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Abstract—Conventional visual recognition systems usually
train an image classifier in a bath mode with all training data
provided in advance. However, in many practical applications,
only a small amount of training samples are available in the
beginning and many more would come sequentially during online
recognition. Because the image data characteristics could change
over time, it is important for the classifier to adapt to the new
data incrementally. In this paper, we present an online metric
learning method to address the online scene recognition problem
via adaptive similarity measurement. Given a number of labeled
data followed by a sequential input of unseen testing samples,
the similarity metric is learned to maximize the margin of the
distance among different classes of samples. By considering the
low rank constraint, our online metric learning model not only
can provide competitive performance compared with the state-
of-the-art methods, but also guarantees to converge. A bi-linear
graph is also defined to model the pair-wise similarity, and an
unseen sample is labeled depending on the graph-based label
propagation, while the model can also self-update using the more
confident new samples. With the ability of online learning, our
methodology can well handle the large-scale streaming video
data with the ability of incremental self-updating. We evaluate
our model to online scene categorization and experiments on
various benchmark datasets and comparisons with state-of-the-
art methods demonstrate the effectiveness and efficiency of our
algorithm.

Index Terms—low rank, online learning, metric learning, semi-
supervised learning, scene categorization 1

I. INTRODUCTION

NOWADAYS, machine learning technology plays a central
role in many practical systems with visual cognitive abil-

ity. Usually, the machine learning model is trained offline with
labeled data, which is not updated during the online procedure,
e.g. the computer vision system for scene categorization in our
case. Unfortunately, for an online practical vision system, the
performance of the machine learning model may deteriorate
over time as the new incoming data may deviate from the
initial training data. In order to handle such a issue, the model
needs to be re-trained offline again in the batch mode using
both existing and new data, which will be time-consuming.
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Fig. 1. Illustration of Online Metric Learning Procedure: We first collect
labeled data and train an initial model. Then, with video data arriving
sequentially, after extracting the features, online metric learning and label
propagation are used to make a prediction. The confident samples are inserted
into the training set queue to online update the model incrementally.

Moreover, if the size of the training dataset is too large, it is
difficult for the batch training model to handle all the data in
one iteration.

To overcome these problems, online models that learn from
one or a group of instances each time [1]–[6] provide an
efficient alternative to offline re-training by incrementally
updating the classifier upon the new arrivals and establishing
a decision boundary that adapts to the ever-changing data.
In this paper, we focus on an adaptive similarity learner by
representing the model in a matrix form, similar to metric
learning, collaborative filtering, and multi-task learning. The
intention of the online metric learning model is to learn a
Positive Semi-definite (PSD) matrix W ∈ Rd×d, such that
pT1 Wp2 ≥ pT1 Wp3 for all p1, p2, p3 ∈ Rd; if p1, p2 are more
similar and p1, p3 are less similar. For classification, p1, p2

should be from the same class and p3 is from a different one.
Essentially, the supervised online metric learner is designed to
distinguish feature points with max margin as well. If all data
with dimension d lie in a low dimension subspace r (r < d),
the metric matrix with the rank less than r can distinguish
any two samples if the data is distinguishable. Ideally, for data
without any noise, many metric matrices with rank larger than
r can distinguish it. However, training data always contains
noise in practice, thus the metric matrix with a high rank would
cause over-fitting and is sensitive to the noise and therefore
not robust.

It is well known that the low rank property is often satisfied
in practical data. We thus consider the low rank constraint
in our metric learning model and learn a low dimensional
representation of the data in a discriminative way, where low
rank matrix models can therefore scale to handle substantially
many more features and classes than with full-rank dense
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matrices. For classification based on our online metric learning
model, we define a bi-linear graph model to predict the label
of a new incoming testing sample and fuse the information
of both labeled and unlabeled data in the fashion of semi-
supervised learning. Then a unified framework is designed
to online self-update the models, which are used to handle
online scene categorization, as shown in Fig. 1. The main
contributions of our paper are as follows:

i. By considering the low rank property of the data distri-
bution, we propose a novel online metric learning model
with the low rank constraint to overcome over-fitting.

ii. We define a bi-linear graph to measure the similarity
of pair-wise nodes. Different from traditional similarity
graphs, such as full graph, k−NN and ε−NN graphs,
our bi-linear graph can maintain its accuracy for label
propagation without tuning any parameters.

iii. We propose a general framework for online self-
supervised learning by combining online metric learning
with semi-supervised label propagation. In comparison to
supervised learning with batch training, our algorithm can
self-update the model incrementally and incorporate use-
ful information from both labeled and unlabeled samples.

The organization of the rest of our paper is as follows. In
Sec. II, we review the related work. In Sec. III, we present an
overview of our online learning framework. Next, we propose
our online metric learning model and online label propagation
model in Sec. IV and Sec. V, respectively. Sec. VI reports
our experimental results and comparisons with state-of-the-art
methods. Finally, Sec. VII concludes the paper.

II. RELATED WORK

Classifying scenes into categories, such as kitchen, office,
coast and forests, is a challenging task due to the scale, illu-
mination, content variations of the scenes and the ambiguities
among similar types of scenes. For scene categorizations, there
are mainly two key issues: image representation and similarity
measurement.

For image representation, there are many scene descrip-
tors, such as various Histogram-based features [7], [8], SIFT
[9], Gist [10], Bag of Words (BOW) and spatial pyramid
matching [11], kernel codebook [12], [13], Principal Compo-
nent Analysis of Census Transform histograms (CENTRIST)
[14], [15] and the combination of CENTRIST and color cues
[16]. Designing an effective scene representation is beyond the
scope of this paper and we chose to adopt CENTRIST here.

