. The hand parsing al-
gorithm incorporates a novel spatial-temporal feature into
a Bayesian inference framework to assign the correct la-
bel to each image pixel. The 3D fingertip localization al-
gorithm adapts a recently developed geodesic extrema ex-
traction method to fingertip detection with the hand parsing
algorithm, a novel path-reweighting method and K-means
clustering in metric space. The detected 3D fingertip loca-
tions are finally used for hand pose estimation with an in-
verse kinematics solver. Quantitative experiments on syn-
thetic data show the proposed hand pose estimation scheme
can accurately capture the natural hand motion. A simulated
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water-oscillator application is also built to demonstrate the
effectiveness of the proposed method in human-computer
interaction scenarios.
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1 Introduction

Hand pose estimation is an important research topic which
has a variety of applications in human-computer interaction
(HCI) scenarios, such as gesture recognition, animation syn-
thesis and virtual object manipulation. However, capturing
the hand motion and full articulation is quite a challeng-
ing task due to its high flexibility. In previous researches,
many sensor-based and vision-based methods have been
proposed to fulfill the task. In sensor-based systems, special-
ized hardware is used for hand motion capture. The electro-
mechanical or magnetic sensing devices, such as data-gloves
[1] and optical sensors [2] are commonly used to measure
the hand locations and finger articulation in such systems.
Although they provide quite accurate measurements and can
achieve real-time performance, such systems are cumber-
some and expensive to use.

Vision-based methods are cheap alternatives to the sensor-
based ones, and provide more naturalness in human com-
puter interaction. However, they have their own challenges.
First, the dimensionality of the hand motion parameter space
is about 30, thus searching for a matched pose for an in-
put image is computationally intensive due to the high-
dimensional search space. Second, the hand is highly articu-
lated, which results in self-occlusion in its projected images.
The estimated pose can be ambiguous as we have no clue
of the occluded hand parts. Third, the environment for the
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Fig. 1 Overview of the proposed hand pose estimation framework

HCI applications is usually uncontrolled, e.g., illumination
variation, cluttered background, etc. This incurs additional
difficulty in hand detection and feature extraction, such as
the calculation of edge map.

Generally, vision-based hand pose estimation meth-
ods can be divided into two categories: appearance-based
methods [3–12] and model-based methods [13–15]. In
appearance-based approaches, various features are extracted
from the input images to estimate the hand pose. Usually a
lot of training samples are used to train a mapping function
from the features to the hand poses in advance. Given the
learned mapping function, the hand pose can be estimated
efficiently. However, due to the nonlinearity of the mapping,
these methods suffer from the problem of ambiguous poses
without applying temporal continuity. In model-based ap-
proaches the hand pose is estimated by aligning a projected
3D hand model to the extracted hand features in the inputs.
The pose parameters are found by minimizing the discrep-
ancy between the model and hand features. As the dimen-
sion of the parameter space is high, such methods are slow
and can easily be trapped into local minima without good
initial pose estimation.

In this paper we propose a novel pixel-level hand pars-
ing algorithm and 3D fingertip localization algorithm for
full degree-of-freedom (DOF) hand pose estimation, which
are inspired by the concepts of geodesic extrema [16] and
inverse kinematics (IK)-based hand pose estimation ap-
proaches [2]. Based on the two algorithms, we implement a
vision-based markerless hand pose estimation system with
the input of depth image sequences. Figure 1 shows the
main parts of the proposed framework, including 3D hand
model, hand detector, hand parsing module, fingertip detec-
tor, global motion estimator and IK solver. The single-frame

processing routine starts with hand detection in the depth
image, followed by pixel-level hand parsing and 3D finger-
tip localization, and ends in global and local hand motion
estimation. The 3D hand model is used for generating the
hand part label image and depth image given a hand pose hy-
pothesis as well as for IK-based pose estimation. The hand
parsing algorithm incorporates a novel spatial-temporal fea-
ture into a Bayesian inference framework to assign the cor-
rect label to each image pixel. This feature accounts for both
the 2D coordinate and relative positions to the finger edges
of each pixel. The 3D fingertip localization scheme adapts
the geodesic extrema extraction algorithm [16] to finger-
tip detection with the hand parsing results, a novel path-
reweighting method and K-means clustering in metric space.
The global motion estimator utilizes the identified palm part,
the middle finger part and the corresponding depth image
part to estimate global translation and rotation. The hand
model is then aligned to input depth image according to the
global motion estimation. By modeling each finger as a sin-
gle kinematics chain, the IK solver estimates local hand pose
with the detected fingertips. Finally, the 27 DOF hand pose
estimation is used to drive the 3D hand model to generate
the reference hand part label image and depth image.

