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ABSTRACT

Local binary pattern (LBP) is sensitive to noise. Local ternary
pattern (LTP) partially solves this problem by encoding the
small pixel difference into a third state. The small pixel dif-
ference may be easily overwhelmed by noise. Thus, it is dif-
ficult to precisely determine its sign and magnitude. In this
paper, we propose the concept ofuncertainstate to encode
the small pixel difference. We do not care its sign and mag-
nitude, and encode it as both 0 and 1 with equal probabil-
ity. The proposed Relaxed LTP is tested on the CMU-PIE
database, the extended Yale B database and the O2FN mobile
face database. Superior performance is demonstrated com-
pared with LBP and LTP.

Index Terms— Local Binary Pattern, Local Ternary Pat-
tern, Uncertain State, Relaxed LTP, Face Recognition.

1. INTRODUCTION

Local binary pattern has been widely used in various com-
puter vision applications because of its simplicity and robust-
ness to illumination variations. However, its sensitivity to
noise limits the performance. For local ternary pattern [1], the
pixel difference between the center pixel and the neighboring
pixel was encoded into a trinary code. LTP is less sensitive to
noise as the small pixel difference is encoded into a separate
state. To reduce the dimensionality, the ternary code is split
into two binary codes: a positive LBP and a negative LBP.

Other than the ternary code, Nanni et al. proposed a
quinary code and then split the quinary code into four bi-
nary codes [2]. In Local Adaptive Ternary Patterns [3] and
extended LTP [4], instead of using a constant threshold,
a threshold is calculated for each local window using local
statistics, which makes LATP and ELTP less sensitive to noise
and illumination variations. In Local Triplet Pattern [5], the
equality is modeled as a separate state.

LTP partially solves the noise-sensitive problem by en-
coding the small pixel difference into a separate state. How-
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ever, when the ternary code is split into a positive LBP code
and a negative LBP code, it may result in a significant infor-
mation loss. Furthermore, the positive and negative LBP his-
tograms are strongly correlated, and hence a lot of redundant
information may reside in those two histograms.

In this paper, the concept ofuncertainstate is introduced.
If the pixel difference is within a threshold, it is encoded into
the uncertainstate. In this state, the sign and magnitude of
the pixel difference cannot be precisely determined because it
may be easily overwhelmed by noise. Based on the concept of
uncertainstate, we propose Relaxed LTP (RLTP). A ternary
code is derived by encoding the large pixel difference into
two strong states and encoding the small pixel difference into
a separateuncertainstate. Then the pixel difference that be-
longs touncertainstate is equally split into two strong states
to represent the fact that the small pixel difference is equally
likely to be positive and negative. In such a way, the ternary
code is transformed back to a binary code. Different from
LTP that results in two LBP histograms, the proposed RLTP
results in only one LBP histogram. One ternary code with
uncertainstate contributes to more than one bin in the LBP
histogram.

Many attempts were made to solve the face recognition
problem, such as the linear [6, 7] and nonlinear [8] subspace
approaches, and the local structure [9] and texture [1] based
techniques. The proposed algorithm is firstly tested on CMU-
PIE database with injected noise, and demonstrates strong re-
sistance to noise compared with LBP and LTP. We further
compare the proposed RLTP with LBP and LTP on other two
challenging face databases: the extended Yale B database and
the O2FN mobile face database. The proposed approach con-
sistently outperforms LBP and LTP.

2. PROPOSED RELAXED LTP

Let us firstly briefly analyze the problem of LBP and LTP. Lo-
cal binary pattern encodes the pixel differences between the
neighboring pixels and the center pixel, e.g.LBPP,R encodes
the pixel differences between the center pixel andP neigh-
bors on a circle of radiusR. Denoteic as the gray level of the
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center pixel, andip as the gray level of the circular neighbors,
wherep = 0, 1, . . . , P − 1. Then, the LBP code is obtained
as:LBPP,R =

∑P−1

p=0
s(ip − ic)2

p, wheres(z) is the thresh-
old function: s(z) = 1 if z ≥ 0, s(z) = 0 otherwise. LBP
is sensitive to noise. A small image noise will cause the pixel
difference encoded from 0 to 1 or vice versa.