For similarity measurement, most traditional methods for
scene recognition focus on supervised learning with batch
training, such as [17], [13], [18], [19], [20], [21], [22], [23],
[24], which cannot handle online processing, and would break
down if the size of dataset is too large. Online algorithms
have received much attention in the last decade, as they learn
from one instance or sample at a time. For online supervised
learning methods, Cauwenberghs et al. [4] propose a solution
to the problem of training Support Vector Machines (SVMs)
with a large amount of data; Utgoff et al. [25] introduce
incremental decision tree classifiers that can be updated and
retrained using new unseen data instances. Several methods

have been proposed to extend the popular AdaBoost algorithm
to the online scenario, for example complex background and
appearance models [26], and visual tracking [1], [27], [28].
Moreover, there are also many practical industrial applications
using online learning, e.g. [29] designs online image clas-
sifiers to handle CD imprint inspection in industrial surface
inspection; [30] presents an online machine vision system
for anomaly detection in sheet-metal forming processes; [31]
models user preferences using online learning and also [3]
combines supervised and semi-supervised online boosting
trees. Learning a measurement of similarity between pairs
of objects is a fundamental problem in machine learning.
A large margin nearest neighbor method (LMNN) [32] is
proposed to learn a Mahalanobis distance to have the k-nearest
neighbors of a given sample belong to the same class while
separating different-class samples by a large margin. LEGO
[33], Online learning of a Mahalanobis distance using a Log-
Det regularization per instance loss, is guaranteed to yield
a positive semidefinite matrix. In [34], a metric learning by
collapsing classes (MCML) is designed to learn a Mahalanobis
distance such that same-class samples are mapped to the same
point, formulated as a convex problem. Chechik et al. [2], [35],
[36] design an Online Algorithm for Scalable Image Similarity
learning (OASIS), for learning pairwise similarity that is fast
and scales linearly with the number of objects and the number
of non-zero features. However OASIS may suffer from over-
fitting.

III. THE FLOWCHART OF OUR ALGORITHM

We propose an online learning framework, which uses
metric learning to measure the similarity and adopts semi-
supervised learning to label the testing samples. The flowchart
is shown in Fig. 2, and consists of two phases: batch initial
training phase and online prediction phase. During the batch
initial training, each image is assigned a label and useful
features are extracted and stored as feature vectors along with
their labels. We then perform batch training to obtain an initial
metric learner with the low rank constraint, i.e. the matrix W
for similarity measurement. During the online training phase,
features are also extracted from each sequentially incoming
image, and depending on whether the data has a label or
not, the proposed supervised and semi-supervised classifiers
will be used to self-update the metric learner W . For an
unlabeled sample, we measure the similarity between it and
each of the initial training samples and propagate the label
using our bi-linear graph accordingly. Next, those samples
with high confidence scores are also used to update W . All
the labeled samples are used for updating, where the updating
procedure is similar to the batch initial training. Such a process
iterates during online processing. The online learning phase
will stop if the prediction performance reaches a desired level.
Generally, there are mainly two key technical issues, online
metric learning and label propagation, which are discussed
below.

A. Notations
Let A be a symmetric matrix in Rd×d and its eigen-

value decomposition is A = UΛUT , where (·)T is the
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Fig. 2. The work flow of the proposed online learning algorithm.

transpose transformation, UTU = I and Λ is a diagonal
matrix, i.e., Λ = diag(λ1, λ2, ..., λd). Denote max(0, z)
as (z)+ or z+. Let Λ+ = diag(λ+

1 , λ
+
2 , ..., λ

+
d ) and

Dτ (Λ) = diag((λ1 − τ)+, (λ2 − τ)+, ..., (λd − τ)+).
Define A+ = UΛ+UT and A− = A − A+. The
shrinkage operation of A is Dτ (A) = UDτ (Λ)UT . Let
Tτ (Λ) = diag(min(λ1, τ),min(λ2, τ), ...,min(λd, τ)). De-
fine the truncate operation Tτ (A) = UTτ (Λ)UT . We can
easily verify that A = Tτ (A) +Dτ (A).

IV. ONLINE METRIC LEARNING WITH LOW RANK
CONSTRAINT (OMLLR)

The goal of Online Metric Learning (OML) is to learn a
similarity function sW (pi, pj) parameterized by matrix W for
similarity measurement, which is a bi-linear form [2], [35] as:

sW (pi, pj) ≡ pTi Wpj , (1)

where pi, pj ∈ Rd are the feature vectors and W ∈ Rd×d. sW
assigns higher scores to more similar pairs of feature vectors
and vice versa. For robustness, a soft margin is given as

sW (pi, p̂i) > sW (pi, p̄i) + 1, ∀pi, p̂i, p̄i ∈ P. (2)

Here p̂i ∈ P is more similar to pi ∈ P than p̄i ∈ P . In our
case, pi and p̂i belong to the same class; while pi, p̄i are from
different classes. The hinge loss function lW (·, ·, ·) is used to
measure the cost:

lW (pi, p̂i, p̄i) = max
(
0, 1− sW (pi, p̂i) + sW (pi, p̄i)

)
. (3)

For the Online Algorithm for Scalable Image Similarity
learning (OASIS) in [2], [35], the Passive-Aggressive algo-
rithm is used to minimize the global loss lW . First of all,
W is initialized to an identity matrix W 0 = Id×d. Then, the
algorithm iteratively draws a random triplet (pi, p̂i, p̄i), and
solves the following convex problem with a soft margin:

W i = arg min
W

1

2
‖W −W i−1‖2F + µξ.

s.t. lW (pi, p̂i, p̄i) ≤ ξ and ξ ≥ 0
(4)

where ‖ · ‖F is the Frobenius norm (point wise L2 norm)
and µ is the tuning parameter. The classical online metric

learning model OASIS can be optimized in an efficient way,
however the learning process is not robust due to the overfitting
problem. This is because the metric matrix W is not unique
and could be with redundant freedom degree if the data points
lie in a low dimensional subspace of Rd.

To prove it, Theorem 1 shows that for the data in a subspace
with dimension r < d, a metric matrix with rank at most r
can determine the similarity measure.

Theorem 1: For any matrix X ∈ Rn×d with rank r and any
Positive Semi-definite (PSD) matrix W ∈ Rd×d, there exists
a PSD matrix Q ∈ Rd×d with rank(Q) ≤ r such that

XTWX = XTQX.

In practice, each column of X is a data point pt ∈ Rd, and
we have XT

i WXj = XT
i QXj . It means that for pair-wise

similarity measurement of Xi and Xj , the metric matrix W
is not unique.

If we construct the data matrix X from {pt, p̂t, p̄t | all t}
(each column of X is a data point pt ∈ Rd) with a metric W ,
then we can always find a metric Q whose rank is at most r
such that XT

i WXj = XT
i QXj .