Compared to previous researches, the proposed frame-
work can provide several advantages. First, the hand parsing
algorithm builds good correspondence between input depth
images and the five fingers as well as the palm of a 3D hand
model. This algorithm can be integrated into existing model-
based hand tracking systems, such as [8], to achieve better
performance by evaluating a hand hypothesis with the cor-
respondence information, although it is used to improve the
fingertip detection results in our framework. Second, the 3D
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fingertip localization algorithm can be directly used for HCI
interaction, such as in the proposed virtual instrument play-
ing scenario. Third, the large number of DOFs of hand is
decomposed in our framework. That is, we estimate global
motion and local pose of the hand in separate phases. By
using the five detected fingertips for local hand pose esti-
mation, we further divide the parameter space of local hand
pose into five non-overlapping subsets. This leads to more
efficient pose estimation compared to searching for the can-
didate pose in the full parameter space of hand pose. Ex-
perimental results show the proposed hand tracking scheme
provides reasonable accuracy at the real-time speed.

2 Related work

In this section we focus on previous researches in full DOF
hand pose estimation, in which all the kinematic parameters
of the hand, including global hand motion and local finger
articulations, are recovered from the inputs. While the hand
is chromatically homogeneous in appearance, some previ-
ous work adopts colored markers for pose estimation. In
[2], colored markers are placed on the hand, and the 3D
hand pose is retrieved with the 2D projection of these mark-
ers. The hand motion constraints are analyzed to reduce the
27 hand parameter space to 12 to enhance the time perfor-
mance. In [17], a color glove with specially designed pattern
is adopted in the hand tracking system, and hand pose es-
timation is performed by nearest-neighbor search in a large
database. The method can capture the hand articulation quite
accurately and self-occlusion can be handled. However, the
method cannot estimate the exact depth position of the palm.

Markerless methods are still the mainstream for vision-
based hand pose estimation and there is large room for im-
provement. These methods can be categorized into model-
based method [3–12, 30] and appearance-based methods
[13–15]. In [3], the hand motion is decoupled into global
motion and local finger motion, which is recovered in a
series of iterations. In each iteration, the global motion is
formulated as a pose determination problem and solved by
least median of square. The local finger motion is estimated
by inverse kinematics using the fingertips as end-effectors.
The method is not robust as extraction of fingertips is dif-
ficult and sensitive to self-occlusion. A similar framework
is adopted in [4], in which the contour and silhouette dif-
ferences are minimized between the input and model using
two-step optimization. The frame rates are 11 Hz and 5 Hz
on two sequences of seven and 18 DOF hand motions, re-
spectively. In [30], the positions of the fingertips are tracked
with the particle filter, which are used for pose estimation by
combining an Inverse Kinematic solver. This fingertip track-
ing scheme is further utilized in [31], and is combined with
the articulated iterative closest point algorithm to estimate
the hand pose.

In [10], an Unscented Kalman filter is used to track the
hand pose in a model-based framework. The likelihood of
a hypothesized pose is evaluated in terms of the similarity
between the image and model contours. A frame rate of 3 Hz
is reported on a seven DOF hand motion sequence. The idea
is extend in [11], in which a hierarchical filtering scheme is
proposed for hand tracking to combine a tree-based object
detector and a Bayesian Filter to eliminate the ambiguity in
single-frame pose estimation.

In [9], the iterative closest point (ICP) algorithm is gener-
alized for registration of articulated structures. This method
is applied to track the motion of a hand with nine degree-of-
freedom. The experiments show a frame rate of 3 Hz can be
achieved and small occlusion can be tolerated. In [12] the
feasible hand configuration is constructed by indexing the
training samples using a KD-tree, and combines the Nelder–
Mead simplex search and particle filtering to search for the
hypothesized pose that best match the input, in terms of edge
and silhouette similarities. However, no quantitative results
are reported. Oikonomidis et al. [8] presents another model-
based framework, and minimization of the difference be-
tween the input and model projection is solved using a vari-
ant of particle swarm optimization (PSO) algorithm. With
GPU acceleration, the method can achieve a frame rate of
about 15 Hz.

