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Abstract—Local binary pattern (LBP) is sensitive to noise. Lo- error. Lastly, LBP features can be extracted efficientlyiclvh
cal ternary pattern (LTP) partially solves .thiS problem. However, enpables real-time image analysis.
both LBP and LTP treat the corrupted image patterns as they Although LBP has gained much popularity because of

are. In view of this, we propose a noise-resistant LBP (NRLBP its simplicit d robust to illuminati iatiori
to preserve the image local structures in presence of nois&he its simplicity and robustness to illumination variationts

small pixel difference is vulnerable to noise. Thus, we ende it ~Sensitivity to noise limits its performance [19]. In [3], iloTm

as anuncertain state first, and then determine its value based on LBP was proposed to reduce the noise in LBP histogram. The
the other bits of the LBP code. It is widely accepted that most | BP codes are defined as uniform patterns if they have at most
image local structures are represented by uniform codes andoise two circularly bitwise transitions from 0 to 1 or vice versad
patterns most likely fall into non-uniform codes. Therefore, we . . - . .
assign the value ofuncertain bit so as to form possible uniform non-uniform pat_terns if Other\_’v'se' In uniform LBF_) mapping,
codes. In such a way, we develop an error-correction mechasin  ON€ separate histogram bin is used for each uniform pattern
to recover the distorted image patterns. In addition, we find and all non-uniform patterns are accumulated in a single bin
that some image patterns such as lines are not captured in Most LBPs in natural images are uniform patterns [3], [15].
uniform codes. Those line patterns may appear less frequelyt Ty,,s yniform patterns are statistically more significaatd

than uniform codes, but they represent a set of important loal thei babiliti b liabl .
primitives for pattern recognition. Thus, we propose an exénded eir occurrence probabilities can be more reliably estuia

noise-resistant LBP (ENRLBP) to capture line patterns. The In contrast, non-uniform patterns are statistically ingfigant,
proposed NRLBP and ENRLBP are more resistant to noise and hence noise-prone and unreliable. By grouping the non-

compared with LBP, LTP and many other variants. On various yniform patterns into one label, the noise in non-uniform
applications, the proposed NRLBP and ENRLBP demonstrate n5itarns js suppressed. The number of patterns is reduced
superior performance to LBP/LTP variants. L .
_ significantly at the same time.
I_ndex Terms—Loca_I Binary Pattern, Local Ternary Pattern, In [7], [34]-[37], information in non-uniform patterns is
Uniform Pattems, Noise Resistance. extracted and also used for classification. Liao et al. psedo
dominant LBP patterns that consider the most frequently
. INTRODUCTION occurred patterns in a texture image [7]. Zhou et al. [34]

OCAL binary pattern (LBP) operator transforms an imand thhi et al. [35] proposed to extragt infprmation from

age into an array or image of integer labels describir{gm'“n'form patterns _based on pattern unlfprmlty measunde a
micro-pattern, i.e. pattern formed by a pixel and its imragaii 1€ number of ones in the LBP codes. Principal Component
neighbors [1]. More specifically, LBP encodes the signs 4f1alysis [36] and random subspace approach [37] were uti-
the pixel differences between a pixel and its neighbouringed 0 extract information from the whole LBP histogram
pixels to a binary code. The histogram of such codes in 4#f!uding both uniform patterns and non-uniform patterns.
image block is commonly used for further analysis. It hakN€Se approaches extract some useful information from non-
been widely used in texture classification [2]-[10], dynamiun"‘form c_odes. Hcivv_ever, they tend to be sensitive to noise.
texture recognition [11]-[13], facial analysis [14]-[2Hu- Soft hlstogrz_am is another approach to improve _the ro-
man detection [22], [23] and many other tasks [24]-[33]. ngustness to noise, eg.a fuzzy LBP (FLBP) using piecewise
popularity arises from the following advantages. Firsthye near fuzzy membership function [5], [28] and another gsin
exact intensities are discarded, and only the relativensites Caussian-like membership function [18]. A comprehensive
with respect to the center are preserved. Thus, LBP is |&nparison between LBP and fuzzy LBP in classifying and
sensitive to illumination variations. Secondly, by extrag S€9menting textures s given in [38]. Instead of hard-cg e
the histogram of micro-patterns in a patch, the exact logatiP!X€! difference, a probability measure is utilized to regent

information is discarded, and only the patch-wise locatidt lIkelihood as0 or 1. However, the probability is closely
information is preserved. Thus, LBP is robust to alignmeflated to the magnitude of the pixel difference. Thus, it is
still sensitive to noise.
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in the literature. Nanni et al. proposed a quinary code of fileNRLBP consistently achieve comparable or better perfor-
values according to two thresholds [31], and then splittib in mance compared with LBP/LTP and its variants.

four binary codes similarly as LTP. As LTP is not invariant

under scaling of intensity values, Liao et al. proposed &cal

Invariant Local Ternary Pattern to deal with the gray scale II. NOISE-RESISTANTLBP

intensity changes in a complex background [32]. In order to

reduce the high dimensionality of LTP, Center-Symmetri®LTA. Problem Analysis of LBP and LTP

was proposed in [33]. Instead of the pixel difference betwee ) ) )

the neighboring pixel and the central pixel, the pixel difiece ~ Local binary pattern encodes the pixel differenge= i, —
between diagonal neighbors is calculated. In Local Adaptije between the neighboring pixé} and the central pixel..
Ternary Patterns [20] and extended LTP [9], instead of uaing-et C , = b3_,bp_,...bfbF denote the LBP code oP
constant threshold, the threshold is calculated for eackevi neighbors at the distance of R to the center pixel. A code
using some local statistics, which makes them less seasitis also called a pattern. Let BPp r denote such a coding
to illumination variations. In Local Triplet Pattern [30he scheme forCE . Each bit is obtained as:

equality is modeled as a separate state, and a tri-staerpatt ’

is formulated. It can be viewed as a special case of LTP [19]. 1 ifz >0
LTP and its variants partially solve the noise-sensitive by = L (1)
. 0 if z, <0.
problem. However, they lack a mechanism to recover the