Consider the training data with K classes P1, · · · , PK and
let P = ∪Ki=1Pi. Define the hinge loss function as l(W, t) =
max(0, 1− pTt Wp̂t + pTt Wp̄t) like Eq. (3) where p̂t, p̄t, pt ∈
Rd, W ∈ Rd×d, and t is a random index, which is usually
sampled uniformly from a index set T that includes K classes.

In order to estimate the metric matrix with a low rank
property, a natural idea is to solve the following optimization
problem:

min
W

: f(W ) := Et[l(W, t)] + γrank(W )

s.t. : W � 0.
(5)

Unfortunately, the optimization problem in Eq. (5) is non-
convex and NP-hard. A conventional way is to use the trace
norm ‖ ‖∗ to approximate the rank function rank(W ), which
makes the problem tractable:
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min
W

: f(W ) := Et[l(W, t)] + γ‖W‖∗

s.t. : W � 0.
(6)

If t follows the uniform distribution over the index set Φ,
then Et[l(W, t)] = 1

|Φ|
∑
t∈Φ l(W, t). If one can evaluate the

subdifferential of E[l(W, t)] at each step, then the proximal
operation can be applied to solve the problem in Eq. (6):

W i+1 = argmin
W

:
1

2
‖W −W i + αi∂Et[l(W i, t)]‖2+

αiγ‖W‖∗
s.t. : W � 0

Define the proximal operation as

proxP,Ω(x) = argmin
y∈Ω

1

2
‖y − x‖2F + P (y). (7)

In our case, P (W ) = αiγ‖W‖∗ and Ω = {W | W � 0}.
Then we have W i+1 = proxP,Ω(W i − αi∂Et[l(W i, t)]).

The gradient of Et[l(W i, t)] is not computable sometimes,
e.g., some data samples p̂t, p̄t, pt are unavailable in the ith

iteration, or it is too expensive to evaluate ∂Et[l(W i, t)]
due to the large-scale training data. In order to handle this
issue, the stochastic algorithm uses ∂l(W i, t) to approximate
∂Et[l(W i, t)] where t is randomly generated at each iteration,
due to ∂Et[l(W i, t)] = Et[∂l(W i, t)]. Thus, in the stochastic
algorithm, the basic updating rule in each iteration is W i+1 =
proxP,Ω(W i−αi∂l(W i, t)). We can summarize the algorithm
in Algorithm.1.

Algorithm 1 Online Metric Learning with Low Rank
Input: γ, α p̂t, p̄t, pt for all t
Output: W

1: Initialize i = 0 and W 0 = I ∈ Rd×d
2: Repeat the following steps
3: Generate t from its distribution
4: W i+1 = proxP (W ),Ω

(
W i − αi∂l(W i, t)

)
5: i = i+ 1

Step 4 is the key step in this algorithm. First, one can verify
that

∂l(W, t) =

 (p̄t − p̂t)pTt , l(W, t) > 0;[
0, (p̄t − p̂t)pTt

]
, l(W, t) = 0;

0, otherwise.
(8)

Note that ∂l(W, t) = 0 is a range when l(W, t) = 0. In this
case, ∂l(W, t) can take any value in this range. Theorem 2
introduces the closed form of W i+1 = proxP,Ω(W i −
αi∂l(W i, t)):

Theorem 2: Let P (W ) = ‖W‖∗ and Ω = {W | W � 0}.
We have

proxγP,Ω(C) = Dγ
(

1

2
(C + CT )

)
. (9)

The remaining issue is how to choose the step size αi. A
conventional way is to let αi = Ω(1/

√
i), which can lead

to the optimal convergence rate as E[f(W ) − f(W ∗)] ≤
O

(
1√
|Φ|

)
, where W ∗ is the optimal solution and

W =
1

|Φ|

Φ∑
i=1

Wi (10)

V. ONLINE LABEL PROPAGATION

Depending on the similarity measured by OMLLR above,
we adopt the graph-based semi-supervised learning (also
called label propagation) to make a more accurate prediction,
which associates the information of both the labeled data and
unlabeled data. For similarity graph, we define a new bi-linear
graph using OMLLR:

Definition 1: Bi-linear Graph: Assume the similarity of
pairwise points ∀ i, j, 1 ≤ i, j ≤ n, i 6= j is defined as

Si,j = max(0, Sw(i, j)) = max(0, pTi Wpj). (11)

For pi ∈ P, i ∈ [1, . . . , N ], we obtain a matrix {Sij , 1 ≤
i, j ≤ N}, where its symmetric version is Si,j = (Si,j +
Sj,i)/2.

In comparison with other traditional graph models, e.g.
k−NN or ε−NN graph, which are either sensitive to tuning
parameters (e.g. σ) or instable to define a suitable graph
structure without enough prior knowledge (e.g. k or ε), our
bi-linear graph can maintain the accuracy without tuning
parameters or prior knowledge of the topology graph.

A. Online Label Propagation

To predict the label of the new data, we define G = (V, E),
where V denotes n = nl + nu feature vectors (nl labeled
and nu unlabeled); and E contains the edges of every pair
of nodes measuring the pairwise similarity. Suppose we have
Ψ = {1, 2, . . . ,K} classes. Let F =

(
Fl

Fu

)
∈ R(nl+nu)×K ,

where Fl = [f1, f2, . . . , fnl
]T ∈ Rnl×K denotes the label ma-

trix of the labeled data, and Fu = [f1, f2, . . . , fnu
]T ∈ Rnu×K

is the label matrix of unlabeled data needed to be predicted.
In order to facilitate the calculation, we first normalize the
similarity matrix S as,

Pij = P (i→ j) =
Sij∑n
k=1 Sik

. (12)

The matrix P ∈ Rn×n can be split into labeled and unlabeled
sub-matrices,

P =

[
Pll Plu
Pul Puu

]
, (13)

where Pll ∈ Rnl×nl , Plu ∈ Rnl×nu , Pul ∈ Rnu×nl and Puu ∈
Rnu×nu . For label propagation, we have

F t+1
u ← PuuF

t
u + PulFl. (14)

When t approaches infinity, we have

Fu = lim
t→∞

(Puu)tF 0
u + (

t∑
i=1

P (i−1)
uu )PulFl, (15)

where F 0
u is the initial value of Fu. Since P is a row

normalized matrix, the sum of each row of the sub-matrix
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Algorithm 2 Testing & Online Learning
Input: Query sample q, similar matrix W , training set P =
{pi}, threshold Tξ

Output: W ?, P ?