In [5], a multi-view method is proposed for 3D hand pose
estimation. The hand motions are captured in both frontal
and side view to overcome the self-occlusion problem. To
handle the high dimensional parameter space of hand pose,
it adopts a separable state-based particle filter (SSBPF) to re-
duce the computational complexity. The results show the av-
erage hand joint angle estimation error is about 11 degrees.

In [6], a hand motion capture system with the inputs of
eight HD cameras is presented. It is capable of capturing the
full DOF hand motion, and can handle the self-occlusion
and interaction between two hands. Some salient points on
the fingers are detected via pre-trained classifiers, and they
are used in combination with edges and optical flow to
build correspondence between the input images and the hand
model. Hand pose is restored by minimizing the distance be-
tween the model projection and the corresponding points in
all eight input images.

In [7], the randomized decision trees are trained on a
dataset of synthetic hand depth images with labeled parts.
During hand pose estimation, per-pixel classification is first
performed to assign each pixel in the extracted hand region
to a hand part, and a mean-shift is performed on the labeled
results to find the joint locations for the hand skeleton. Hand
pose is finally estimated by fitting the skeleton to the joint
locations.

In [13], a non-parametric method is proposed to track
the hand grasping motion. The extracted hand region is ex-
pressed with the Histogram of Oriented Gradients (HOG).
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A dataset of the hand grasping motion in different view-
points and illumination conditions is built. The hand pose
is estimated by first retrieving several candidates with the
input HOG feature using Local-sensitive Hashing, and then
applying temporal continuity to the retrieved results. This
method cannot handle quick hand motion due to its simple
motion model.

In [14], an initialization scheme is proposed to use the
hand silhouette for hand tracking. The whole parameter set
of the hand pose is decomposed into many overlapping sub-
sets. LSH-based nearest neighbor search is used to get the
partial estimation for each subset, and the results are further
integrated by a simulated annealing EM algorithm to give
the complete pose estimation results.

In [15], 20 hand shape prototypes are rendered from 4128
views to generate a depth image dataset. Hand pose is re-
covered by retrieving the best match from the database that
minimizes the chamfer distance and pixel-wise Euclidean
distance in the depth images. However, the retrieval accu-
racy is still low and real-time performance is not achieved.

3 Hand pose estimation framework

The proposed hand pose estimation framework belongs to
the model-based category. It aims at recovering all 27 de-
grees of freedom (DOF) of hand motion from a depth cam-
era, without using any markers. Let the parameter space of
hand motion be described by a feature vector φ = (φg,φl),
where φg is the global hand motion and φl is the local hand
motion. φg consists of 3D translation and rotation of the
hand and φl corresponds to the 21 DOF of local hand pose.
We adopt a right-handed coordinate system with origin at
the center of camera projection to describe the hand mo-
tion. The positive X and Y axes point right and up parallel
to the image plane of the camera, and the positive Z axis
points out of the image plane along the optical axis. Global
translation of the hand is then defined as the palm center po-
sition Tg = (xg, yg, zg) in the above coordinate system, and
global rotation is defined as the Euler angles of palm rotation
θg = (θx, θy, θz) with the ZYX convention.

The task for the proposed scheme is to restore all 27
parameters of hand motion from the input depth image se-
quence, which is very challenging. We decompose this task
into several sub-tasks. Let FV be the 3D point cloud of the
input hand region, and Fm

V (φ) be the point cloud generated
by a 3D hand model. We further define UH as the pixel set
within the hand region, Pr(l|ψ(p)) as the probability that
pixel p has the label l, vi

f as the detected fingertips, and
vi as the model fingertips. Their definitions will be given in
detail in the following sections. The sub-tasks are then de-
scribed as:

Fig. 2 The kinematic chain (left) and the 3D hand model (right)

1. Hand parsing: ∀p ∈ UH , assign a label lopt to p such that
Pr(lopt|ψ(p)) is maximized;

2. Global motion estimation: find φg such that the error be-
tween FV and Fm

V (φ) is minimized in the palm region.
Here φ = (φg,0) means that no local motion is consid-
ered;

3. Local motion estimation: find φl so that the distance
‖vi(φl, φg) − vi

f ‖2 is minimized for each finger;

Task 1 is fulfilled with the hand parsing algorithm. Tasks
2 and 3 are fulfilled with the hand detector and global motion
estimator, and the 3D fingertip localization algorithm and IK
solver, respectively.

