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Context-Aware Discovery of Visual
Co-Occurrence Patterns

Hongxing Wang, Student Member, IEEE, Junsong Yuan, Member, IEEE, and Ying Wu, Senior Member, IEEE

Abstract— Once an image is decomposed into a number of
visual primitives, e.g., local interest points or regions, it is of
great interests to discover meaningful visual patterns from them.
Conventional clustering of visual primitives, however, usually
ignores the spatial and feature structure among them, thus
cannot discover high-level visual patterns of complex structure.
To overcome this problem, we propose to consider spatial and
feature contexts among visual primitives for pattern discovery.
By discovering spatial co-occurrence patterns among visual prim-
itives and feature co-occurrence patterns among different types
of features, our method can better address the ambiguities of
clustering visual primitives. We formulate the pattern discovery
problem as a regularized k-means clustering where spatial and
feature contexts are served as constraints to improve the pattern
discovery results. A novel self-learning procedure is proposed
to utilize the discovered spatial or feature patterns to gradually
refine the clustering result. Our self-learning procedure is guar-
anteed to converge and experiments on real images validate the
effectiveness of our method.

Index Terms— Clustering, feature context, spatial context,
visual pattern discovery.

I. INTRODUCTION

IMAGES can be decomposed into visual primitives, e.g.,
local interest points or image regions. With each visual

primitive described by a feature vector, it is of great interests
to cluster these visual primitives into prototypes, e.g., visual
words. Then by representing an image as a visual document,
conventional text analysis methods can be directly applied.
Although it has been a common practice to build a visual
vocabulary for image analysis, it remains a challenging prob-
lem to cluster visual primitives into meaningful patterns. Most
existing visual primitive clustering methods ignore the spatial
structure among the visual primitives [1], thus bring unsatis-
factory results. For example, a simple k-means clustering of
visual primitives can lead to synonymous visual words that
over-represent visual primitives, as well as polysemous visual
words that bring large uncertainties and ambiguities in the
representation [2], [3].
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As visual primitives are not independent of each other,
to better address the visual polysemous and synonymous
phenomena, the ambiguities and uncertainties of visual prim-
itives can be partially resolved through analyzing their spatial
contexts [4], [5], i.e., other primitives in the spatial neigh-
borhood. Two visual primitives, although exhibit dissimilar
visual features, may belong to the same pattern if they have
the same spatial contexts. On the other hand, even though
two visual primitives share similar features, they may not
belong to the same visual pattern if their spatial contexts are
completely different. By considering the spatial dependency
among visual primitives, many previous work have tried to
discover the spatial co-occurrence patterns of visual primitives,
e.g., visual phrases [6]–[8]. Such co-occurrence patterns, once
discovered, can be utilized to better address the ambiguities
and uncertainties among visual primitives and have proven to
be helpful for object categorization and image search.

Despite previous success of utilizing spatial visual patterns,
there lacks a principled solution that can leverage visual
patterns to improve the clustering of visual primitives. For
example, [6] applies data mining methods first to find the
spatial visual patterns. After that it relies on a separate sub-
space learning to refine the presentation and clustering of
visual primitives. As the clustering of visual primitives and
the discovery of visual pattern will influence each other, it is
preferred to provide a uniformed solution that can integrate
visual pattern discovery into the process of visual primitives
clustering. Moreover, besides the spatial dependencies among
visual primitives, a visual pattern can exhibit certain feature
dependencies as well. For example, instead of using a single
feature vector, a sheep image region (as a visual primitive)
can also be described by a co-occurrence of the white (color)
and fur (texture) attributes. Since visual primitives can be
easily described by multiple types of features or attributes,
besides discovering spatial co-occurrence patterns, it is equally
interesting to discover feature/attribute co-occurrence patterns
in an image. Such a feature/attribute co-occurrence discovery
problem, however, is seldom addressed in the literature.

In this work, we propose a principled solution to address
the above mentioned two problems of visual co-occurrence
pattern discovery. First, we propose a regularized k-means
formulation that adds spatial co-occurrences as the constraints
to the conventional k-means clustering. It can leverage the
discovered spatial co-occurrence patterns to correct the label-
ing of visual primitives. A novel self-supervised clustering
procedure is proposed to allow the co-occurrence pattern
discovery and visual primitive clustering to help each other,
thus leads to a better visual vocabulary as well as better spatial
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Algorithm 1 Spatial Context-Aware Clustering

co-occurrence patterns. Moreover, besides considering the
spatial co-occurrence pattern, we also add the feature
co-occurrence pattern into consideration and provide a uni-
formed formulation that can handle both spatial and feature
co-occurrence patterns. Both spatial and feature structure of
the visual patterns can thus be exhibited. To the best of our
knowledge, it is the first work that can consider both spatial
co-occurrences and feature co-occurrences with a uniformed
formulation.

The contributions of our work are summarized in the
following two aspects.