corrupted image patterns. In this paper, we propose a Noise- o , o ,
Resistant LBP (NRLBP) and an Extended Noise-Resistant-BP is widely used in many applications because of its
LBP (ENRLBP) to address this issue. S|mpI|_C|ty anq _robustness to |IIl_Jm|nat|on var|a_1t|ons. Hawer,
The signs of pixel differences used to compute LBP and 8P IS sensitive to image noise. In [3], uniform LBP was
variants are vulnerable to noise when they are small. Thas, RfOPosed to capture fundamental image structures andeeduc
propose to encode small pixel difference asumtertainbit "€ noise in LBP histogram. The uniformity/ is defined
first and then determine its value based on the other bitseof @8 the number of circularly bitwise transitions from 0 to
LBP code. Uniform patterns are more likely to occur comparégd OF Vice versa. A local binary pattern is2-uniform or
with non-uniform patterns in natural images [3], [15]. MosBiMPly called uniform ifU" < 2. For example, “11110000”
image structures are represented by uniform patterns, amd iS & uniform pattern a¢/ = 2, whereas “01010111" shown
uniform patterns are most likely caused by noise. Thus, { Fig- 1(@) is a non-uniform pattern @8 = 6. LBPp%
the proposed NRLBP, we assign the valuesinEertainbits Indicates a coding and histogram mapping scheme in which
so as to form uniform patterns. A non-uniform pattern ig2-uniform LBP codes off” neighbors at the distance di
generated only if no uniform pattern can be formed. As noid@ the center pixel are utilized. Uniform patterns occur muc
may change an uniform pattern into an unstable non-unifoffiPre frequently than non-uniform patterns in natural insage
pattern, the proposed NRLBP corrects many distorted ndfh.1as been shown that B} accounts for almost 90% of
uniform patterns back to uniform patterns. all patterns for texture images [3] arIdBPs'fg accounts fp_r.
For LBP and LTP, line patterns are treated as non-uniforay-6% for. facial images [15]. The occurrence probabilities
patterns and grouped into the non-uniform bin. UniforfAf non-uniform patterns are so small that they cannot be
patterns mainly represent spot, flat region, edge, edge e(ﬁaab_ly estimated [3]. Inclusion of ;gch_nmsy estimatas i
and corner. A local image is a line pattern if it is a lindhe histogram would harm the classification performance. In

against the background, as shown in Fig. 5. Line patterfiddition, non-uniform patterns may be caused by the image

may appear less frequently than uniform patterns, but thB§ISe: Therefore, when constructing the histogram, all-non

represent an important group of local primitives for pattefdniform patterns are grouped into one bin. This not only
recognition. Thus, we propose an extension set of unifoffaduces feature dimensionality, but more importantly tise

patterns corresponding to line patterns. Then, we propd@ée to unreliable estimates of non—unif_orm patterns_ist_g{rea
extended noise-resistant LBP (ENRLBP). During the enc@diﬁupprepssed. The number of patterns is reduced s_|gn|f|cantly
process, we assign the valuesusfcertainbits so as to form 10m 2" to P(P —1) + 3. For example L BF 5 consists of
extended uniform patterns. 256 patterns whereasBPy'3 has only 59 patterns.

To evaluate our approaches, we first inject Gaussian noiséJniform LBP successfully reduces the noise in LBP his-
and uniform noise of different noise levels on the ARogram, but it is still sensitive to image noise. As shown
database [39] for face recognition and the Outex datasét [40 Fig. 1(a), a small noise will cause the pixel difference
for texture recognition. The proposed approaches dematastencoded differently. Ideally such a smooth region should be
strong resistance to noise compared with LBP/LTP and @&coded as “11111111". Due to the image noise, it is encoded
variants. The proposed approaches are further compared v “01010111" instead. LTP partially solves this problem by
LBP/LTP variants for face recognition on the extended YaRhcoding the small pixel difference into a third state [19].
database [41], [42] and the O2FN database [43], protémﬁtead of using binary code, each pixel difference is eadod
cellular classification on the 2D Hela database and image a 3-valued code. L€t} , = b, ,bp_,...b{ bj denote the
segmentation on the Outex dataset [40] and also a natuf@P code of P neighbors at the distance @ to the center
image downloaded from the web. The proposed NRLBP apikel and LT Pp r denote such a coding scheme ﬁE’R.
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33154153 ojt]o small pixel difference as amncertainbit X first and then
Sj 5;‘ 5;‘ M‘b : ] (1) determineX based on other certain bits of the LBP code. For
Sall Eal s . the pixel differencez, between the neighboring pixel and the
(a) LBP encoding scheme central pixel, we encode it into one of the three statgsas:
Positive LBP :
1101t0010 ]‘ If Zp Z t'
1[1]o by =< X i 2] <t, (5)
0 1 .
loofss] [1 ][0 oo 0 if z, < —t.
-
2‘7‘ f; fg — (1) 1 ‘1 TToTo Statesl and O represent two strong states where the pixel
- . - d' 0 0 difference is almost definitely positive and negative, egsp
ernary code: . . .
HOIC1 10 o1 ] tively. Noise can unlikely change them froéhto 1 or from
Negative LBP 1 to 0. StateX represents amncertainstate where the pixel

difference is small. A small pixel difference is vulneralbte
noise if we only take its sign. More specifically, noise can

Fig. 1. (a) An example of LBP encoding scheme for the smoajforewith easily change its LBP bit fror@i to 1 or vice versa. Therefore,
small image noise. LBP is sensitive to image noise. (b) Ammia of LTP

encoding process. LTP doubles the number of patterns ceupaith LBP, W€ encode it as au_ncertainState regardles_s it_s _sign. _
Then, we constrain the value of ti@certainbit into either

0 or 1, represented by a variahlg, z; € {0,1}. Let X =

(b) LTP encoding scheme

Each bit is obtained as: (21,2, ...,x,) denote the vector formed by variables of a
1 if 2z, >t code.X € {0,1}"™. Theuncertaincode can be represented by
BE =30 if 2] <t 2 ¢X)as:
-1 if 2, < —t, by BN Vb = C0(X). (6)
wheret is a pre-defined threshold. Take theuncertain code “11X100X0” in Fig. 2(a) for illus-