4 3D hand model

The framework adopts a fully deformable hand model,
which consists of the skeleton and the skin surface mesh,
as shown in Fig. 2. The skeleton has 27 degrees of free-
dom (DOF), including 6 DOFs of global motion and 21
DOFs of local motion [19]. It is modeled as a kinematic
chain of 20 joints. The joints are connected by bones in
a tree structure, with root at the wrist. A set of static and
dynamic motion constraints [19, 20] are adopted to limit
the parameter space of hand pose and the skeleton has an
equivalent of 15 DOFs of local motion. A label l ∈ AL =
{palm, thumb, index,middle, ring,pinky} is pre-assigned to
each vertex in the skin surface mesh. The elements in AL

correspond to the hand palm and five fingers. Given a pose
vector φ and projection matrix P , the hand model can gen-
erate a depth image Fm

D , 3D point cloud Fm
V and hand part

label image Fm
L . In our framework, Fm

D , Fm
V and Fm

L are
used as reference frames for hand parsing and fingertip lo-
calization.

5 Hand detection

Robust hand detection itself is a difficult problem [21–24].
Our hand detector works on the input depth frames and sim-
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Fig. 3 Illustration of hand detection. (a) Is the original image, (b) is
the foreground region, (c) shows the palm circle, orientation vector
(red line) of the forearm and the segmentation line (green line), and
(d) shows the final segmentation results

plifies this problem with several assumptions. First, we as-
sume the hand is the nearest object to the camera and con-
strain global hand rotation by

−15◦ ≤ θx ≤ 15◦, −15◦ ≤ θy ≤ 15◦,
(1)

−90◦ ≤ θz ≤ 90◦

Second, the maximum of absolute difference of depth val-
ues between points within forearm region and hand region
is confined within certain threshold c, i.e. c = 0.2 m. Third,
based on the morphology of the hand, we assume that the
hand palm forms a globally largest blob in the hand and
forearm region in the depth image when θx ≈ θy ≈ 0◦, and
forms a locally largest blob when the hand rotates within
ranges defined in (1). The palm region can thus be approx-
imated with a circle Cp = (pp, rp), where pp is the palm
center and rp is the radius.

In the proposed system we use only the depth frames
as the input, and each depth frame is preprocessed to gen-
erate a 3D point cloud. Based on the above assumptions,
hand detection consists of three steps: foreground segmenta-
tion, palm localization and hand segmentation. It starts with
threshold to the depth frame to get the foreground F . F is
given by

F = {
(i, j)|zi,j < z0 + c

}
, (2)

where (i, j, zi,j ) denotes a pixel in the depth image at co-
ordinate (i, j) and with depth value zi,j , z0 is the minimum
depth value. This ensures that both hand and forearm re-
gions are extracted from the depth frame. The contour of F

is approximated by a polygon B . Cp then equals the largest
inscribed circle of B . To reduce the computational complex-
ity of palm localization, the center of Cp is tracked with a
Kalman filter so that it is searched locally according to a
prior prediction in each intermediate frame. Finally the hand
and forearm regions are separated by a tangent line of Cp .
This line is approximately perpendicular to the orientation
vector of the forearm, which is defined as the Eigenvector
that corresponds to the largest Eigenvalue of the covariance
matrix of the contour pixel coordinates of F . Let UH be the

pixel set within the hand region. Figure 3 presents the hand
detection results. Let the extracted hand regions in depth
frame and 3D point cloud be FD and FV . Global hand trans-
lation Tg is obtained by finding the point corresponding to
Cp in FV .

6 Hand parsing

Hand parsing refers to the procedure during which each
pixel within UH is assigned a part label li ∈ AL. At an in-
termediate frame k, we perform this task using a spatial-
temporal-based scheme, with the input of reference hand
pose φk−1 in the previous frame, the extracted 3D point
cloud FV and a set of feature lines AF . The palm is identi-
fied first, and the task to label remaining pixels is formulated
as a classification problem, which is solved with a naive
Bayesian classifier. Especially, we design a novel feature de-
scriptor for each pixel to better solve the problem to exploit
the temporal reference and spatial information.