• We provide a regularized k-means clustering formulation
of visual co-occurrence pattern discovery, and propose
a novel self-supervised learning procedure to leverage
the discovered visual co-occurrence patterns to guide the
clustering of visual primitives. Such a self-supervised
learning is proven to converge in finite steps.

• We further extend the spatial co-occurrence pattern dis-
covery to feature co-occurrence pattern discovery. A uni-
formed formulation is proposed that can leverage both
spatial and feature co-occurrence patterns and let them
boost each other to improve the pattern discovery results.

The rest of this paper is organized as follows: Sec. II
discusses the related work of the paper. In Sec. III, we present
the formulation of the spatial context-aware clustering and
apply the proposed Algorithm 1 for an effective data simula-
tion. In Sec. IV, we propose Algorithm 2 to combine feature
contexts and spatial contexts for clustering improvement and
pattern discovery. More experiments are presented in Sec. V.
Finally, we conclude the paper in Sec. VI. This manuscript
expands upon our previous conference papers [9] and [10].

II. RELATED WORK

An information-rich visual pattern is composed of a group
of visual primitives with a certain spatial configuration.
The discovery of visual patterns can contribute to many
applications such as image search [8], [11]–[13], object

categorization [6], [7], [14]–[16], scene understanding
[17]–[25], and video analysis [26]–[29]. Many approaches
have been proposed to discover such frequent spatial patterns
of visual primitives. These methods can be generally divided
into bottom-up visual pattern mining and top-down generative
visual pattern modeling.

For the bottom-up visual pattern mining methods, the spatial
co-occurrence is an underlying principle. The early studies
usually rely on the transaction-based neighborhood represen-
tation, which encodes which visual words appear together in
a given spatial neighborhood. For example, the representative
methods include [6], [27], [30]. The method proposed in [27]
performs clustering for visual pattern discovery. The frequent
pattern mining methods [31] are used in [6] and [30].

Since the frequency information of visual words is usually
not included in the transaction representation, several methods
propose to consider the word frequencies together with spatial
neighborhood representation such as in [32] and [33]. In [32],
the authors propose a bag-to-set (B2S) representation to trans-
form word frequencies into a longer transaction. However this
representation cannot avoid the generation of artificial visual
patterns. Recently the bag of frequent local histograms method
proposed in [33] keeps all the frequency information without
bringing artificial patterns.

The above methods are all proposed to mine frequent visual
word compositions. However, we have to first quantize visual
features of visual primitives to obtain the visual word vocabu-
lary. A poor word quantization may degrade the visual pattern
mining performance. Therefore there are also some word-free
visual pattern mining methods such as in [21], [34], and [35].
In [21], each image is randomly partitioned several times to
generate a pool of subimages, followed by the common visual
pattern discovery from the frequent appearing subimages.
In [34], by feature indexing and matching, a hierarchical
representation of spatially feature compositions are learned.
The method proposed in [35] utilizes the property that the
instances from the same visual pattern can be generated by
each other to develop a visual category pattern discovery
method called clustering by composition.

Besides the spatial co-occurrence visual pattern discovery,
some researchers focus on discovering geometry preserving
visual patterns. In [36], the authors use the relative spa-
tial distance, relative scale difference and relative headings
between pairwise visual words to represent the geometric
relationship between them. The consistent geometric visual
patterns are discover by a further frequent subgraph pattern
mining. In [8], the authors derive an offset space by the
relative location difference between each visual word pair in
two images. Because the visual words exhibiting the same
geometric relationship will be mapped to the same place on
the offset space, the high-order geometry preserving visual
patterns can be mined by Hough Voting.

In addition to the above bottom-up visual pattern mining,
there are also considerable methods in modeling visual pat-
terns from top down, such as the constellation model in [37],
the pictorial model in [38], the bayesian model in [39], the
tree model in [40] and [41], the active basis model in [42],
the hierarchical model in [43]–[45], the conditional random
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field model in [46]. Specially, in [37], object classes are
represented as constellations of visual parts in a probabilistic
model. In [38], the visual parts of a category of objects are
modeled with deformable configuration in a pictorial structure.
In [39], the spatial compositional structure of visual objects
is learned using Bayesian network. In [40], object categories
are detected by similar geometric, photometric and topological
properties in a tree model. Another tree-structured graphical
model proposed in [41] learns the object co-occurrences and
spatial dependency relationships. In [42], it learns frequent
occurring spatial structures in natural images using active basis
model. The hierarchical spatial patterns presented in images
are studied in [43]–[45]. The configurations of objects in
scenes are discovered by using a conditional random field
in [46].