1: Generate Bi-linear Graph S
2: c∗q = arg max

c∈Ψ
Ec(q)

3: if E(cq)/E(cq) > Tξ then
4: Insert q ⇒ queue Q
5: end if
6: if Full (Q) then
7: Update (Q)
8: Insert Q⇒ P and clear Q
9: end if

10: return W ? = W , P ? = P

11: Function Update (Q)
12: Set i = 1
13: while i < ITER-MAX

⋂
‖W i −W i−1‖F < Tw do

14: Get sample qi ∈ Q, q+
i ∈ cqi and q−i ∈ cqi

15: Update W by Algorithm.1
16: i = i+ 1
17: end while

(Puu)n approaches to zero. As a result, the first item of Eq.
(15) converges to zero, (Puu)nF 0

u → 0. Furthermore, the
second item of Eq. (14) can be written as

Fu = (I − Puu)−1PulFl.

For online predicting the label of the sequentially input sample,
we have nu = 1, thus Puu ∈ R1×1 is a fixed real number and
(I − Puu)−1 is a constant if Puu is not equal to 1, so

Fu ∝ PulFl. (16)

Eq. (16) is also consistent with the energy function we defined:

Ec(xi) =

n∑
j=1

δc(j)Si,j , δc(i) =

{
1, i ∈ c
0, otherwise, (17)

where c ∈ {1, . . . ,K}; xi denotes the query sample; Sx,j , j =
{1, . . . , n} is the bi-linear graph; and δc(i) is an indicate
function. Ec(x) is the energy function, which measures the
cost of x belonging to class c. Thus, given x, the optimal
solution c? is the one maximizing the energy Ec(x), as

c?x = arg max
c

Ec(x). (18)

B. Updating

We design an adaptive model updating scheme depending
on the property of each testing sample. As shown in Fig. 2 and
Algorithm. 2, all the labeled testing samples are used to update
the model; and for the unlabeled testing sample, it will be used
to update the model if it satisfies the following criterion:

Ec?(q) > Tξ × Ec(q), ∀c, c 6= c?. (19)

In this paper Tξ = 1.2. All samples used to update are pushed
into a queue Q and when Q is full, the matrix W of the

model will be iteratively updated using both the labeled data
and unlabeled points with high confidence scores together. By
tuning the length L of the Q, we can select to update the online
model incrementally (L = 1) or with mini-batch training (L >
1).

VI. EXPERIMENTS

In this section, we perform several experiments and com-
parisons to validate the proposed approach. Experiments are
conducted on three types of dataset:
• Synthesized data, which is randomly generated for a fair

comparison.
• Scene categorization dataset, including the 8-class sports

image dataset, and the Visual Place Categorization (VPC)
09 video dataset, which is captured in the same fashion as
a real online system. We extract the CENTRIST feature
[15] from each image (or frame). The CENTRIST is in
total 1302-d with the spatial-pyramid structure and we
only use the first level of 42-d in this paper.

• Image classification dataset, i.e. Caltech 256. For image
representation, we adopt the same feature used in [36] for
a fair comparison, which is a spare representation based
on the framework of local descriptors by combing the
color histogram and texture histogram with the feature
dimension as 1000.

A. Evaluation Criterion
We compare our method Online Metric Learning via Low

Rank (OMLLR) with the state-of-the-art methods including
both online learning methods and batch training methods. The
accuracy is defined by Eq. (20):

Acc =
]{correct categorizations samples}

]{total number of samples}
(20)

For batch training methods, we can achieve a definitive accu-
racy as defined in Eq. (20); and for online learning methods, as
the model is updated incrementally, the accuracy will fluctuate
with the iterations. Therefore, we adopt the model with the
highest accuracy for comparison.

OASIS: WOASIS = arg max
Wj

Acc(j), j ∈ {1, . . . , N}

LMNN: WLMNN = arg max
Wj

Acc(j), j ∈ {1, . . . , N}
(21)

where j is the index of iteration from 1 to N , and Wj is the
matrix generated in each iteration.

For our OMLLR, which is designed to achieve the expec-
tation of the model with the highest accuracy, we adopt two
criteria for comparison, as in Eq. (22):

Ours1: W =

∑N
i=1 αiWi∑N
i=1 αi

Ours2: Wmax = arg max
Wi

Acc(i), i ∈ {1, . . . , N}
(22)

where i is the iteration index from 1 to N , αi = 1
√
i and

Wi is the matrix generated by each iteration. The weighted W ,
“Ours1”, is the expectation of the model W , which guarantees
to convergence in theory; and “Ours2” is the same as Eq. (21),
i.e. the model W with the highest accuracy Acc.
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Fig. 3. Comparison of the accuracy between our methods and the state-
of-the-art methods when varying the rank and fixing the feature dimension
(dim=200), where the y-axis is the accuracy and the x-axis denotes the rank.

B. Synthesized Data

We first use the synthesized data to evaluate the performance
of our online metric learning model, OMLLR. The synthesized
data have two classes, i.e. positive and negative. In order
to generate low rank synthesized data, each class of data
is first sampled from a low-dimensional multivariate normal
distribution of full rank, where the mean and covariance
matrices are randomly generated by a uniform distribution;
then we embed them into a high dimensional feature space
by random projection. The size of both training and testing
samples is 1000, so we have totally 2000 samples. For a fair
comparison, the Gaussian noisy is added into the synthesized
data as well.

In Tab. I, we record results of comparing our method
“Ours1” (the weighted W ) and “Ours2” (the best result of W )
with the state-of-the-art methods (OASIS [2], [35] and K-NN),
where the “rank” varies from 5 to 100, and the corresponding
feature dimension “dim” is twice of the rank. We can see that
the accuracy of “Ours1” is lower than that of the “Ours2”, but
outperforms the classical online learning method (OASIS) and
the benchmark batch training method, K-NN. In Fig. 3, we fix
the feature dimension “dim” to 200, and vary the rank from
40 to 200 (with the interval of 20). The results are similar
to those in Tab. I, i.e. the accuracy of the benchmark method
K-NN is the worst one, and our methods both “Ours1” and
“Ours2” outperform the classical OASIS. Another interesting
point is that, when the feature dimension is fixed, the lower
the data rank, the greater the gap of the accuracy between ours
and OASIS, which justifies the effectiveness of the low rank
constraint in our method. Therefore, we can conclude that our
methodology can still work well for high dimensional real data
having low rank property. Fig. 4 shows an example of online
learning, our methodology not only outperforms OASIS, but
also converges after only several iterations, e.g. “Ours1”.