We first use the Iterative Closest Point (ICP) algorithm
[18] to coarsely align the 3D hand model to FV based on
the reference pose estimation φk−1, and then generate the
reference depth image F ref

D , 3D point cloud F ref
V and label

image F ref
L . Besides, the palm is first identified according to

its several properties. First, the palm can be assumed rigid
and the 3D coordinates of palm pixels in FV are continu-
ous. Second, the geodesic distances from the palm center to
palm border pixels show little variation. To label the palm
part, we calculate the geodesic distance from palm center to
each pixel to be labeled using the original method in [16].
A pixel is assumed to belong to the palm if the following
three criteria are met:

1. Corresponding pixel in F ref
L has the palm label;

2. Its absolute depth difference from the corresponding
pixel in F ref

D is within certain threshold;
3. Its geodesic distance is within a fixed threshold;

We assign a feature vector ψ(p) to each remaining pixel
p to perform classification. ψ(p) consists of two parts: the
2D coordinate p of the pixel and its relative position vector
DF (p) to the feature lines AF . AF = {f l1, f l2, . . . , f lM}
is a set of M line segments extracted from the current frame
that mainly correspond to edges of the projection of the five
fingers on the image plane. DF (p) is defined as:

DF (p) = (
d1
p, d2

p, . . . , dM
p

)T
, (3)

where dm
p = sign(dist(p,f lm)) is the sign of the signed dis-

tance from pixel p to the line segment f lm. The distance
metric for the relative position vectors of two pixel p and q

is given by

DistF (p,q) =
M∑

m=1

∥∥dm
p − dm

q

∥∥
2 (4)
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Fig. 4 The illustration for the
feature DF (p). (a) Example
where DF (p) is needed to
differentiate two close-by
pixels. (b) Inter-class and
intra-class distance distribution
of the distance metric DistF

Given that the finger edges are ideally detected and ex-
tracted into AF , DF (p) can serve as a useful local descriptor
to differentiate pixels that belong to different fingers. Figure
4(a) gives an example. The two pixels p and q have very
close coordinates and thus can be easily classified to the
same finger if only the coordinate information is used. In this
case, their relative positions to the edge lines between them
help to give the right classification. Figure 4(b) presents the
quantitative evaluation of the effectiveness of DF (p). We
estimate the inter-class and intra-class distances DistF (p,q)

on six synthetic sequences, where the ground truth informa-
tion of pixel labels and finger edges of which are available.
Details of the sequences will be given in Sect. 8. The inter-
class samples contain 95 600 pairs of pixels and the intra-
class samples contain 143 400 pairs of pixels. The results
verify our previous assumption.

We now introduce the Bayesian framework to label each
pixel p. The task is to find the label lopt for p such that

lopt = arg max
i

Pr
(
li |ψ(p)

)

∝ arg max
i

f
(
ψ(p)|li

)
Pr(li)

= arg max
i

f (p|li )f
(
DF (p)|li

)
Pr(li) (5)

where Pr(li) is the prior for li ; f (p|li ) is the position like-
lihood and f (DF (p)|li ) is the likelihood based on the rela-
tive distance vector. We take advantage of the reference label
frame F ref

L to approximately estimate the three items for the
current frame. Pr(li) can be obtained by calculating the ratio
of the number of pixels within each finger to the number of
pixels within all five fingers. Besides, we model f (p|li ) as a
2D Gaussian distribution, namely f (p|li )∼N(μi,

∑
i ). The

parameters μi and
∑

i are estimated with the pixel coordi-
nates within each finger in F ref

L .
f (ψ(p)|li ) is modeled as a metric exponential distribu-

tion [25] based on the relative position feature distance be-
tween p and the exemplar pi of li . Note here the exemplar

Fig. 5 Hand parsing results

Table 1 Comparison of labeling accuracy between using and not us-
ing relative position feature

Mode Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5 Seq. 6

Use DF (p) 71.2 81.5 77.6 79.5 86.9 67.6

No DF (p) 70.2 78.6 77.1 77.9 86.3 67.5

pi cannot be directly obtained from F ref
L as the extracted set

of feature lines has changed in the current frame. Instead, we
calculate the center of gravity of pixel coordinates within li
in F ref