LTP is less sensitive to noise, as it encodes the small pixel
difference into a separate state. The LTP code is obtained
as: LTPP,R =

∑P−1

p=0
s′(ip − ic)3

p, wheres′(z, t) is the
threshold function, andt is a pre-defined threshold.

s′(z, t) =











1 if z ≥ t,

0 if |z| < t,

−1 if z ≤ −t.

(1)

The dimensionality of LTP histogram is very large.
LTP8,2 will result in a histogram of38 = 6561 bins. Thus,
in [1], LTP code is split into a positive LBP code and a
negative code as:

s′p(z, t) =

{

1 if z ≥ t,

0 if z < t.
(2)

s′n(z, t) =

{

1 if z ≤ −t,

0 if z > −t.
(3)

However, a significant amount of information may be lost
during this process. On the other hand, the positive LBP his-
togram and the negative LBP histogram are strongly corre-
lated, and hence a large mount of redundant information may
reside in those two histograms.

In order to solve the problem of LBP and LTP, we propose
Relaxed LTP. Firstly, let us redefine the thresholding function
of local ternary pattern as:

s′′(z, t) =











1 if z ≥ t,

X if |z| < t,

0 if z ≤ −t.

(4)

State0 and1 represent two strong states where the pixel
difference is almost definitely negative and positive, respec-
tively. Noise can unlikely change it from 0 to 1 or from 1
to 0. StateX represents anuncertainstate where the pixel
difference is small. The small pixel difference is vulnerable
to noise if we only take its sign. More specifically, noise can
easily change its LBP bit from 0 to 1 or vice versa. Therefore,
regardless its sign and magnitude, we encode the small pixel
difference into theuncertainstate. Such a coding scheme is
less sensitive to noise.

Tri-state code results in a histogram of too many bins, and
hence it is desirable to reduce its dimensionality. Two strong
states are corresponding to large pixel differences, whichare
less affected by image noise and more reliable. The small
image difference in StateX is easily distorted by noise, and
hence less reliable. Thus, we aim to deduce StateX into the
strong states. It is difficult to precisely determine the sign
and magnitude of small pixel difference. Based on our initial

observations, we find that the small pixel difference is equally
likely to be positive and negative. Thus, we encode StateX
equally into two strong states, i.e. State0 and1 with equal
probability. As a result, we transform the trinary code backto
the binary code.

The encoding process is shown in Fig. 1. The image patch
is firstly encoded as a trinary code. Then, the trinary code is
encoded into binary codes, e.g. bit 0 and bit 5 are encoded
as both0 and1. In this example, the ternary code results in
four LBP codes. Those four binary codes are equally likely.
Therefore, when constructing the histogram, each binary code
contributes 0.25 to the corresponding bin of the histogram.

Fig. 1. Illustration of encoding scheme of Relaxed LTP.
Firstly, the trinary code11X1001Xis derived from the im-
age. When constructing the histogram, it results in four binary
codes.

Now we describe the general form of the proposed Re-
laxed LTP encoding scheme. Instead of hard code the pixel
differencez as0 or 1, we assign the probability of encoding
it as 0 or 1. Given the pixel differencez, denoteP 1(z) as
the probability to encode it as 1, andP 0(z) = 1 − P 1(z) as
the probability to encode it as 0. For the proposed Relaxed
LTP, theuncertainstate is encoded as both1 and0 with equal
probability. Therefore, Eqn. 4 can be reformulated as:

P 1(z) =











1 if z ≥ t,

0.5 if |z| < t,

0 if z ≤ −t.

(5)

When constructing the resulting LBP histogram, we cal-
culate the probabilities of all 256 patterns as:

Pj =

7
∏

i=0

ciP
1

i (z) + (1 − ci)P
0

i (z), (6)

where the LBP codej =
∑

7

i=0
ci ∗ 2i; ci is i-th bit of the

code;P 1

i (z) andP 0

i (z) are the probabilities that biti should
be encoded as1 and 0, respectively. In practice, for every
trinary pattern, the probabilities of all 256 patterns can be pre-
calculated and stored in a look-up table. The probabilitiesof
all the pixels within one patch are summed up to form the
LBP histogram of the patch.