In the previous approaches, visual patterns are discovered
either via top down generative model, or from bottom up
mining. However, the composition of visual patterns and the
clustering of visual primitives influence each other. Therefore,
a principled solution that can integrate the top-down and
bottom-up processes is preferred [4], [5], where it can leverage
visual patterns to improve the clustering of visual primitives.
Moreover, besides spatial composition of visual primitives,
because of the feature dependencies of a visual pattern across
multiple types of features, there also needs to utilize feature
co-occurrences of visual primitives for an enhanced discovery
of visual patterns and clustering of visual primitives. But
much less work can address such feature co-occurrence pattern
mining. To address the problems mentioned above, we propose
a self-supervised clustering procedure that can allow the
spatial co-occurrence pattern discovery, feature co-occurrence
discovery and visual primitive clustering to help one another.

III. SPATIAL CONTEXT-AWARE CLUSTERING

A. Motivating Example: Clustering Visual Primitives

We illustrate our spatial context-aware clustering in a case
study of clustering visual primitives. Each visual primitive is
described by a feature vector v := f , located at (x, y) in the
image space. In general f ∈ R

d can be any visual features
to characterize a local image region, like color histograms or
SIFT-like features [47]. An image is a collection of visual
primitives, and we denote the visual primitive database as
Dv = {vn}N

n=1. After clustering these visual primitives into
feature words, we can label each vn ∈ Dv with l(vn) ∈ �,
where � is the feature word lexicon of size |�| = M .

The spatial contexts of a visual primitive are its local
spatial neighbors in the image, i.e., those visual primitives
that collocate with it. Take human face image for exam-
ple, the spatial contexts of a nose contain two eyes and a
mouth. For each visual primitive vn ∈ Dv , we define its
local spatial neighborhood, i.e., K -nearest neighbors (K -NN)
or ε-nearest neighbors (ε-NN), as its spatial context group
G(s)

n = {vn, vn1 , vn2 , . . . , vnK }. The spatial context database
is denoted by Gs = {G(s)

n }N
n=1. Once the visual primitives

are labeled by �, the spatial context group database Gs can
be transferred to a spatial context transaction database with
N records. And we have the definition as follows.

Fig. 1. A spatial pattern {left eye, right eye, nose, mouth} co-occur frequently
which forms multiple faces of different people.

Definition 1 (Spatial context transaction). The spatial con-
text transaction of the visual primitive vn refers to the
co-occurrences of different categories of visual primitives
appearing in the spatial context group of vn.

The spatial context transaction database can also be repre-
sented as a sparse integer matrix Ts ∈ R

M×N , where each
column is a spatial context transaction t(s)n ∈ Z

M . The entry
t(s)mn = x indicates that the nth transaction contains x visual
primitives belonging to the mth feature word. In the case
of using spatial K -NN to define context group, we have∑M

m=1 t(s)mn = K , ∀ n = 1, . . . , N , because each context group

G(s )
n contains K visual primitives.
A sparse binary matrix Qs ∈ R

N×N can be used to describe
the spatial context relations among the visual primitives, where
q(s)

i j = 1 denotes that vi belongs to the context group of v j ,

i.e., vi ∈ G(s)
j ; and q(s)

i j = 0 otherwise. The matrix Qs is sym-
metric when using ε-NN to define spatial neighbors, while an
asymmetric matrix when using K -NN. The context matrix Qs
plays a critical role in our spatial context-aware clustering as
it introduces extra relations among visual primitives other than
those in the feature space.

Based on the feature word lexicon � (|�| = M), we
can further define a spatial pattern lexicon �s = {P (s)

m }Ms
m=1.

A spatial pattern is composed of a collection of feature
words. This implies P (s)

m ⊂ �. Compared with feature words
which label visual primitives Dv , spatial patterns label spatial
context transactions Ts, i.e., label spatial context groups Gs.
As spatial pattern describes the spatial dependencies among
feature words, they can present more meaningful patterns in
a higher level [6]. For example in Fig. 1, the existence of
a spatial pattern P = {le f t eye, right eye, nose, mouth}
shows that these four categories of visual primitives: left
eye, right eye, nose and mouth in � co-occur frequently and
form a meaningful visual pattern, i.e., face. Moreover, the
discovered visual patterns can refine the primitives clustering
of uncertainty, which will also be discussed in detail in
Sec. III-B and Sec. III-C. We represent P (s)

m ∈ �s as an integer
vector u(s)

m ∈ Z
M which describes its word compositions,

where u(s)
m (i) = x indicates that the i th word is contained

in P (s)
m and occurs x times. The matrix Us ∈ R

M×Ms
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is further applied to represent �s, where each column of
Us is a u(s)

m . Correspondingly, we use a real matrix U ∈ R
d×M

to represent �, where each column is a real vector to represent
a feature word prototype um ∈ R

d .
Above, we describe visual pattern discovery in a single

image. However it can be easily extended to multiple images.
For example, we can treat multiple images as one huge image
and do not allow visual primitives from different images to
compose visual patterns.