LTP is more resistant to noise. However, the dimensionalify,+ion Theuncertaincodel1z,1002;0 can be viewed as the
of LTP histogram is very large, e.d.T7'Ps o exhibits a his- function of X = {a1, 22}

togram of3® = 6561 bins. Thus, in [19], LTP is splitinto & " Ater we derive theuncertain code, we determine the
positive LBP and a negative LBP. Each bit of positive LBP i§certain bits based on the values of the other certain bits
obtained as: to form one or more codes of image local structures. Uniform
1 if z, > t, patterns represent local primitives, including spot, featge,
by = { - (3 edge end and Th h ften th .
0 if 2, <t edge end and corner. They appear much more often than non
uniform patterns in natural images. Since uniform patterns
occur more likely than non-uniform ones, we assign the \&alue
o {0 if 2, < —t, of uncertainbits X so as to form possible uniform LBP codes.
p

Each bit of negative LBP is obtained as:

(4) A non-uniform pattern is generated only if no uniform paiter
can be formed. Take Fig. 2(b) as an example. We determine
To show the commonalities and differences among LBfeuncertainbit of uncertaincode “11X1X0X0” so as to form
LTP and the proposed NRLBP clearly, the negative LBBnly uniform patterns, e.g. “11110000” and “11111000".
defined here is the complement of the negative LBP definedviathematically, let®,, denote the collection of all uniform
in [19]. Effectively they achieve the same result for hiswg- |BP codes. ForL BP#3, @, consists of 58 uniform codes.

based comparison. Eventually, LTP is treated as two separBhsed on theuncertain code C(X), a set of the proposed
channels of LBP codes: one channel for positive LBP and tRgRLBP codes are obtained as:

other for negative LBP. In general, uniform LTP is used, in N
which both channels are uniform LBP. This coding scheme is ~ Svrrsp = {C(X)[X € {0,1}",C(X) € ®u}  (7)

denoted byLT Pp%. An example of LTP encoding process Now let us construct the histogram of NRLBP for a lo-
is shown in Fig. 1(b). LTP doubles the number of patterng image patch. Letn denote the number of elements in
compared with LBP. Snrrep. If m > 0, the bin corresponding to each element in
The small pixel difference may be easily distorted by thg . .. will be added byl/m. After all, all these patterns
noise. Both LBP and LTP lack a mechanism to correct thgiginate from onaincertaincode. Ifm = 0, the non-uniform
corrupted patterns. The corrupted image patterns areetteain will be added by 1. This process is repeated for everyl pixe
without any attempt to recover the underlining local stiues. i the patch. Algorithm 1 summarizes the process.
To address this issue, we propose a Noise-Resistant LBP angjow we compare the proposed NRLBP with LBP and LTP

1 if 2z, > —t.

an Extended Noise-Resistant LBP. by several examples. We consider the cases that different
) ) number of LBP codes are derived$iy rrpp. IMmage patterns
B. Proposed Noise-Resistant LBP in Fig. 2(a), (b), (c), (d) generate = 1,2, 3,4 NRLBP codes,

LBP is sensitive to noise. Even a small noise may changespectively. Fig. 2(e) shows an example where no uniform
the LBP code significantly. Thus, we propose to encode thede can be formed for NRLBP. The corresponding LBP code
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LBP code: 11010010 LBP code: 11011010 LBP code: 11110010
78 99| 53 LTP code: 11010000, 78 99| 53 LTP code: 11010000, NRLEP: 78 (54 99| |LTP code: 10100010, NRLBP:
11110010 NRLBP: - 11111010 11110000 11111010 11100000,
30| 54 | 60 |-»| 30 | 54 | 60 || > 30 | 54 | 54 [ 11110000
| 11110000 11111000 ,
s4l12]13 Uncertain Code: 541254 Uncertain Code: 541253 Uncertain Code: 11111000
11X100X0 11X1X0X0 1X1XX0X0
@m=1 (b)ym=2 c)ym=3
LBP code: 11110010 NRLBP: LBP code: 10011011
78199 | 60 LTP code: 11100010, 11100011, 7811253 LTP code: 10010010, NRLBP:
11110111 11100111 10111011 No uni-
S .
35454 4’/\ 11110011, 5415460 _’m form code
6715313 Uncertain Code: 11110111 6712|5354 Uncertain Code:
111X0X1X 10X1X01X
dym=14 (e)m=20

Fig. 2. lllustration of encoding process of NRLTP and congmar to LBP and LTP. Fig. (a), (b), (c), (d) are correspondiagn = 1,2, 3,4 resulting
NRLBP codes, respectively. Fig. (e) shows an example thainii@rm code can be formed. The proposed NRLBP is signifigatifferent from LBP and
LTP. Thresholdt is chosen as 2 for LTP and NRLBP in this figure.

Algorithm 1 Histogram construction of the proposed NRLBRYRLBP histogram are reduced significantly from about 35%
for Every pixel in a patchdo to about 10% only. The proposed NRLBP corrects a large

1. Derive theuncertaincodeC(X) as in Eqn. (5), (6). amount of non-uniform patterns that are corrupted by theenoi
3. Searchuncertainbits X in the space{0,1}" so that back to uniform patterns.

C(X) forms uniform LBP codes as in Eqn. (7). The proposed NRLBP is different from LBP and LTP in
4. Construct the histogram. many other aspects besides the capability of noise reststan
if m =0 then and error-correction. The LBP code is one of the NRLBP
Accumulate the non-uniform bin with 1. code set if it is uniform. The only exception is that the LBP
else code is non-uniform and is corrected back to uniform code in
Accumulate the bin of each pattern Bwrrpp With  NRLBP. Compared with LTP, the treatmentwifcertainstate
1/m. is totally different for NRLBP. For LTP, aluncertainbits are
end if set to0 for positive half andl for negative half as shown in
end for Fig. 2, whereas for the proposed NRLBP, we do not hurry for

a decision of theincertainbits. We treat them as if they could
be encoded a% and/or0, and determine their values based on

and LTP code are also given. For LTP, the positive LBP arfge other bits of the code. Mathematically, for LDR, {0}"
negative LBP are accumulated in two different histogrami@" Positive half andX e {1}" for negative half, whereas

whereas for LBP and NRLBP, the codes are accumulatedXp € {0,1}" for NRLBP. The number of histogram bin is
one histogram. also different. LTP histogram consists of 118 bins, whereas

As noise may change a uniform image pattern into amRLBF_) histogram gnly has 59 bins. )
unstable non-uniform pattern, the proposed NRLBP corrects™Of implementation, a look-up table from thencertain
such a code back to uniform code. As shown in Fig. 2( pde to the feature vector of NRLBP hlstog(am can be pre-
the LBP code is “11010010”, which may be distorted by thg?MPUted. Then, the feature vector of local image patch can
noise. The proposed NRLBP first derives thecertaincode P€ €asily obtained by summing up the feature vector of each
“11X100X0", and then determine itsncertainbits by forming PiX€l in this image patch.
the uniform code “11110000”. This can be viewed as an error-
correction mechanism. Note that we only attempt such am erro

correction onuncertainbits. We do not attempt to correct theC' Proposed Extended Noise-Resistant LBP

non-uniform patterns that are resulted from two strongestat The local primitives represented by uniform LBP mainly
Similarly, we can observe such an error-correction pro@essconsists of spots, flat region, edges, edge ends and cofijers [
Fig. 2(b), (c), (d). In these three cases, more than one NRLBE shown in Fig. 4. However, a large group of local primitives
code is generated. are totally discarded, e.g. lines patterns, as shown in Fig.