The proposed RLTP is significantly different from LTP.
When there is only oneuncertainbit, both the proposed RLTP
and LTP produce two LBP codes. However, those two codes
are accumulated in two different histograms for LTP, whereas
in one histogram for RLTP. When there are moreuncertain



bits, the proposed RLTP differs more significantly from LTP.
Take ternary code11X1001Xin Fig. 1 as an example. For
LTP it results in two LBP codes:11010010and 00001100
(its complement is11110011), which are accumulated in the
positive LBP histogram and the negative LBP histogram, re-
spectively. For the proposed approach, four binary codes are
produced as shown in Fig. 1, in which the first and the fourth
code are corresponding to the positive LBP code and the com-
plement of the negative LBP code of LTP, respectively. Those
four codes are accumulated in one LBP histogram. Each code
contributes 0.25 to the corresponding bin of the histogram.

3. EXPERIMENTAL RESULTS

In this section, we compare the proposed approach with LBP
and LTP on the CMU-PIE database [10], the extended Yale B
face database [11, 12] and the O2FN mobile face database [7].
All the images are geometrically normalized so that the eyes
are at the same position, similarly as in [1]. The normalized
image is of size128× 128 pixels. Each image is divided into
patches of size8 × 8 pixels. LBP8,2, LTP8,2 andRLTP8,2

are used. The histogram is calculated for each patch. Each
RLTP histogram has 256 bins. Chi-square distance is uti-
lized to calculate the dissimilarity score and the nearest neigh-
bor classifier is used. In order to reduce illumination vari-
ations, the images are pre-processed similarly as in [1], i.e.
Gamma correction, Difference of Gaussian filtering and con-
trast equalization. We utilize the source codes provided by
the authors of [1] to perform photometric normalization.

3.1. Experimental Results on the CMU-PIE Database

The CMU-PIE database contains over 40000 facial images of
68 subjects, across 13 different poses, under 43 different il-
lumination conditions, and with 4 different expressions. We
choose the illumination set for our experiments, which con-
tains 1407 images of 67 subjects.1 Each subject has 21 im-
ages. We adopt a challenge experimental setting, in which
only the image with frontal lighting (Image ID 08) is used
as the gallery set and the rest images with large illumination
variations are used as the probe set. We compare the proposed
approach with LBP and LTP on images injected with noise.
The images are normalized in the range of(0, 1), and then
we apply additive uniform noise in the range of(−p/2, p/2).
The corresponding standard derivation can be derived asσu =
p/

√
12. We vary the noise range forp = 0.1, 0.15, 0.2, and

respectivelyσu = 0.0289, 0.0433, 0.0577. The sample im-
ages are shown as the first row of Fig. 2 and the photometri-
cally normalized images are shown in the second row.

The recognition rates of LBP, LTP and RLTP are shown
in Fig. 3. For different noise settings and different thresholds,
the proposed Relaxed LTP consistently outperforms LBP and

1The images of Subject 39 are not complete and hence excluded.

Fig. 2. The first row shows the sample images of CMU-PIE
with additive uniform noisep = 0, 0.1, 0.15, 0.2. The second
row shows the photometrically normalized images.

LTP. The highest recognition rates and the optimal thresh-
olds under different noise settings for LBP, LTP and RLTP are
summarized in Table. 1. When the noise level increases, the
recognition rates of LBP and LTP drop significantly, whereas
RLTP still preserves a high recognition rate. The proposed
approach demonstrates strong resistance to noise compared
with LBP and LTP. Furthermore, the optimal threshold for
LTP varies with noise level, and hence it is difficult to deter-
mine an optimal threshold for LTP. In contrast, the optimal
threshold for RLTP is consistent over different noise settings,
i.e. t = 2.