B. Problem Formulation

We first revisit the k-means clustering of visual primitives
Dv = {vn}N

n=1, where the following mean square distortion
needs to be minimized:

J1 =
M∑

m=1

N∑

n=1

rmn‖um − fn‖2 = tr(RTD), (1)

where

• fn is the d×1 feature vector; um is the center of the cluster
(prototype of feature words); ‖ · ‖ denotes the Euclidean
distance and tr(·) denotes the matrix trace;

• DM×N denotes the distance matrix, where each element
dmn = ‖um − fn‖2 denotes the distance between the
nth visual primitives and the mth feature word prototype;

• RM×N denotes the label indicator matrix of the visual
primitives, where rmn = 1 if the nth visual primitive is
labeled with the mth word; and rmn = 0 otherwise.

Standard EM-algorithm can be performed to minimize the
distortion in Eq. 1 by iteratively updating R (E-step) and
D (M-step). However, by minimizing the objective function J1,
k-means clustering tries to maximize the data likelihood under
mixture Gaussian distribution and assumes all observation
samples vn ∈ Dv are independent from one another in the
feature space:

Pr(Dv |�) =
N∏

n=1

Pr(vn |�). (2)

Such an independent assumption, however, does not hold here
because visual primitives have spatial dependencies with each
other.

In order to consider spatial dependency for clustering, we
propose a regularized k-means to minimize:

J =
M∑

m=1

N∑

n=1

rmn‖um − fn‖2

+ λs

Ms∑

m=1

N∑

n=1

r (s)
mndH (u(s)

m , t(s)n )

= tr(RTD) + λstr(RT
s Ds), (3)

where

• λs > 0 is a positive constant for regularization;
• r (s)

mn is the binary label indicator of transactions, with
r (s)

mn = 1 denoting that the nth spatial context transaction
is labeled with the mth spatial pattern; and r (s)

mn = 0
otherwise. Similar to R, Rs is an Ms × N matrix to

describe the clustering results of spatial context transac-
tions {t(s)n }N

n=1. For deterministic clustering, we have the
following constraints for R and Rs:

M∑

m=1

rmn = 1,

Ms∑

m=1

r (s)
mn = 1, ∀ n = 1, . . . , N. (4)

• dH (u(s)
m , t(s)n ) denotes the Hamming distance between two

binary vectors1: a transaction t(s)n and a context pattern
u(s)

m , where 1 is the M × 1 all 1 vector:

dH (u(s)
m , t(s)n )

= M −
[
(t(s)n )Tu(s)

m + (1 − t(s)n )T(1 − u(s)
m )

]

= (t(s)n )T1 + (u(s)
m )T1 − 2(t(s)n )Tu(s)

m . (5)

Given the objective function in Eq. 3 with M , Ms and
λ are fixed parameters, our goals are: (1) clustering all the
visual primitives vi into M classes (feature word lexicon �)
and (2) clustering all the context transactions t(s)n ∈ Ts into
Ms classes (spatial pattern lexicon �s). The clustering results
are presented by R and Rs respectively. Since each visual
primitive can generate a spatial context group, we finally end
up with two labels for every primitive: (1) the word label of
itself and (2) the pattern label of the spatial group it generates.
Compared with k-means clustering which assumes convex
shape for each cluster in the feature space, e.g., a mixture
of Gaussian, our regularization term can modify the cluster
into an arbitrary shape by considering the influences from
the visual pattern level. Similar to the k-means clustering,
this formulation is also a mixed integer problem with mul-
tiplicative terms where we cannot estimate D, Ds, R and Rs
simultaneously.

C. Algorithm

The objective function in Eq. 3 includes two parts:

J = tr(RTD)
︸ ︷︷ ︸

J1

+ λs tr(RT
s Ds)

︸ ︷︷ ︸
J2

,

where J1 = tr(RTD) and J2 = λs tr(RT
s Ds) correspond to

the quantization distortions of visual primitives and spatial
context groups respectively. Although it looks we could
minimize J by minimizing J1 and J2 separately, e.g., through
two independent EM-processes, this is actually infeasible
because J1 and J2 are coupled. By further analyzing
J1 and J2, we find that although visual primitive distortions
D only depend on R, the spatial context group distortions Ds
depend on both visual primitive labels R and spatial context
group labels Rs. Thus it is infeasible to minimize J1 and J2
separately due to their correlation. In the following, we show
how to decouple the dependencies between J1 and J2 and
propose our spatial context-aware clustering: a nested-EM
algorithm.

1Strictly, t(s)n and u(s)
m are binary vectors only if t(s)n contains distinguishable

primitives, i.e., each primitive belongs to a different word in t(s)n . However,
our solution is generic and do not need t(s)n to be binary, as long as we apply
the distortion measure (called Hamming distortion) derived from Hamming
distance as in Eq. 5.



WANG et al.: CONTEXT-AWARE DISCOVERY OF VISUAL CO-OCCURRENCE PATTERNS 1809

Initialization:

1) Clustering all visual primitives {vn}N
n=1 into M classes,

e.g., through k-means clustering, based on the Euclidean
distance.