C. Sport 8 Dataset

The dataset in [17] contains images of eight sports, bad-
minton, bocce, croquet, polo, rock climbing, rowing, sailing,
and snowboarding as shown in Fig. 5. The number of images
in each category ranges from 137 to 250. We randomly sample
50 images from each category for the initial training of W ,
and leave the remaining images for testing. The confusion
matrix is shown in Fig. 6, where scores are from 64% to 91%

0 20 40 60 80
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0.85

0.9

0.95

1

1.05

 

 

Ours1 Ours2 Oasis3

Fig. 4. An example of the simulation result, where the x-axis is the number
of iterations (10k per step) and the y-axis is the accuracy.

TABLE I
THE RESULTS OF COMPARISONS BY VARYING THE DIMENSION AND RANK

OF FEATURES, WHERE OURS1 IS THE RESULT OF OUR METHOD USING
WEIGHTED W ; OURS2 IS THE RESULT OF W WITH THE HIGHEST

ACCURACY; OASIS IS THE RESULT OF CLASSICAL ONLINE METRIC
LEARNING [2], [35]. THE K-NN (K NEAREST NEIGHBOR METHOD) IS

ADOPTED AS A BENCHMARK HERE.

Method dim=10 20 40 60 100 200
rank=5 10 20 30 50 100

Ours1 81.75 99.50 98.75 89.25 87.25 85.75
Ours2 86.25 99.50 99.00 89.50 90.25 86.50
Ours1 (γ = 0) 83.5 96.50 96.50 86.50 87.25 84.75
OASIS 82.25 97.00 96.00 85.50 85.50 85.00
K-NN 75.25 97.75 95.75 83.25 80.75 76.25

with an average accuracy of 75.2%. In Tab. II, we compare
our algorithm with the state-of-the-art methods, where our
accuracy is higher than that of Li et al. [17], Cheng’s [37]
using an L1-graph based semi-supervised learning, and OASIS
[2], [35], although a bit lower than Wu et al. [15]. However,
Wu’s [15] uses more training samples and higher feature
dimension 1302 with an RBF kernel, while ours uses much
fewer training samples and lower feature dimension with
incremental updating. Fig. 7 shows an example of online
learning. Both our methods for both “Ours1” and “Ours2”
outperform OASIS in every iteration and converge as well.

TABLE II
THE ACCURACY OF THE SPORT 8 DATASET.

Method Training Type Accuracy (%)
Li [17] Batch 73.4
Wu [15] Batch 78.2
Cheng [37] Semi-supervised+Batch 73.2
OASIS [2], [35] Online 69.40
Ours1 Online 75.06
Ours2 Online 77.03

D. Visual Place Categorization (VPC) 09 Dataset

The Visual Place Categorization (VPC) 09 dataset [39]
is captured using a rolling tripod plus a camera to mimic
a robot, which is working in the same fashion as an on-
line system. The VPC dataset was collected from 6 home
environments, including 12 different scenarios (bathroom,
bedroom, closet, dining-room, exercise-room, family-room,
kitchen, living-room, media-room, workspace and transition).
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TABLE III
THE COMPARISON OF THE AVERAGE ACCURACY OF OUR OMLLR AND THE STATE-OF-THE-ART METHODS USING VPC 09 DATASET.

Filter Train Methods Home1 Home2 Home3 Home4 Home5 Home6 Bed Bath Kitchen Living Dining Avg

No

Ours1 42.36 21.53 37.53 40.43 32.22 38.28 44.27 57.83 17.75 41.60 15.50 35.39

Online
Ours2 54.50 31.12 42.89 54.99 41.95 51.13 44.09 66.76 26.22 50.63 42.77 46.09

OASIS [2], [35] 25.33 21.32 21.99 20.57 24.84 39.18 25.92 6.02 3.47 82.28 10.00 25.54
LMNN [38] 39.41 28.75 36.79 39.06 30.74 34.88 41.44 51.23 26.02 38.21 17.80 34.94

No Batch
IROS [14] 44.77 33.33 40.68 43.28 41.10 48.07 48.13 65.71 46.56 29.18 19.78 41.87

1-NN 41.83 27.48 33.96 38.66 30.85 29.70 40.69 46.38 26.92 40.92 13.81 33.75
5-NN 41.18 28.23 34.33 39.82 31.62 31.56 39.21 46.32 28.78 44.94 13.04 34.46

Yes
Ours1 46.03 21.66 38.59 41.95 33.05 41.29 41.12 63.04 18.52 50.06 12.74 37.10
Ours2 59.65 31.97 44.88 60.48 43.99 57.10 43.33 72.60 31.79 58.30 42.37 49.68

IROS [14] 44.58 35.89 40.96 49.93 46.91 55.46 64.89 74.77 48.24 20.59 19.61 45.62

Fig. 5. Sample images from the Sport 8 datasets, including badminton, bocce,
croquet, polo, rock climbing, rowing, sailing, and snowboarding.
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Fig. 6. Confusion matrix for the Sport 8 dataset, where the label of each row
is the ground truth and the label of each column is the predicted category.
The average accuracy is 77.03%, and random chance is 12.5%. For a better
view, please check the electronic version.

The VPC dataset was compressed in JPEG (95% quality)
images with the resolution of each image 1280× 720.

We compare our online method (OMLLR) with the state-
of-the-art methods, including two online methods (OASIS
[2], [35] and LMNN [38]) and batch training methods (K-
Nearest Neighbor, 1-NN and 5-NN, and Wu’s method [14]).
The experiments are setup as recommended by [14], so we
also adopt 5 categories for comparison in our paper, i.e.
bedroom, bathroom, kitchen, living-room and dining-room. A
leave one out cross validation strategy is adopted to evaluate
our algorithm. The proposed method was repeated 6 times.
In each run, one home was reserved for testing and all other
5 homes were combined to form a training set. The overall

Fig. 7. The comparison of our OMLLR with OASIS using the Sport 8
dataset, where the x-axis is the number of iteration (10k per step) and the
y-axis is the accuracy.

accuracy of our VPC system is the average of the 6 individual
homes.