The proposed NRLBP corrects noisy non-uniform patterddthough those patterns may not appear as frequently as
back to uniform pattern. Fig. 3 shows the histogram afniform patterns, they represent an important group oflloca
LBP, LTP and NRLBP for the image shown in Fig. 6(c)primitives that may be crucial for recognition tasks. Grimgp
The thresholdt is chosen as 10 for LTP and NRLBP. LTPthem with other non-uniform patterns into one bin may result
histogram is the concatenation of positive LBP histograih ain information lost. Therefore, we introduce an extendede
negative LBP histogram. The last bin of each histogram isiiform patterns to preserve line patterns. Among all fssi
corresponding to non-uniform patterns, and other bins diee patterns, diagonal lines appear less frequently. treior
corresponding to uniform patterns. Clearly, compared with keep the feature vector compact, we only choose nearly
LBP histogram and LTP histogram, non-uniform patterns inmorizontal or vertical lines.
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Fig. 3. The histogram of LBP, LTP and NRLBP for the image shawrfig. 6(c). LTP histogram is the concatenation of positi&P histogram and
negative LBP histogram. The last bin of each histogram isesponding to non-uniform patterns. Compared with LBPolgistm and LTP histogram, NRLBP
significantly reduces non-uniform patterns from about 38%liout 10%. The proposed NRLBP corrects a large amount ey mmn-uniform patterns back
to uniform patterns.

are compared with uniform LBP and uniform LTP. E.g.
for face recognition,LBP% and LTP!3 are used. Let
NRLBPp r, ENRLBPp  denote the coding schemes for
NRLBP and ENRLBP usingP neighbors at the distance
of R to the center pixel, respectively. The number of fea-
tures for each patch is 59 fatBPg'3, 118 for LT P¢'3, 59

for NRLBPs» and 107 forENRLBPs . Dominant LBP
(DLBP) [7], novel extended LBP (NELBP) [34] and noise
tolerant LBP (NTLBP) [35] are compared as they extract in-
formation from non-uniform bins, similarly as our approash
do. We choose the dominant patterns that account for 80%
of the total pattern occurrences, same as in [7]. Fuzzy LBP
(FLBP) [5], [28], [38] is also compared. We implement fuzzy
LBP using piece-wise linear fuzzy membership function ip [5

1 1 1 1 1 1 1 1 1 1 0
0 1 0 1 1 1 I 1 1 1

Spot/flat

Spot Edge end

Fig. 4. Local primitives detected bjBPg'3.

if 2z, < —d,

1 0 0 0 0 fl,d(zp) _ 05+ (),E;lzp if —d § Zp § d, (8)
Fig. 5. Samples of line patterns. Those three rows are gmneng to 1 if Zp > d.
horizontal, diagonal and vertical lines. The diagonaldiaee rare patterns for
natural images and hence discarded. The remaining hosizand vertical
lines are the proposed extended set of uniform patterns. fo.alzp) =1 — f1.a(zp). (9)

where f; 4 and fo 4 are the probability that pixel difference
Let o denote the angle of the line away from the horizontal Should be encoded as 1 and 0, respectively. The parameter
line. If a € [0,30°) or a € (150°,180°], it is considered as a ¢ controls the amount of fuzzification. .
horizontal line. Ifa € [60°, 120°], it is considered as a vertical  Different classifiers are utilized in our experiments. For
line. If o € [30°,60°) or o € (120°,150°), it is considered face recognition, we use the nearest-neighbor (NN) classifi

as a diagonal line. Fig. 5 shows some samples of horizontjth three different distance measures: Chi-square distan
diagonal and vertical lines. histogram intersection distance and G-statistic, as difine
The proposed extended set of uniform patterns consist Bfin- (10), (11) and (13), respectively. For texture rectgmi
48 patterns. Including 58 uniform patterns, we derive thnd protein cellular classification, linear SVM is used, &ord
extended uniform patterns. Similarly as NRLBP, we can deri¥mage segmentation, k-means clustering algorithms is.used

the extended NRLBP (ENRLBP). Instead of forming uniform

(i — Yiy)?

patterns, we form extended uniform patterns as our ENRLBP X(x,y) = Z ity (10)

pattern. In such a way, line patterns are preserved duriag th 6] 7 7

encoding process. The number of bins of ENRLBP histogram

is 107, which is smaller than LTP histogram that has 118 bins. Dyr(x,y) ==Y min(zi,y;), (11)
i

I1l. EXPERIMENTAL RESULTS
We conduct comprehensive experiments to validate the De(x,y) = — > @i ;10gyi, (12)

ij

advantages of the proposed NRLBP and ENRLBP. Table |
summarizes the approaches compared with, the classifiefserex,y are the concatenated LBP feature vectors of two
used and the applications tested on. The proposed appsadmage samplesy; ; andy; ; arej-th dimension ofi-th patch.
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TABLE |
SUMMARY OF THE APPROACHES COMPARED WITHTHE CLASSIFIERS USED AND THE APPLICATION TESTED ON

The approaches The classifier The applications

LBP [2] Nearest-neighbor classifier + Chi-square distance Face recognition on the AR database [39]

LTP [19] Nearest-neighbor classifier + histogram intersectioradizt | Face recognition on the extended Yale B database [41], [42]
Dominant LBP [7] Nearest-neighbor classifier + modified G-statistic Face recognition on the O2FN database [43]

Fuzzy LBP [5], [28], [38] | Linear SVM Texture Recognition on the Outex-13 dataset [40]