2) Obtaining the feature word lexicon � (represented by U)
and the distortion matrix D.

3) Clustering all spatial context groups {G(s)
n }N

n=1 into Ms
classes based on the Hamming distance, and obtaining
the spatial pattern lexicon �s (represented by Us), as
well as the distortion matrix Ds.

E-step:
The task is to label visual primitives {vn}N

n=1 with � and
spatial context groups {G(s)

n }N
n=1 with � , namely to update

R and Rs given D and Ds, where D and Ds can be directly
computed from U and Us, respectively. Based on the analysis
above, we need to optimize R (corresponding to J1) and
Rs (corresponding to J2) simultaneously to minimize J,
because J1 and J2 are correlated.

According to the Hamming distortion in Eq. 5, we can
derive the matrix form of spatial context group distortions:

Ds = −2UT
s Ts + 1TsTs + UT

s 1Us, (6)

where 1Ts is an Ms × M all 1 matrix and 1Us is an M × N
all 1 matrix. Moreover, transaction database Ts can be deter-
mined by

Ts = RQs. (7)

Because each transaction column can be obtained as

t(s)n =
N∑

i=1

q(s)
in ri ,

where ri denotes the i th column of R which describes the
word label of vi . Now, we derive Eq. 3 as follows:

J = tr(RTD) + λstr(RT
s Ds)

= tr{RT
s [λs(−2UT

s RQs + 1TsRQs + UT
s 1Us)]}

+ tr(RTD) (8)

= tr [RT(D − λs(2UT
s − 1Ts)

TRsQT
s )]

+ λstr(RT
s UT

s 1Us). (9)

Based on the above analysis, we propose an E-step to
iteratively update R and Rs to decrease J. Recall that R and
Rs are label indicator matrices constrained by Eq. 4.

1) Bottom-up co-occurrence pattern discovery: We first
fix visual word labeling R to update visual pattern
labeling Rs . Based on Eq. 8, let

Hs
�= λs(−2UT

s RQs + 1TsRQs + UT
s 1Us),

we have

J = tr(RTD)
︸ ︷︷ ︸

J1

+ tr(RT
s Hs)

︸ ︷︷ ︸
J2

. (10)

Therefore we only need to minimize J2 =
tr(RT

s Hs) as J1 = tr(RTD) is a constant given
R and U. Because each column of Rs contains a single

1 (Eq. 4), we update Rs to minimize J2 based on the
following criterion, ∀ n = 1, 2, . . . N :

r (s)
mn =

{
1 m = arg mink h(s)

kn
0 otherwi se,

(11)

where h(s)
kn is the element of Hs and r (s)

mn is the element
of Rs . Hs can be calculated based on Qs, Us and
R which are all given.

2) Top-down refinement: Similar to the above step, now
we fix Rs and update R. Based on Eq. 9, let

H
�= D − λs(2UT

s − 1Ts)
TRsQT

s ,

We get another representation of J:

J = tr(RTH)
︸ ︷︷ ︸

J3

+ λs tr(RT
s UT

s 1Us)︸ ︷︷ ︸
J4

, (12)

where J4 = λstr(RT
s UT

s 1Us) is a constant given Rs
and Us. Therefore, only J3 needs to be minimized. We
update R to minimize J3 as follows, ∀ n = 1, . . . N :

rmn =
{

1 m = arg mink hkn

0 otherwi se,
(13)

where hkn is the element of H and rmn is the element
of R.

The above E-step itself is an EM-like process because we need
to update R and Rs iteratively until J converges. The objective
function J decreases monotonically at each step.

M-step:
After knowing the labels of visual primitives and spatial
context groups (R and Rs), we want to estimate better visual
lexicons � and �s. From Eq. 3, D and Ds are not interlaced,
thus U and Us can be optimized separately. We apply the
following two steps to update U and Us separately.

1) Recalculate the cluster centroid for each feature word
class {um}M

m=1 like traditional k-means algorithm, with
Euclidean distance. Update U and D to decrease J.

2) Recalculate the cluster centroid for each spatial pattern
class {u(s)

m }Ms
m=1, with Hamming distance. Update Us and

Ds to decrease J.

Both of the above steps guarantee that J is decreasing, there-
fore the whole M-step decreases J monotonically. Our method
is actually a nested-EM algorithm because there are two nested
EM processes, where the E-step itself is an EM process that
supports a bottom-up/top-down update between labels of low
level feature words and high level spatial patterns. We describe
this clustering approach in Algorithm 1.

Because the solution spaces of R and Rs are discrete and
finite, according to the monotonic decreasing of J at each step
of spatial context-aware clustering, we have theorem 1.

Theorem 1 (Convergence). The spatial context-aware clus-
tering algorithm in Algorithm 1 can converge in finite steps.