We first compare our method with OASIS [2], [35] as shown
in Fig. 8, where all the online learning models are run for 3
million iterations, and each subfigure corresponds to home 1
to home 6. In 3 million iterations of Fig. 8, the accuracy of
our online model fluctuates in each iteration and the accuracy
of both “Ours1” and “Ours2” outperforms OASIS in all the
cases. Although the accuracy of the expectation of the model
“Ours1” is not better than the best one “Ours2”, it is always
better than those of the other iterations, especially for Home3.
Moreover, “Ours1” guarantees to converge, and the property
of convergence is critical for an online algorithm in practice.

The comparisons are shown in Tab. III, where for the
average accuracy of 6 categories, both “Ours1” and “Ours2”
outperform other online learning methods, e.g. OASIS [2],
[35], LMNN [38] and also K-NN based batch training meth-
ods (1-NN and 5-NN); and for IROS [14] using the batch
training model, the accuracy of “Ours2” is better than that of
IROS. In general, the accuracy of online learning models is
always worse than the that of batch training methods, but the
performance of our OMLLR is acceptable.

For the issue of frame-level scene classification, the label
of consecutive frames has high correlation. In [14], Wu et al.
use a temporal smooth to improve the accuracy of the coarse
result, and for us, we only adopt a simple median filter for
frame-level temporal smooth with filter width as 5 frames.
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TABLE IV
CATEGORIZATION ACCURACY (OURS1) OF ALL HOMES AND CATEGORIES

WHEN THE BAYESIAN FILTERING IS NOT USED.

bed bath kitchen living dining average
home1 28.03 83.51 12.24 95.12 79.34 59.65
home2 28.60 81.15 9.92 27.44 12.72 31.97
home3 50.67 89.89 29.82 15.34 38.69 44.88
home4 23.21 56.60 79.37 92.78 50.46 60.48
home5 81.79 57.51 14.06 37.59 29.00 43.99
home6 47.71 66.96 45.32 81.53 44.00 57.10
average 43.33 72.60 31.79 58.30 42.37 49.68

TABLE V
CATEGORIZATION ACCURACY (OURS2) OF ALL HOMES AND CATEGORIES

WHEN THE BAYESIAN FILTERING IS NOT USED.

bed bath kitchen living dining average
home1 30.97 75.08 13.49 80.49 72.46 54.50
home2 31.44 71.51 8.70 21.32 22.61 31.12
home3 48.36 87.93 25.79 15.02 37.33 42.89
home4 27.86 48.23 65.02 85.39 48.43 54.99
home5 77.91 55.36 12.40 33.58 30.49 41.95
home6 48.00 62.45 31.91 67.97 45.33 51.13
average 44.09 66.76 26.22 50.63 42.77 46.09

After the operation of temporal smooth filter, the accuracy of
both online learning and batch training improves, and “Ours2”
is still better than IROS. Tab. IV and Tab. V are the specific
results by “Ours1” and “Ours2”. As the testing and training
samples are from different scenes [14], e.g. to test Home 1, the
training samples include images from Home 2 to 6. Most of
the results are lower than 50%, and both “Ours1” and “Ours2”
outperform other methods. The frame-level results of scene
categorization for VPC 09 are shown in Fig. 10. The images
of the left column are examples of each home; and each figure
of the right column is the frame-level result, where the x-axis
is the frame index and the y-axis is the 5 class labels (bed,
bath, kitchen, living and dining correspond to label 1, 2, 3, 5
and 6 with label 4 absent), and the red and blue line correspond
to our predicted result and the ground truth, respectively. So
the more overlapping of red and blue lines, the higher the
accuracy of our model.

E. Caltech 256

We also test our OMLLR using the Caltech 256 dataset
[40], which consists of 30607 images from 257 categories and
is evaluated by humans in order to ensure image quality and
relevance. Following [36], we also tested on subsets of classes
from Caltech 256, i.e.
• 10 classes: bear, skyscraper, billiards, yo-yo, minotau-

r, roulette-wheel, hamburger, laptop-101, hummingbird,
blimp.

• 20 classes: airplanes-101, mars, homer-simpson, hour-
glass, waterfall, helicopter-101, mountain-bike starfish-
101, teapot, pyramid, refrigirator, cowboy-hat, giraffe,
joy-stick, crab-101, birdbath, fighter-jet, tuning-fork,
iguana, dog.

• 50 classes: car-side-101, tower-pisa, hibiscus, sat-
urn, menorah-101, rainbow, cartman, chandelier-101,
backpack, grapes, laptop-101, telephone-box, binocu-
lars, helicopter-101, paper-shredder, eiffel-tower, top-hat,

tomato, star-fish-101, hot-air-balloon, tweezer, picnic-
table, elk, kangaroo-101, mattress, toaster, electric-guitar-
101, bathtub, gorilla, jesus-christ, cormorant, mandolin,
light-house, cake, tricycle, speed-boat, computer-mouse,
superman, chimp, pram, friedegg, fighter-jet, unicorn,
greyhound, grasshopper, goose, iguana, drinking-straw,
snake, hotdog.

For each set, images from each class are split into a training
set of 40 images and a test set of 25 images. A cross-validation
procedure is also adopted to select the values of hyper param-
eters. For our OMLLR, the regularization parameter γ in Eq.
(5) is in the set of γ ∈ {0.1, 0.01, 0.001, 0.001}.

For evaluation, a standard ranking precision measures based
on nearest neighbors is also used. For each query image in
the test set, all other training images are ranked according to
their similarity to the query image. The number of same-class
images among the top k images (the k nearest neighbors, e.g
1, 10, 50) is computed. When averaged across test images
(either within or across classes), this yields a measure known
as precision-at-top-k, providing a precision curve as a function
of the rank k. We also calculate the mean average precision
(mAP), a widely used criterion in the information retrieval
community, where the precision-at-top-k is first calculated for
each test image and averaged over all positions k that have a
positive sample.