Novel extended LBP [34]| K-means clustering Protein cellular classification on the 2D Hela database [{4]
Noise tolerant LBP [35] Image segmentation on the Outex segmentation dataset|[40]

The G-statistic is numerically unstable, as many histogragach trial, we use Image 1, 5, 6, 8, 12, 13 of each subject as the
bins may have zero elements, which easily causes— inf. gallery set, respectively. The other 13 images of each stibje

Thus, we modify it into a numerically stable form: are used as the probe set. It is a challenging experimental
setting as face images with facial expression variatiorexine
Da(xy) = - wa log(xi,j + ¥i.j), (13) {0 be identified just based on a single face image.
b 1) Resistant to Additive Gaussian Nois&aussian noise

Only when bothz; ; andy; ; are zero, we setlog(0) = 0. is one of the most common types of noise. The images are
We call this distance measure as Modified G-statistic (MG)ormalized in the range df, 1), and then we apply additive
MG is numerically more stable and hence can better handle tBaussian noise with zero mean and standard derivatien of
problem of too few elements in the histogram than G-statistiWWe conduct the experiments fer = 0.05,0.10,0.15. The

We conduct comparison experiments for various applicaamples of noisy images are shown in Fig. 6. When the noise
tions. Firstly, we inject Gaussian noise and uniform noiée tevel is high, the images are barely recognizable, and the
various noise levels onto the images of the AR database [38tognition task becomes more challenging.
for face recognition and the Outex-13 dataset [40] for textu
recognition. The proposed NRLBP and ENRLBP are com-
pared with various LBP/LTP variants in order to validate the
noise-resistance property of the proposed approaches, The
we apply the proposed approaches on real images that are
noise-prone. lllumination variation is one of big challesg ;
for face recognition. We conduct experiments on two chaken @o=0 (b)o=005 (o=010 (d)o=015
face databases with large illumination variations: theeeded Fig. 6. The images with additive Gaussian noiserof 0,0.05,0.1, 0.15,
Yale B database [41], [42] and the O2FN database [43fspectively.

The proposed approaches are also compared with LBP/LTPFor LTP, NRLBP and ENRLBP, there is one free parameter:

variants for protein cellular classification on the 2D Hel )
database [44] and image segmentation on the image of reesholdt € [0,255]. Fuzzy LBP also has a free parameter:

Outex segmentation database [40] and one image from C%.]Jzzificationd. We varyt for LTP, NRLBP and ENRLBP, and
9 : L o ge n %or fuzzy LBP. Only the recognition rates at the optimal
web. In order to reduce the illumination variations, the g@s

of the Outex-13 dataset, the extended Yale B database Sr%tmg are reported. Table Il summarizes the average necog

the O2FN database are pre-processed similarly as in [19]. N rate and the standard derivation of each approach at the

. . timal setting on the AR database injected with Gaussian
utilize the source COdFTS prowdgd l:_)y the authors of [19] ﬁjgise. Table 1l shows that the proposed NRLBP and ENRLBP
perform this photometric normalization.

achieve comparable or slightly better performance contpare
N with FLBP, whereas consistently outperform other appreach
A. Face Recognition on the AR Database for all settings using different distance measures. As the
For face recognition, we adopt a challenging experimentabise level increases, the performance gain of the proposed
setting. Only one image per subject is used as the gallery @pproaches over approaches other than FLBP becomes more
training) set and all others are used as the probe set. In maignificant.
real applications, we are not able to obtain multiple imagesin order to study the effect of threshotd(or fuzzification
per subject and we may have only one image per subject. parameterd), we plot the recognition rates vs.(or d) for
On the AR database, the proposed approaches are compaiid?] FLBP, NRLBP, ENRLBP using Chi-square distance, as
with LBP/LTP variants on images injected with noise irshown in Fig. 7. LBP and DLBP are shown as dashed lines.
order to demonstrate their noise-resistant property. TRe Aor the low noise levelg = 0.05, NRLBP and ENRLBP
database is of high resolution and high image quality, amde slightly better than DLBP and visibly better than LBP,
considered as a face database with almost no image nols&? and FLBP. For the middle noise level, = 0.10,
75 subjects are chosen from the AR database, each withthé two proposed approaches slightly outperform FLBP and
images. For each subject, it contains images from 2 sectiosignificantly outperform LBP, LTP and BLBP. For the high
Each section contains 7 images: one neutral image, 3 imagesse levelg = 0.15, while LBP, LTP and DLBP fail to work,
with different facial expressions and 3 images in differefiLBP, NRLBP and ENRLBP can still achieve recognition
illumination conditions. We repeat experiments 6 timest Foates over 70% if proper thresholds are applied. Fig. 7 shows
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TABLE Il
SUMMARY OF THE AVERAGE RECOGNITION RATE AND THE STANDARD DERVATION OF EACH APPROACH AT THE OPTIMAL SETTING ON THEAR
DATABASE INJECTED WITH GAUSSIAN NOISE

Algorithm Chi-square Distancer = Histogram Intersectiony = Modified G-Statisticsg =
0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15
LBP 83.44% | 64.65% | 40.91% | 81.64% | 55.18% | 34.34% | 79.04% | 56.63% | 34.56%
+1.44% | +£2.92% | +6.52% | +£1.58% | £7.37% | +4.38% | +1.71% | +£3.02% | +5.93%
LTP 83.91% | 65.09% | 43.78% | 81.85% | 55.26% | 37.69% | 80.26% | 62.58% | 42.74%