L , from which we then spirally search for a pixel in
the current frame so that the absolute depth difference be-
tween it and the corresponding pixel in the reference frame
is within certain range. The relative position vector of this
pixel is chosen as the exemplar pi of li . f (ψ(p)|li ) is then
given as:

f
(
DF (p)|li

) ∝ exp
(−λ × DistF (p,pi)

)
(6)

In Fig. 5 we present some examples of the hand parsing
results. Besides, we also compare the labeling results of us-
ing f (p|li ) alone and using both f (p|li ) and f (DF (p)|li )
on the six synthetic sequences. The percentage of correctly
labeled pixels is given in Table 1. It shows that the relative
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position feature improves the labeling accuracy, though not
very significant. This may be due to several reasons. First,
the position likelihood has worked well enough. Note that
a large portion of mislabeled pixels result from the labeled
palm regions as the finger pixels close to the palm are not
very important for the following fingertip localization pro-
cedure. Second, we only rely on the depth frame and the fea-
ture lines are extracted from the hand contour. This means
when two fingers are side-by-side, DF (p) has no effect in
the current implementation.

7 Fingertip localization and labeling

The 3D Fingertip locations can be considered as end effec-
tors for inverse-kinematics-based hand pose estimation [2,
26]. The proposed 3D fingertip detector is largely inspired
by the geodesic extrema extraction algorithm [16, 27, 28].
Ideally, the points where the geodesic distances to the palm
center are maximized should correspond to the fingertips.
However, the original method in [16] cannot be directly ap-
plied to multiple fingertip localization for the following rea-
sons. First, the palm center is not always precisely detected
and its position inevitably fluctuates during real hand track-
ing process. The detected geodesic extrema may correspond
to false fingertips. Second, multiple fingers can usually be
side-by-side, in which case the method in [16] is likely to
detect only one of these near-by fingertips since it requires
the geodesic extrema to be sparsely located. Therefore, we
adapts the geodesic extrema extraction algorithm [16] to
multiple fingertip localization by integrating the hand pars-
ing results, a novel path-reweighting scheme and K-means
clustering in metric space.

The tasks of fingertip localization are to find the 3D loca-
tions of the fingertips and assign a label li ∈ AL to each of
them. As in [16], we first build a graph Gh = (Vh,Eh) using
the point cloud FV . Vh consists of all points within FV . For
each pair of vertices (p, q) ∈ Vh, there is an edge between p

and q if and only if they are in the 8-neighborhood of each
other and their 3D distance d(p,q) = ‖p − q‖2 is within
threshold τ . Each edge is assigned a weight β × d(p,q),
where β = 1.0 if p and q are within the same hand part, and
β = 10.0 otherwise. While the resulting graph may not be
connected, we search for a set of connected components in
Gh using the union-find algorithm. The connected compo-
nent that contains the palm center is identified and all other
connected components are connected to it by finding their
nearest vertices and adding an edge with weights equal to
the 3D Euclidean distance. In this way all vertices in Gh are
connected.

The fingertips are located one-by-one in the proposed
scheme. In the first pass, we perform a Dijkstra graph search
on Gh to calculate the geodesic distance from palm cen-
ter pp for each vertex p ∈ Vh. The one with the largest

geodesic distance is taken as a fingertip,denoted as p1
g . Let

the geodesic distance of each vertex p be dg(p). The short-
est path from pp to p1

g is then extracted. Analysis of the
topology of the hand shows that this shortest path actually
approximates the skeleton of the corresponding finger. Let
the point set on the path be A1

P = {ps1,k|k = 0,1, . . . ,M1},
where M1 is the number of the points. We then shrink the
weight of the path by:

1. Add an edge of weight α1 × dg(p
1
g) from pp to p1

g ;
2. Shrink the weights of the edges connecting to each point

by a weighting function fs(dg(ps1,k));

where 0 ≤ α1 ≤ 1, and fs(d) is a non-increasing function
defined on [0, dg(p

1
g)] and satisfies the property fs(0) = 1,

fs(dg(p
1
g)) = α2, 0 ≤ α2 ≤ 1. By properly adjusting the pa-

rameters α1 and α2, the reweighting procedure can decrease
the geodesic distances of points along the path A1