Our method, OMLLR is compared with the state-of-the-art
online metric learning methods, including OASIS [2], [35],
[36], LMNN [32], LEGO [33], MCML [34] and Euclidean
(the standard Euclidean distance in feature space). The statistic
result is proposed in Tab. VI, where our OMLLR is the
result of the expectation of the model W , i.e. “Ours1”, and
OMLLR(γ = 0 is used for justify the efficiency of low rank
constraint, please check Sec. VI-F for details. Our OMLLR
outperforms all state-of-the-arts for the full range of k. Another
interesting thing is that our performance gain is decreased
with the increase of the class number, i.e. from 10 classes
to 50 classes. This is because for a fixed training steps (35k
iterations), the more the number of classes, the lower the
probability of different samples meet each other, which will
destroy the performance. Fig. 9 demonstrates the precision
curve for retrieval, and the performance of our method is better
than others for all cases.

F. Comparisons

i Evaluating the effectiveness of low rank constraint:
To justify the effectiveness of low rank constraint, we can
eliminate the impact of low rank constraint by setting the
value of γ in Eq. (5) to 0, which is similar to the model
definition of Eq. (4) as OASIS. The results are shown
in Tab. VI using Caltech 256 dataset, the performance
of our OMLLR is the best one; in comparison, ours
with γ as 0 decreases accordingly and is similar to other
models without low rank constraint, such as OASIS,
MCML, LEGO and LMNN. This result again justifies
the effectiveness of low rank constraint.

ii Comparing the influence of varying the initial training
data size:
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Home1 Home2 Home3

Home4 Home5 Home6

Fig. 8. The comparison of the accuracy between our OMLLR and OASIS [2], [35] for home1-6. In each figure, the x-axis corresponds to the iteration steps
(10k for each) and the y-axis is the current accuracy, where the accuracy of “Ours1”, “Ours2” and OASIS is denoted by sold green line, dash red line and
dash blue line, respectively.
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Fig. 9. Comparison of the performance of OMLLR, OASIS, LMNN, MCML, LEGO and the Euclidean metric in feature space. Each curve shows the
precision at top k as a function of k neighbors. The results are averaged across 5 train/test partitions (40 training images, 25 test images), error bars are
standard error of the means, black dashed line denotes chance performance. (A) 10 classes. (B) 20 classes. (C) 50 classes.

TABLE VI
AVERAGE PRECISION AND PRECISION AT TOP 1, 10, AND 50 OF ALL COMPARED METHODS. VALUES ARE AVERAGES OVER 5-FOLD CROSS-VALIDATIONS;
± VALUES ARE THE STANDARD DEVIATION ACROSS THE 5 FOLDS. A ’∗’ DENOTES CASES WHERE A METHOD TAKES MORE THAN 5 DAYS TO CONVERGE.

OMLLR(γ = 0) MEANS IT DOES NOT CONSIDER THE LOW RANK CONSTRAINT.

10 classes OMLLR OMLLR(γ = 0) OASIS MCML LEGO LMNN Euclidean
Matlab Matlab Matlab Matlab+C Matlab Matlab+C -

Mean avg prec 41 ± 1.6 34± 1.6 33± 1.6 29± 1.7 27± 0.8 24± 1.6 23±1.9
Top 1 prec. 51 ± 2.8 44± 3.2 43± 4.0 39± 5.1 39± 4.8 38± 5.4 37± 4.1

Top 10 prec. 45 ± 2.2 39± 2.6 38± 1.3 33± 1.8 32± 1.2 29± 2.1 27± 1.5
Top 50 prec. 34 ± 1.0 26± 1.5 23± 1.5 22± 1.3 20± 0.5 18± 1.5 18± 0.7

20 classes OMLLR OMLLR(γ = 0) OASIS MCML LEGO LMNN Euclidean
Mean avg prec 23 ± 1.3 21± 1.3 21± 1.4 17± 1.2 16± 1.2 14± 0.6 14± 0.7

Top 1 prec. 33 ± 1.7 29± 1.8 29± 2.6 26± 2.3 26± 2.7 26± 3.0 25± 2.6
Top 10 prec. 26 ± 1.6 23± 1.7 24± 1.9 21± 1.5 20± 1.4 19± 1.0 18± 1.0
Top 50 prec. 20 ± 1.0 17± 0.6 15± 0.4 14± 0.5 13± 0.6 11± 0.2 12± 0.2

50 classes OMLLR OMLLR(γ = 0) OASIS MCML LEGO LMNN Euclidean
Mean avg prec 14 ± 0.3 13± 0.4 12± 0.4 ∗ 9± 0.4 8± 0.4 9± 0.4

Top 1 prec. 22 ± 1.4 18± 1.5 21± 1.6 ∗ 18± 0.7 18± 1.3 17± 0.9
Top 10 prec. 17 ± 0.3 15± 0.4 16± 0.4 ∗ 13± 0.6 12± 0.5 13± 0.4
Top 50 prec. 12 ± 0.4 11± 0.3 10± 0.3 ∗ 8± 0.3 7± 0.2 8± 0.3
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TABLE VII
COMPARING THE INFLUENCE OF VARIOUS TRAINING DATA SIZE. THE

FIRST ROW INDICATES THE TRAINING DATASIZE VARYING FROM 100 TO
1000.

100 250 500 750 1000

Ours1 84.35 88.05 89.76 90.10 90.11
Ours2 86.35 88.44 89.76 90.11 90.12

TABLE IX
THE COMPARISON OF TIME CONSUMPTION, WHEN THE FEATURE

DIMENSION INCREASES FROM 40 TO 200 IN THE TOP ROW. THE TIME
CONSUMPTION FOR 1000 ITERATIONS IS RECORDED ACCORDINGLY.