+1.03% | +5.88% | £9.96% | +2.08% | +12.07% +£10.77% +0.90% | +2.44% | £3.74%
DLBP 85.11% | 62.82% | 39.57% | 85.47% | 62.44% | 39.03% | 84.24% | 61.26% | 33.49%
+0.83% | +6.92% | £9.76% | +1.74% | £7.09% | +9.87% | +1.68% | £5.46% | +9.04%
FLBP 83.95% | 78.19% | 71.04% | 84.17% | 74.26% | 59.86% | 81.44% | 74.97% | 68.77%
+1.32% | +£1.08% | £1.70% | +1.42% | £2.01% | +3.06% | +1.41% | £1.45% | +2.14%
NELBP 65.50% | 34.82% | 18.32% | 64.46% | 31.56% | 16.32% | 66.51% | 34.85% | 17.85%
+3.19% | +3.01% | £1.35% | +3.84% | +1.81% | £1.07% | +£3.27% | +2.23% | £1.69%
NTLBP 63.71% | 28.94% | 13.42% | 67.25% | 35.69% | 17.83% | 61.01% | 25.35% | 11.47%
+3.32% | +£1.53% | £1.48% | +3.37% | £2.85% | +1.44% | +3.40% | £1.62% | +1.64%
NRLBP 85.33% | 79.93% | 70.67% | 85.88% | 78.65% | 67.62% | 84.92% | 79.08% | 70.55%
+1.43% | +£0.79% | £2.90% | +0.96% | +1.22% | £4.87% | +£1.29% | +1.03% | £3.22%
ENRLBP | 85.98% | 80.43% | 71.71% | 86.02% | 80.24% | 68.77% | 85.42% | 80.58% | 72.43%
+1.35% | +£0.97% | £1.79% | +1.09% | +1.55% | £3.05% | +1.03% | +0.72% | £1.50%

g g g
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Fig. 7. The recognition rates of LBP, LTP, DLBP, FLBP, NRLBRIZENRLBP using Chi-square distance vs. threshodsh the AR database injected with
Gaussian noise = 0.05,0.10,0.15. As the noise level increases, the optimal threshold isega

that the two proposed approaches and FLBP are the only ones
that work well for all tested noise levels.

We can also observe from Fig. 7 that the optimal threshold
increases when the noise level increases. The gradual €éhang
of face image carries important information, and will résnl : =
small pixel differences. A small threshold will be sufficidn @p=01 (®)p=02 (©p=04 (dp=07
handle the small image noise. If the threshold becomesrarged- 8. The images with uniform noise pf= 0.1,0.2,0.4, 0.7, respectively.
more pixel differences will be wrongly encoded @scertain
state, and the performance will drop as shown in Fig. 7(a). i
When the noise level is high, the pixel differences spread qipproaches achieve comparable or better performance than

and the histogram becomes flat. A large threshold is needq¥fier approaches. DLBP performs well for very low noise
to handle the large image noise. level, but it is even more sensitive to noise than LBP and

. . . o .. hence performs even worse than LBP for middle and high
an?thifi?rfr%?tAc:ed(l;;vneoitsjgIf\c/)\;(renclc\)lr?ésuftnelz)rgirzzites Ijn noise levels. FLBP is also shown resistant to noise. Except
yp : P % FLBP, as the noise level increases, the performance gain

AR database injected with additive uniform noise in the mn .
of (—p/2, p/2). The corresponding standard derivatiomjs— %f the proposed approaches over other approaches increases

p/+v/12. We vary the noise range fgr = 0.1,0.2,0.4,0.7,

and respectively,, = 0.0289,0.0577,0.1155,0.2021. Sample B. Texture Recognition on Outex-13 dataset

images are shown in Fig. 8. When the noise level is high, theQutex-13 dataset [40] consists of 68 classes of textures,

images are severely distorted and barely recognizable.  each with 20 images. To test the noise-resistant property of
The proposed approaches are compared with 6 LBP/LTlre proposed approaches on the applications other than face

variants on the AR database injected with uniform noise. Thecognition, we inject Gaussian noise and uniform noise of

average recognition rates and the standard derivationeat tifferent noise levels onto the images of Outex-13 dataset,

optimal setting are summarized in Table Ill. Both proposeslg. Gaussian noise of = 0.05,0.10,0.15 and uniform noise
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TABLE Il
SUMMARY OF THE AVERAGE RECOGNITION RATE AND THE STANDARD DERVATION OF EACH APPROACH AT THE OPTIMAL SETTING ON THEAR
DATABASE INJECTED WITH UNIFORM NOISE

Algorithm Chi-square Distancey = Histogram Intersectionp = Modified G-Statisticsp =
0.1 0.2 0.4 0.7 0.1 0.2 0.4 0.7 0.1 0.2 0.4 0.7
LBP 87.57% | 81.74% | 53.81% | 26.62% | 87.13% | 78.46% | 45.85% | 25.33% | 84.94% | 77.18% | 46.24% | 21.66%
+1.37% | £2.29% | +£9.01% | +5.47% | +1.13% | +1.88% | +11.55% +5.51% | +1.30% | +3.05% | +7.50% | +2.56%
LTP 87.83% | 82.80% | 62.27% | 32.55% | 87.50% | 79.15% | 48.41% | 26.77% | 85.20% | 77.64% | 54.56% | 27.01%
+1.07% | £1.42% | £4.52% | +3.82% | £1.13% | £1.54% | +£12.91% +£5.98% | +1.27% | +3.43% | +4.60% | +4.10%
DLBP 88.44% | 83.25% | 54.44% | 24.79% | 89.59% | 82.72% | 51.20% | 24.39% | 88.48% | 81.42% | 46.29% | 8.92%
+1.10% | +£1.26% | +11.78% +6.28% | +1.28% | +1.78% | +13.54% +8.19% | +1.28% | +1.37% | +13.58% +1.61%
FLBP 87.23% | 82.87% | 75.26% | 50.39% | 87.11% | 82.65% | 68.53% | 41.47% | 85.25% | 80.55% | 72.31% | 46.63%
+1.33% | £1.26% | +2.04% | +3.23% | +£1.22% | +£1.29% | +3.07% | +2.11% | +1.31% | +1.71% | +2.16% | +4.04%
NELBP 74.77% | 60.00% | 24.60% | 15.52% | 75.73% | 58.14% | 23.25% | 15.83% | 75.79% | 60.56% | 24.19% | 15.16%
+5.06% | +5.33% | +4.29% | +4.26% | +4.18% | +4.66% | +3.60% | +3.55% | +4.38% | +4.57% | +4.08% | +3.61%
NTLBP 73.88% | 57.35% | 20.80% | 8.67% 75.71% | 62.39% | 25.01% | 11.09% | 73.88% | 54.07% | 16.82% | 7.61%
+5.70% | £3.19% | +1.08% | +1.29% | +4.85% | £2.77% | +2.38% | +£1.67% | £5.23% | +4.04% | +1.61% | +1.26%
NRLBP 88.07% | 84.48% | 77.26% | 56.07% | 88.79% | 85.06% | 75.76% | 53.61% | 87.38% | 83.90% | 76.38% | 55.90%
+0.89% | +1.09% | +2.55% | +5.15% | +0.81% | +1.10% | +2.94% | +6.95% | +1.25% | +0.80% | +2.04% | +4.94%
ENRLBP | 88.68% | 84.51% | 77.37% | 56.22% | 88.89% | 84.97% | 76.09% | 51.74% | 87.81% | 84.43% | 76.99% | 55.76%
+0.91% | £1.70% | £1.46% | +3.51% | +£0.89% | +1.49% | +2.16% | £5.29% | +1.15% | +1.02% | £1.05% | +4.41%
TABLE IV
TEXTURE RECOGNITION ON THEOUTEX-13 DATABASE INJECTED WITH GAUSSIAN NOISE AND UNIFORM NOISE
. Gaussian Noise Uniform Noise
Algorithm ——555 o =01 o =015 P =01 p=102 P =04
LBP 52.09%+1.23% | 41.71%+0.96% | 33.53%+0.34% | 65.21%+1.01% | 47.18%+0.93% | 38.26%+0.99%
LTP 59.26%+1.01% | 50.85%+1.16% | 43.03%+1.27% | 69.74%+1.07% | 54.50%+1.95% | 51.74%+2.10%
DLBP 52.47%+1.02% | 41.26%+1.53% | 32.74%+1.38% | 64.62%+0.74% | 47.00%+1.20% | 38.29%+1.20%
FLBP 61.29%+2.59% | 53.32%+1.58% | 42.85%+1.49% | 69.56%+0.96% | 55.65%+1.32% | 52.53%+1.55%
NELBP 34.50%+1.83% | 33.59%+1.68% | 26.76%+0.68% | 42.59%+1.32% | 29.76%+1.46% | 30.88%+2.34%
NTLBP 32.09%+2.26% | 31.56%+0.69% | 26.68%+1.19% | 40.91%+1.39% | 27.00%+0.76% | 29.24%-+1.93%
NRLBP 62.88% +0.95% | 54.62% +0.74% | 43.24% +1.00% | 71.50% +1.27% | 58.15% +1.09% | 55.41% +1.78%
ENRLBP | 63.09% +1.96% | 55.06% +1.66% | 44.26% +1.00% | 70.94% +1.15% | 58.09% 4+0.48% | 54.76% +0.58%