P , and thus
reduce the possibility that multiple fingertips are detected
in a single finger region. Especially, the definition of fs(d)

indicates that edges close to the palm center pp are less
influenced so that the geodesic distance from pp to other
fingertips will not change significantly. In our implementa-
tion, fs(d) takes the form of a biquadratic function. In each
following pass, the geodesic distances to pp are again cal-
culated for all vertices by Dijkstra search on the modified
graph and a new fingertip is located by finding the geodesic
extrema. The path-reweighting scheme is then applied. The
procedure iterates for K ≥ 5 times to generate K fingertip
candidates pi

g , i = 1,2, . . . ,K .
We utilize the K-means clustering algorithm to parti-

tion all K fingertip candidates into five clusters. To this
end, each candidate is assigned a feature vector ϕ(pi

g) =
{Ai

P ,Pr(l|pi
g)}. Ai

P is the shortest path points and Pr(l|pi
g)

is the hand part label distribution of the points on Ai
P . The

distance metric for two candidate fingertips pi
g and p

j
g is

given by

Dist
(
pi

g,p
j
g

) = DKL

(
Pr

(
l|pi

g

)||Pr
(
l|pj

g

))

+ DH

(
Ai

P ,A
j
P

)
, (7)

where DKL is the K–L divergence between the two distri-
butions and DH is the Hausdorff distance. In each cluster,
the candidate with the largest geodesic distance is selected
as the true fingertip. This gives five located fingertips: pi

f ,
i = 1,2, . . . ,5. We denote their corresponding 3D positions
as vi

f , i = 1,2, . . . ,5. Besides, the label of each finger is

determined by finding the label that maximizes Pr(l|pi
g).

8 Hand pose estimation

Global and local hand motions are estimated in separate
phases in the proposed framework. The global translation
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Tg is estimated during hand detection. In this section, the
global motion estimator recovers 3D global hand motion θg

based on the identified palm part and middle finger part.
With the estimation of φg , the hand model is aligned to FV .
Each finger is modeled as a single kinematic chain, and the
21 DOF parameter space of φl is thus decomposed into five
non-overlapping subsets. The IK solver estimates the local
pose for each finger with the detected fingertips. Especially,
the static and dynamic hand motion constraints [19, 20] are
integrated into local motion estimation to reduce the inher-
ent ambiguity of IK solver as well as to improve the speed.

8.1 Global rotation estimation

Since global rotation is defined as the Euler angles of palm
rotation, we find that it can be uniquely defined by two vec-
tors {vn,vt }, where vn is the normal vector of the hand palm
and vt is the vector from the palm center to Metacarpopha-
langeal joint of the middle finger. With this notation, we
define θg = (0,0,0) as v0

n = (0,0,1) and v0
t = (0,1,0) in

the coordinate system given in Sect. 2. Global hand rotation
can then be obtained by estimating {vn,vt } from the point
cloud FV .

We utilize the hand parsing results to estimate vn and vt .
To estimate vn, we extract the 3D points in FV that are
identified as palm points, and perform PCA analysis to
their coordinates. Based on the 3D shape of hand palm,
vn is approximated by the Eigenvector that corresponds to
the smallest Eigenvalue of the covariance matrix of these
3D point coordinates. Estimation of vt requires localization
of Metacarpophalangeal joint of the middle finger, which
is difficult due to self-occlusion and lack of discrimina-
tive features. Note that the middle finger has little adduc-
tion/abduction motion and we assume that global hand rota-
tion is limited with (1). Instead of directly estimating vt , we
use the 2D vector from the palm center pp to the center of
gravity of the identified middle finger part pmid to approx-
imate the projection of vt on the image plane. Let the 2D
vector be v−

t = pmid − pp = (x−
t , y−

t ), and the current pro-
jection matrix be P . Let the rotation matrix corresponding
to θg = (θx, θy, θz) be Rg . We have

v−
t = P × vt

= P × Rg × v0
t

=
[
τ(sin θx sin θy cos θz − sin θz cos θx)

τ (cos θx cos θz + sin θx sin θz sin θy)

]
(8)

Here τ is a scalar constant determined by the projection
matrix P . The equation has four unknown variables. How-
ever, with the previous assumption in (1), θz can be esti-
mated by θz ≈ arctan(−x−

t /y−
t ). We then solve the equation

Rg × v0
n = vn for (θx, θy) with the constraints in (1).