D. Simulations
To illustrate our spatial context-aware clustering, we

synthesize a spatial dataset. A concrete example of this spatial
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Fig. 2. Context-aware clustering on the synthesized spatial data and the comparison with the k-means algorithm. Parameter used are M = 5, Ms = 2 and
ε = 100 in searching for ε-NN spatial groups. See texts for descriptions. Best seen in color. (a) Feature Domain. (b) Spatial Domain. (c) k-means Clustering
(k = 5). (d) Context-Aware Clustering (λs = 10). (e) Performance (λs = 10). (f) Error vs. λs.

dataset can be an image. All the samples have two represen-
tations: (1) feature domain, f ∈ R

2 and (2) spatial domain
(x, y) ∈ N × N as shown in Fig. 2(a) and (b), respectively.

In our case, we have 5 categories of visual primitives labeled
as: ∇, ❍, ♦, � or ✩. In the spatial domain, {✩, �} is
generated together to form a co-occurrent contextual pattern,
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while {∇, ❍, ♦} is the other visual pattern. In the feature
domain, each of the 5 categories has 400 samples and are
generated based on Gaussian distributions of different means
and variances. Based on the feature domain only, clustering is
a challenging problem because some of these Gaussian distri-
butions are heavily overlapped. For example, there is a heavy
overlap between categories ’❍’ and ’�,’ ’�’ and ♦, ♦ and
✩. Our tasks are (1) clustering visual primitives into feature
words, and (2) recover the spatial patterns P1 = {✩, �} and
P2 = {∇, ❍, ♦}.

We compare the performances of the spatial context-aware
clustering with different choices of λs (λs = 0, 10) in
Fig. 2(c) and (d), where λs = 0 gives the same results as the
k-means clustering. The major differences of the clustering
results appear from the overlapping categories ’❍,’ ’�,’ ♦
and ✩. Although they are heavily overlapped with each other,
most of the samples are still correctly labeled with the help of
their spatial contexts. For example, although it is difficult to
determine a sample v located in the overlapped regions of ’♦’
and ’✩’ in the feature space, we can resolve the ambiguity
by observing the spatial contexts of v. If a ’∇’ or a ❍ is
found in its spatial contexts, then v should be labeled as ’♦’
because the discovered visual pattern {∇, ❍, ♦} supports such
a label.

Fig. 2(e) shows the iterations of our algorithm with
λs = 10. Each iteration corresponds to an individual E-step
or an M-step until converge. We decompose the objective
function into J = J1 + J2, where J, J1, J2 are the red,
black and pink curves respectively. All these three curves
are normalized by Jmax = J0, which is the J value at
the initialization step. Compared to the k-means clustering
which minimizes distortions J1 in feature space only, our
context-aware clustering sacrifices J1 to gain larger decrease of
distortion J2 in the spatial context space, which gives a smaller
total distortion J. The error rate curve (blue) describes the
percentage of samples that are wrongly labeled at each step,
and we notice that it decreases consistently with our objective
function J.

In terms of clustering errors shown in Fig. 2(f), the context-
aware clustering (error rate ≤ 6.0% when λs ≥ 5) performs
significantly better than the k-means method (error rate =
18.3%). The parameter λs balances the two clustering criteria:
(1) clustering based on visual features f (J1) and (2) cluster-
ing based on spatial contexts (J2). The smaller the λs, the
more faithful the clustering results follow the feature space,
where samples have similar features are grouped together.
An extreme case is λs = 0 when no regularization is applied in
Eq. 3 by ignoring the feedback from contexts. In such a case,
our context-aware clustering is equal to k-means clustering.
On the other hand, a larger λs favors the clustering results
that support the discovered context patterns, thus samples have
similar contexts are more likely to be grouped together. For
this case, the value of λs with the best balance is 10. As shown
in Fig. 2(f), λs = 10 achieves the lowest clustering error
rate: 4.4%.

It is worth noting that the above experiments are all per-
formed under the same k-means initialization. To evaluate
the stability of our method, we run k-means 100 times with

different initializations. Our context-aware clustering (with
λs = 10) has an average error rate 4.24% with small standard
deviation 0.17%. It shows that our method is not sensitive to
the initialization of k-means.

IV. MULTI-CONTEXT-AWARE CLUSTERING

A. Problem Statement

Besides spatial context, feature context is also important
for visual pattern discovery. We will propose in this section
the multi-context-aware clustering that utilizes both feature
and spatial contexts. In this multi-context-aware clustering,
each visual primitive vn ∈ Dv is characterized by c types
of features: vn = {f (i)

n }c
i=1, where f (i)

n ∈ R
di . For example,

an image can be represented by color, shape, texture and any
other visual features. These features of vn correspond to a
feature context group G(v)

n .
By k-means clustering, each type of features {f (i)

n }N
n=1 can

produce a feature word lexicon �i (|�i | = Mi ). Each vn ∈ Dv

then generates a feature context transaction t(v)
n ∈ R

∑c
i=1 Mi to

represent G(v)
n , which is defined in the following.