of p = 0.1,0.2,0.4. Preprocessing in [19] is useful to reduce

noise. Thus, the noisy images are preprocessed in the sa

way as in [19]. Sample images and preprocessed images a

shown in the first and second row of Fig. 9, respectively. We

randomly choose 10 images from each class for training an ’ :

the rest for testing. The proposed approaches are compar ; % =

with 6 LBP/LTP variants. We extract features using 8 neigh- Siiesd Sa b &

bors at the radius of one. Linear SVM is used as the classifier==r =t B

which is implemented using LIBSVM package [45]. The COstig. 9.  Row 1 shows the sample images of Outex-13 datasettédie

parametelC is chosen as 1. The experiments are repeatedvlh Gaussian noise o = 0.05,0.10,0.15 and uniform noise ofp =

times, and onIy the average performance is reported. T&/O|eq'1’0'2’0'4.’ resp(—;‘ctively. Row 2 shows the respective images after the
. . preprocessing as in [19].

summarizes the performance comparison on the outex 1%

dataset injected with Gaussian noise and uniform noise. The

proposed NRLBP and ENRLBP consistently achieve compgarmalization, as shown in the second row of Fig. 10, a large
rable or better performance compared with other approachgs,ount of image noise exist in the images. The proposed

approaches are compared with 6 LBP/LTP variants using
nearest-neighbor classifier with Chi-square distancé&driam
intersection and modified G-statistic. Table V summaribes t

) highest recognition rates at the optimal threshold forousi

~ The extended Yale B database [41], [42] contains 38 suls,5aches using different distance measures. The propose
jects under 9 poses and 64 illumination conditions. We W’Hoapproaches achieve a slightly better performance than LBP,

the same database partition as in [19]. The images with mp_q,tP, DLBP and FLBP, and much better performance than
neutral light source("A+000E+00") are used as the gallenfe| BP and NTLBP.

images and all other frontal images are used as the probe

images (in total 2414 images of 38 subjects). This dataset - )

contains large illumination variations. The sample imagess D- Face Recognition on the O2FN Mobile Database

shown in the first row of Fig. 10. Some images are taken The O2FN mobile face database [43] is our in-house face
under extreme lighting conditions. Even after photometritatabase. It is designed to evaluate the face recognitgm al

C. Face Recognition on the Extended Yale B Database
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each trial, we randomly choose one image of each subject as
the gallery set and the rest as the probe set. We test LTP,
NRLBP and ENRLBP for different thresholds, and FLBP
for different d. Only the performance at the optimal setting

is reported. The average recognition rates and the standard
derivation at the optimal setting on the O2FN database are
summarized in Table VI. The proposed NRLBP and ENRLBP
achieve a comparable or slightly better performance coetpar
Fig. 10. The 1st row and 2nd row show the samples of geomb}ricaWIth LTP, DLBP and FLBP, and S|gn|f|cantly OUtperform LBP,

normalized and photometrically normalized images for thiereded Yale B NELBP and NTLBP using all three distance measures.
database, respectively. The leftmost image is the galleage, and the other
3 images taken under extreme lighting conditions are theeimages.

TABLE VI
PERFORMANCE COMPARISON FOR FACE RECOGNITION ON THO2FN

TABLE V DATABASE.