Method p = 0.1 p = 0.15 p = 0.2
LBP 94.78% 80.22% 70.22%
LTP 98.58% (6) 92.61% (8) 81.34% (10)
RLTP 99.85% (2) 98.96% (2) 95.75% (2)

Table 1. The highest recognition rates and the optimal thresh-
olds under different noise settings for LBP, LTP and RLTP on
the CMU-PIE database.

3.2. Experimental Results on the Extended Yale B Database

The extended Yale B database [11, 12] contains 38 subjects
under 9 poses and 64 illumination conditions. We follow the
same database partition as in [1], the images with most neutral
light sources(“A+000E+00”) are used as the gallery images
and all other frontal images are used as the probe images (In
total 2414 images of 38 subjects). The database contains large
illumination variations. Some images are taken under extreme
lighting conditions.

The recognition rates for LBP, LTP and Relaxed LTP
under different thresholds are shown in Fig. 4. RLTP con-
sistently outperforms LBP and LTP. The highest recognition
rates and the optimal thresholds are summarized in Table. 2.
Compared with LBP and LTP, RLTP increases the recognition
rate from 96.07% and 98.25% to 98.71%, respectively.



2 4 6 8 10
94

95

96

97

98

99

100

Threshold

R
ec

og
ni

tio
n 

R
at

e(
%

)

 

 

LBP
LTP
RLTP

(a)p = 0.1

2 4 6 8 10 12
80

85

90

95

100

Threshold

R
ec

og
ni

tio
n 

R
at

e(
%

)

 

 

LBP
LTP
RLTP

(b) p = 0.15

2 4 6 8 10 12
70

75

80

85

90

95

100

Threshold

R
ec

og
ni

tio
n 

R
at

e(
%

)

 

 
LBP
LTP
RLTP

(c) p = 0.2

Fig. 3. Recognition rate of LTP and Relaxed LTP v.s different thresholds for different noise settings. The recognition rate of
LBP is plotted in dotted line. RLTP consistently outperforms LBP and LTP.
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Fig. 4. Recognition rates of LBP, LTP and RLTP for different
thresholds on the extended Yale B database.

Method LBP LTP RLBP
Recognition rate 96.07% 98.25% (10) 98.71%(2)

Table 2. The highest recognition rates and the optimal thresh-
olds for LBP, LTP and RLTP on the Yale B database.

3.3. Experimental Results on the O2FN Mobile Database

The O2FN mobile face database [7] is designed to evaluate
the face recognition algorithms on images captured by mobile
phone, which are of low resolution and low image quality. It
contains 2000 face images of size144 × 176 pixels for 50
subjects. The database mainly contains in-plane rotationsand
illumination variations. The first 20 images of each subject
are chosen as the gallery images and the rest are used as the
probe images.

The recognition rates for LBP, LTP and RLTP under dif-
ferent thresholds are shown in Fig. 5. RLTP consistently out-
performs LBP and LTP. The highest recognition rates and the
optimal thresholds are summarized in Table. 3. Compared
with LBP and LTP, RLTP increases the recognition rate from
96.60% and 97.40% to 98.40%, respectively.
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Fig. 5. Recognition rates of LBP, LTP and RLTP for different
thresholds on the O2FN database.

Method LBP LTP RLBP
Recognition rate 96.60% 97.40% (9) 98.40%(1)

Table 3. The highest recognition rates and the optimal thresh-
olds for LBP, LTP and RLTP on the O2FN database.

4. CONCLUSION

In this paper, we address the challenge of improving the ro-
bustness to image noise. We propose the concept ofuncer-
tain state, in which the small pixel difference is encoded as
both 0 and 1 with equal probability. The proposed Relaxed
LTP shows strong resistance to noise compared with LBP
and LTP. On the CMU-PIE database, the extended Yale B
database and the O2FN database, the proposed RLTP con-
sistently outperforms LBP and LTP. Furthermore, the optimal
threshold for RLTP is more consistent compared with LTP.
The optimal thresholds for LTP are ranging from 6 to 10 for
different databases. In contrast, RLTP achieves the highest
recognition rate consistently at a low threshold. In general,
the threshold of RLTP can be selected as 2.
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