Definition 2 (Feature context transaction). The feature
context transaction of data vn refers to the co-occurrences
of multi-view feature words in the feature context group
of vn.

Using label indicator matrices {Ri }c
i=1 obtained from the

c types of features, we can represent the feature context
transaction database as a binary matrix:

Tv =

⎡

⎢
⎢
⎢
⎣

R1
R2
...

Rc

⎤

⎥
⎥
⎥
⎦

, (14)

where Ri ∈ R
Mi ×N , and the binary entry r (i)

mn = 1 only if vn

is labeled with the mth discovered feature word based on the
i th types of features {f (i)

n }N
n=1; Tv ∈ R

∑c
i=1 Mi ×N , and the nth

column of Tv is just the feature context transaction of data vn ,
i.e., t(v)

n .
After clustering these N feature context transactions, the

data points can be labeled by a high level feature pattern
lexicon �v (|�v| = Mv), which partition the given data in Dv
using multiple features. Besides feature contexts, following
the analysis of Sec. III, we can further explore the spatial
dependencies among primitives to find a higher level spatial
pattern lexicon �s (|�s| = Ms). On the other hand, once
we find spatial patterns, we can use them to tune the primi-
tive clustering. Through such a top down refinement, spatial
patterns can help to improve feature pattern constructions.
Afterwards, each type of feature words will also be adjusted
due to the tuned feature patterns. Then the multiple types
of updated feature words can learn more accurate feature
patterns and spatial patterns from bottom up again. The idea
described above is shown in Fig. 3 using three types of
features. To achieve this objective, we propose a regularized
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Fig. 3. Multi-context-aware clustering via a self-learning procedure between
low-level feature clustering and high-level pattern discovery.

k-means with feature contexts and spatial contexts together:

J =
c∑

i=1

Mi∑

m=1

N∑

n=1

r (i)
mn

∥
∥
∥u(i)

m − f (i)
n

∥
∥
∥

2

+λv

Mv∑

m=1

N∑

n=1

r (v)
mn dH

(
u(v)

m , t(v)
n

)

+λs

Ms∑

m=1

N∑

n=1

r (s)
mndH

(
u(s)

m , t(s)n

)

=
c∑

i=1

tr
(

RT
i Di

)
+ λvtr

(
RT

v Dv

)
+ λs tr

(
RT

s Ds

)

= tr
(
RTD

)

︸ ︷︷ ︸
Jα

+ λvtr
(

RT
v Dv

)

︸ ︷︷ ︸
Jβ

+ λstr
(

RT
s Ds

)

︸ ︷︷ ︸
Jγ

, (15)

where,
• λv > 0 and λs > 0 are constants for regularization;
• Jα is the total quantization distortions of multiple types

of features, in which
– {u(i)

m }Mi
m=1 denote Mi quantized feature words based

on the ith type of features {f (i)
n }N

n=1, and form a
feature word matrix Ui ∈ R

di×Mi ;
– Ri ∈ R

Mi×N is a binary label indicator matrix, the
entry r (i)

mn = 1 only if f (i)
n is labeled with the mth

discovered feature word u(i)
m based on the i th type of

features {f (i)
n }N

n=1;
– Di ∈ R

Mi×N denotes a distortion matrix, the entry of
its mth row and nth column is the Euclidean square
distortion between u(i)

m and f (i)
n ;

– R and D are block diagonal matrices from {Ri }c
i=1

and {Di }c
i=1;

• Jβ is the quantization distortion of feature context trans-
actions, in which

– {u(v)
m }Mv

m=1 denote Mv quantized feature patterns,

forming a feature pattern matrix Uv ∈ R

∑c
j=1 M j ×Mv ;

– Rv ∈ R
Mv×N is a binary label indicator matrix,

the entry r (v)
mn = 1 only if vn is included the mth

discovered feature pattern u(v)
m ;

– Dv ∈ R
Mv×N denotes a distortion matrix, the entry

of its mth row and nth column is the Hamming
distortion between u(v)

m and t(v)
n ;

• Jγ is the quantization distortion of spatial context trans-
actions, similar to the constrained term J2 in Eq. 3.
So we abuse the symbols between Jγ and J2. The only
difference between them resides in the dimensionality of
a spatial context transaction t(s)n (∈ R

Mv ) or a prototype
of spatial pattern u(s)

m (∈ R
Mv ), because the number of

visual primitive categories here becomes Mv, i.e., the
number of feature patterns. So we also have the spatial
context group matrix Ts ∈ R

Mv×N ; and spatial pattern
matrix Us ∈ R

Mv×Ms .