THE FACE RECOGNITION RATE AND THE OPTIMAL THRESHOLD ON THE

EXTENDED YALE B DATABASE. Algorithm | Chi-square Dis-| Histogram Inter-| Modified G-
tance section Statistics

Algorithm | Chi-square Histogram Modified G- LBP 76.59%+1.60% | 74.14%+1.44% | 75.18%+1.15%

Distance Intersection | Statistics LTP 78.88%+1.65% | 76.88%+1.91% | 78.16%+1.39%
LBP 96.07% 93.32% 96.12% DLBP 78.07%+1.69% | 79.88%+2.10% | 79.01%+2.04%
LTP 98.25% (10) | 97.99% (10) | 98.29% (8) FLBP 80.24%+1.58% | 79.15%+1.49% | 80.01%+1.46%
DLBP 96.12% 97.83% 08.45% NELBP 56.74%+1.75% | 58.25%+2.16% | 59.12%+1.73%
FLBP 98.45% (9) 98.16% (9) 98.54% (12) NTLBP 56.96%+1.82% | 58.40%+1.65% | 58.63%+2.18%
NELBP 81.91% 82.29% 84.92% NRLBP 80.76% +1.56% | 80.29% +1.63% | 80.68% +£1.57%
NTLBP 80.37% 80.16% 83.12% ENRLBP | 81.66% +1.83% | 81.28% +1.80% | 81.44% +1.91%
NRLBP 98.71% (9) 98.66% (8) 98.66%(11)
ENRLBP | 98.75% (9) 98.66% (8) 98.62% (10)

E. Protein Cellular Classification on 2D Hela Database

rithms on mobile face images, which are of low resolution and Protéin cellular classification is useful when charactegz

low image quality, and significantly corrupted by the noise. new!y discovered genes. 2D Hela dgtabase conFams 862sing|
contains 2000 face images of sizé4 x 176 pixels from 50 Cell images (16-bit gray scale of siz82 x 382 pixels) [44].
subjects. The images are self-taken by the users. The usdiere are ten classes in this database and each with more than
are told to take roughly 20 indoor images and 20 outdodP images. Some sample images are shown in Fig. 12. Multi-

images with minimum facial expression variations and out-
plane rotations. Thus, the O2FN database mainly contains
in-plane rotations and illumination variations. Fig. 1losis
some samples of geometrically normalized and photometri-
cally normalized images. The images are captured by O2 XDA
frontal camera with native phone settings and without post-
processing. The images are severely distorted by the noise,
e.g. Gaussian noise, Salt & Pepper noise and motion blur. To
reduce the noise and illumination variations, the images ar
photometric normalized as in [19]. Even after the photoioetr
normalization, as shown in Fig. 11, the images still contain
large amount of noise.

(a) Actin_001 (b) DNA_001 (c) Endosome001

(d) ER.001

(e) Golgia 001

Sample images of the 2D Hela database.

(f) Golgpp_001
Fig. 12.

scale LBP has shown good performance on this dataset [46].
We use{P, R} to represent the descriptor extracted usihg
neighbors at the distance & to the center pixel. Then, we
extract features at multiple scalei8, 1}, {8, 2} and {8, 3}.
Then those features are concatenated as the final featuoe vec
for classification. Linear SVM [45] is used for classificatio
The cost parameter is the same as in [37], @e= 100. We
randomly choose 80% of the database for training and 20%
The proposed approaches are compared with 6 LBP/LT# testing. The experiments are repeated five times and the
variants using nearest-neighbor classifier with 3 diffedia- average performance is reported. The performance coroparis
tance measures. The experiments are repeated 5 times. didhe proposed approaches with other LBP/LTP variants are

Fig. 11. The samples of geometrically normalized (Row 1) phdtomet-
rically normalized (Row 2) face images of the O2FN databases
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shown in Table VII. The proposed NRLBP achieves the high- IV. CONCLUSION
est recognition rate of 95.93%. FLBP, LTP and.the proposed, Bp s sensitive to noise. Even a small noise may change
ENRLBP also achieve good performance on this dataset. tne LBP pattern significantly. LTP partially solves this plem
by encoding the small pixel differences into the same state.
TABLE VI

THE PERFORMANCE COMPARISON FOR PROTEIN CELLULAR However, both LBP and LTP treat the corrupted patterns as

CLASSIFICATION ON THE 2D HELA DATABASE IN TERMS OF RECOGNITION they are, and lack a mechanism to recover the underlining
RATE AND TIME. image local structures.

As the small pixel difference is most vulnerable to noise,

Algorithm | Average recognition rate| Time (ms) . o . .
TBP 895300 L 041% 547 we encode it asuncertain bit first, and then determine its
LTP 95.70% + 1.91% 955 value based on the other bits of the LBP code to form a
DLBP 88.14%+ 1.95% 109.2 code of image local structure. Uniform patterns represent
FLBP 93.26%+ 1.87% 2823.7 ; P

NELBP—| S5 1045 053 Ioc_al image pr|m|t_|ves, and appear more frequently thar}_ non
NTLBP | 88.60%F 1.57% 1103 uniform patterns in _natural images. In contrast, non-unifo
NRLBP | 95.93% + 1.48% 87.5 patterns are less reliable, thus are more error-proneefdre,
ENRLBP | 95.58%: 0.66% 103.6 we assign the values afincertain bits so as to form all

possible uniform LBP codes. In such a way, we correct
noisy non-uniform patterns back to uniform code. For LBP
and LTP, a large group of local primitives, i.e. line patiern
are completely ignored. Thus, we propose extended uniform
Besides recognition tasks, we also conduct comparispatterns and form those patterns as our ENRLBP patterns
experiments for image segmentation. We extract featuiag usywhen determineincertainbits.
8 neighbors at the distance of one to the center. We follow theThe proposed approaches show stronger noise-resistance
similar setup in [38] to segment texture images. Features @bmpared with other approaches. We inject Gaussian noise
extracted in a raster-scanning way using sliding windows ghd uniform noise of different noise levels on the AR databas
16 x 16 pixels with a step size of one pixel. K-means clusterinfpr face recognition and the Outex-13 dataset for texture
algorithm with “cityblock” distance is used to classify therecognition. Compared with FLBP, the proposed approaches
scanning windows. The number of clusters is given as inpdke much faster and achieve comparable or slightly better
Qualitative segmentation results of the proposed appemcherformance. They consistently achieve better performanc
and LBP/LTP variants are given. We choose the tenth imaggn all other approaches. We further compare the proposed
of the Outex segmentation test suite [40] and one natuRRLBP and ENRLBP with others for face recognition on the
scene image downloaded from the internet for illustratioextended Yale B database and the O2FN database, protein
as shown in Fig. 13 and Fig. 14. The Outex image consiggllular classification on the 2D Hela database, as well as
of five textures. The ground-truth labeling of segments jmage segmentation. The proposed approaches demonstrate

shown in Fig. 13 (b). Apparently, the proposed NRLBP angliperior performance on these applications.
ENRLBP achieve better segmentation performance than LBP,

LTP, DLBP and FLBP. The natural scene image shown in ACKNOWLEDGMENT
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