Method 40 80 120 160 200

Ours 0.434 1.511 3.885 7.656 12.151
OASIS [2], [35] 0.092 0.096 0.107 0.114 0.130

We adopt the synthesized data to analyze the influence
of the size of the initial training data, which varies from
100 to 1000, as shown in Tab. VII. We can find that by
increasing the size of training data from 100 to 750, the
accuracy of our model OMLLR for both Ours1 and Ours2
is improved significantly; and from the case of 750 to
1000, as the data size is large enough, the performance of
our model is not changed. For other practical applications,
a larger amount of training data is helpful to improve the
performance of online learning model. However, it needs
more iterations and consumes more computation time.
Therefore, users should balance the size of training data
and computational cost.

iii Comparing Bi-linear Graph with different similarity
graphs:
To prove the effectiveness of our Bi-linear graph, we
compare our Bi-linear graph with the classical graphs
(such as k−NN, ε−NN) in Tab. VIII using Sport 8
dataset. We can see that our proposed method not only
outperforms other graphs, but also does not need to tune
any parameters about the graph, where the traditional
similarity graphs are parameter sensitive and their per-
formances are not robust without a suitable selection of
the parameters, e.g. σ = 20 or ε = 25.

iv Comparing the time Consumption:
For comparing the time consumption of our OMLLR with
the state-of-the-art methods, we test them using both the
synthesized data and real data, i.e. Caltech 256, where
our OMLLR is fully implemented in Matlab.
For the synthesized data, Tab. IX shows the comparison of
time consumption between our OMLLR and the classical
model, OASIS [2], [35]. With the feature dimension
increases from 40 to 200, the time consumption is
recorded every 1000 iterations. The comparison of time
consumption for Caltech 256 dataset is shown in Tab. X,
where our OMLLR is slower than OASIS, comparable
with LEGO and LMNN, but much faster than MCML.
Even though our OMLLR is more time consuming than
OASIS, the performance of our OMLLR is better than
other online metric learning methods, as shown in Tab.
VI. This is because we adopt the SVD transformation for
model optimization. All the experiments are performed on
the computer with 4G RAM, Pentium IV 2.6GHz CPU.

VII. CONCLUSIONS

Most state-of-the-art scene recognition technologies relay
on offline training in a batch model, thus may not be suitable
for online scene recognition, which is still a challenging
problem for computer vision. As the online image data char-
acteristics may change over time, in this paper, we present
an incremental metric learning framework for self-supervised
online scene classification. Given a number of labeled data
to initialize the similarity metric followed by a sequential
input stream of unseen testing samples, the similarity metric is
updated by maximizing the margin between different classes
of samples with a low-rank constraint. The pair-wise similarity
is measured by our new bi-linear graph for online label
propagation to the new data. Next, by retaining the new
images that are confidently labeled, the scene recognition
model is further updated. Experiments on various benchmark
datasets and comparisons with other state-of-the-art methods
demonstrate the effectiveness and efficiency of our algorithm.
Besides online scene recognition, our proposed online learning
framework that can also be applied to other applications,
such as object detection [41], object tracking [42], and image
retrieval [2].
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APPENDIX

Proof of Theorem 1

Proof: Since W is a PSD matrix, it can be decomposed as
W = UUT where U ∈ Rd×d. Consider the following equation
XTV = XTU with respect to V . Define B ∈ Rd×(d−r)

with linear dependent columns B.i’s in the null space of
XT . One can obtain the solution as V = U + BZ where

Z ∈ R(d−r)×d. Split U and B into two parts U =

(
U1
U2

)
and B =

(
B1
B2

)
where U1 ∈ R(d−r)×d, U2 ∈ Rr×d, B1 ∈

R(d−r)×(d−r), and B2 ∈ Rr×r. Define Z = −B1−1U1. One

verifies that V =

(
0

U2−B2B1−1U1

)
and its rank is at

most r. Since XTU = XTV , we obtain XTWX = XTQX
and the rank of Q is r by letting Q = V V T .

Proof of Theorem 2

Proof: Decompose C into the symmetric space and the
skew symmetric space, i.e., C = Cy+Ck where Cy = 1

2 (C+
CT ) and Ck = 1

2 (C−CT ). Note that 〈Cy, Ck〉 = 0. Consider
W � 0 (W must be symmetric) in the following

‖W − C‖2F =‖W − Cy − Ck‖2F
=‖W − Cy‖2F + ‖Ck‖2F + 2〈W − Cy, Ck〉
=‖W − Cy‖2F + ‖Ck‖2F .

(23)
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Thus, we obtain proxγP,Ω(C) = proxγP,Ω(Cy).

min
W�0

1

2
‖W − Cy‖2F + γ‖W‖∗

= min
W�0

1

2
‖W − Cy‖2F + max

‖Z‖≤γ,Z∈SRd×d
〈W,Z〉

= max
‖Z‖≤γ,Z∈SRd×d

min
W�0

1

2
‖W − Cy‖2F + 〈W,Z〉

= max
‖Z‖≤γ,Z∈SRd×d

min
W�0

1

2
‖W − Cy + Z‖2F + 〈Cy, Z〉 −

1

2
‖Z‖2F

= max
‖Z‖≤γ,Z∈SRd×d

1

2
‖(Cy − Z)−‖2F + 〈Cy, Z〉 −

1

2
‖Z‖2F

(24)
The first equality uses the dual form of the trace norm of
a PSD matrix, where SR denotes the symmetric space. The
second equality is due to Von Neumann theorem. The last
equality uses the result that the projection from a symmetric
matrix X onto the SDP cone is X+, which also implies that
W = (Cy − Z)+.

It follows that

max
‖Z‖≤γ,Z∈SRd×d

1

2
‖(Cy + Z)−‖2F + 〈Cy, Z〉 −

1

2
‖Z‖2F

= max
‖Z‖≤γ,Z∈SRd×d

1

2
‖(Cy − Z)−‖2F −

1

2
‖Cy − Z‖2F +

1

2
‖Cy‖2F

= max
‖Z‖≤γ,Z∈SRd×d

− 1

2
‖(Cy − Z)+‖2F +

1

2
‖Cy‖2F

(25)
From the last formulation, we obtain the optimal Z∗ = Tγ(Cy)
and the optimal W ∗ = (Cy − Z∗)+ = (Cy − Tγ(Cy))+ =
Dγ(Cy)+ = Dγ(Cy). It completes our proof.
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Fig. 10. The results of scene categorization for VPC 09. The images of the left column are examples of each home. Each figure of the right column is the
frame-level result, where the red and blue line correspond to the predicted result of our methodology after smooth filter and the ground truth, respectively,
and the x-axis is the frame index and the y-axis is the 5 class labels (bed, bath, kitchen, living and dining correspond to label 1, 2, 3, 5 and 6 respectively
with label 4 absent).