8.2 Inverse kinematics

Inspired by the instrumented hand motion capture systems
[2], we use inverse kinematics to estimate φl based on the
estimation of φg and detected 3D fingertip locations. A kine-
matic chain is built for each finger in the hand model. By
using the dynamic constraints in [20] the degrees of free-
dom for each kinematic chain is reduced to three. To per-
form inverse kinematics, we first rotate the hand model by
θg = (θx, θy, θz) and translate the hand model by Tg so that
the model palm center coincides with the detected palm cen-
ter. For each kinematic chain we minimize the difference
between the model fingertip locations and detected fingertip
locations:

θ∗
l,i = argmin

θl,i

∥∥vi(θl,i , φg) − vi
f

∥∥
2, (9)

where θl,i is the joint angle vector for the ith kinematic
chain; vi(θl,i , φg) is the ith model fingertip location as a
function of θl,i and φg and vi

f the detected fingertip loca-
tions. This minimization problem is solved with the cyclic
coordinate descent algorithm [29] in our system.

9 Experiments

In this section we present the experimental results. The
whole program was coded in C++, and tested on a PC with
Intel i5 750 CPU and 4G RAM. The experimental evalua-
tion of the proposed method includes both quantitative test
on synthesized input and real-world test. The resolutions of
the input sequences for both tests are 320 × 240. For quanti-
tative tests we synthesized six sequences which contain the
ground truth data of the hand motion parameters. The six se-
quences include different types of hand motions, with seq. 1
for grasping motion, seq. 2 for adduction/abduction motion,
seq. 3 for successive single finger motion, seq. 4 for flexion
motion of two fingers, seq. 5 for global rotation and seq. 6
for combination of grasping and global rotation motion. For
real-world test, we present a HCI application based on the
proposed hand pose estimation scheme with the input of a
Kinect sensor. The average frame rate is about 5 Hz.

9.1 Pose estimation accuracy

This part presents the quantitative evaluation results for
global rotation and local pose estimation. For local motion,
we define the evaluation metric as the mean absolute error
between the recovered local joint angles and ground truth
data, and the results for all six sequences are presented. For
global rotation, we define the evaluation metric as the er-
ror between ground truth data and recovered global rotation
for all three dimensions, and the results are presented for
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Fig. 6 Quantitative test results for local motion estimation on synthetic sequences

Fig. 7 Quantitative test results
for global motion estimation on
synthetic seq. 5 and seq. 6

Fig. 8 Dynamic gesture set.
Each dynamic gesture is defined
by the 3D fingertip motion
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Fig. 9 Playing a simulated water-oscillator instrument

sequences that contain global motion. Figure 6 presents the
quantitative test results for local pose estimation. The av-
erage local pose estimation errors are 10.58◦, 2.28◦, 4.04◦,
3.93◦, 2.21◦ and 9.42◦ for the six sequences, respectively.
The errors for seq. 1 and seq. 6 are bigger than other se-
quences as grasping is quite complex hand motion. Figure 7
presents the quantitative test results for global rotation esti-
mation. We can see that global rotation estimation is quite
accurate, with estimation error within 3◦ for most times.

9.2 Virtual instrument playing

In this application we directly utilize the tracked 3D finger-
tips to play a simulated water-oscillator instrument. We de-
fine five dynamic gestures to interact with the instrument and
each gesture corresponds to the motion of a single finger. To
recognize the gesture, we constantly check whether the cor-
responding finger is performing a sudden flexion movement
based on the fingertip position changes over certain time in-
terval. The gesture set is shown in Fig. 8. When a dynamic
gesture is recognized, the corresponding sound is played and
a simulated water wave is generated around the oscillator.
Figure 9 illustrates the user interface for this application.

10 Conclusions

In this paper we present a vision-based markerless hand pose
estimation framework with depth image sequence input. It
mainly relies on a novel hand parsing algorithm and 3D fin-
gertip localization algorithm. Quantitative evaluations show
the proposed framework can capture natural hand motion
quite accurately, and a virtual instrument playing applica-
tion is developed to demonstrate the use of the system. In
the future we plan to combine edge features in color frames
for more accurate hand parsing to improve hand pose esti-
mation accuracy.
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