Because each data point has c types of features, the fea-
ture context relations can be represented as a concatenated
matrix Qv ∈ R

cN×N from c identity matrices of size N × N ,
the following equation is hold:

Tv = RQv. (16)

Besides, similar to Eq. 7, according to the local spatial
neighbor relation matrix of the primitive collection Dv , i.e.,
an N × N matrix Qs whose entry qi j = 1 only if vi and v j

are local spatial neighbors, we can represent Ts as

Ts = RvQs. (17)

Comparing with Eq. 6, Dv can be represented by

Dv = −2UT
v Tv + 1Tv Tv + UT

v 1Uv

= −2UT
v RQv + 1TvRQv + UT

v 1Uv, (18)

where 1Tv is an M × ∑c
i=1 Mi all 1 matrix, and 1Uv is a∑c

i=1 Mi × N all 1 matrix .
In a similar way, the Hamming distortions Ds can be

formulated as

Ds = −2UT
s Ts + 1TsTs + UT

s 1Us

= −2UT
s RvQs + 1TsRvQs + UT

s 1Us, (19)

where 1Ts is an Ms × M all 1 matrix, and 1Us is an M × N
all 1 matrix.

Similar to the spatial context-aware clustering in Sec. III,
Jα, Jβ and Jγ are correlated among each other. We thus cannot
minimize J by minimizing the three terms separately, which
makes the objective function of Eq. 15 a challenge. We will
in Sec. IV-B show how to decouple the dependencies among
them and propose our algorithm to solve this optimization
function.

B. Algorithm

Since there are correlations among unknown variables
simultaneously in Eq. 15, we cannot estimate them simulta-
neously. So we have to decouple the dependencies among the
terms of Eq. 15. Above all, we initialize feature words, feature
patterns and spatial patterns gradually by k-means. Next, we
can take each of Rv, R, and Rs as the common factor for
extraction. We derive Eq. 15 as:

J(R, Rv, Rs,D, Dv, Ds)

= tr(RT
v Hv) + tr(RTD) + λstr(RT

s UT
s 1Us) (20)

= tr(RTH) + λstr(RT
s Ds) + λvtr(RT

v UT
v 1Uv) (21)

= tr(RT
s Hs) + tr(RTD) + λvtr(RT

v Dv), (22)
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Fig. 4. Pattern discovery from a mono-colored LV monogram picture. Best seen in color. (a) k-means clustering of visual primitives (k = 4). (b) Spatial
context-aware clustering of visual primitives.

where

Hv = λvDv − λs(2UT
s − 1Ts)

TRsQT
s , (23)

H = D − λv(2UT
v − 1Tv)

TRvQT
v , (24)

Hs = λsDs, (25)

where the size of Hv, H and Hs are M × N ,
∑c

i=1 Mi × cN
and Ms × N , and H contains c diagonal blocks {Hi }c

i=1.
We can successively update the three label indicator matri-

ces Rv, R, and Rs when the cluster centroid matrices Uv,
{Ui }c

i=1, and Us are fixed. To minimize Eq. 15, the follow-
ing label indicator matrices update criteria will be adopted,
∀n = 1, 2, . . . , N ,

r (v)
mn =

{
1 m = arg mink h(v)

kn
0 otherwi se,

(26)

r ( j )
mn =

{
1 m = arg mink h( j )

kn
0 otherwi se,

(27)

r (s)
mn =

{
1 m = arg mink h(s)

kn
0 otherwi se,

(28)

where h(v)
kn , r (v)

mn , h(i)
kn , r (i)

mn , h(s)
kn and r (s)

mn are the entries of Hv,
Rv, Hi , Ri , Hs and Rs, respectively. As long as the objective
function J defined by Eq. 15 is decreasing, Rv and R can be
continually refined, followed by the bottom-up updates of Rv
and Rs.

Furthermore, provided the label indicator matrices Rv, R,
and Rs, the corresponding centroid matrices Uv, {Ui }c

i=1, and
Us can be updated, and so as the corresponding distortion
matrices Dv, {Di }c

i=1, and Ds, which will also make the
objective function of Eq. 15 decrease.

We propose an iterative algorithm of multi-context-aware
clustering in Algorithm 2. Similar to Algorithm 1, this Algo-
rithm is also convergent since the solution spaces of R, Rv,
and Rs are discrete and finite, and the objective function
defined by Eq. 15 is monotonic decreasing at each step.
Clearly, our multi-context-aware clustering will be degenerated
to the spatial context-aware clustering if there is only one type
of feature and we set λv = 0 in Eq. 15 to remove the Jβ term.

Algorithm 2 Multi-Context-Aware Clustering

V. EXPERIMENTS

In the following experiments, we set Mi = Mv,
∀i = 1, 2, . . . , c in multi-context-aware clustering. Besides,
to help parameter tuning, we let λs = τs|J0

1/J0
2| in spatial

context-aware clustering, λv = τv|J0
α/J0

β | and λs = τs|J0
α/J0

γ |
in multi-context-aware clustering, where J0

x (x = 1, 2, α, β, γ )
is the initial value of Jx defined by Eq. 3, or Eq. 15, and the
nonnegative constants τv and τs are the auxiliary parameters to
balance the influences from feature co-occurrences and spatial
co-occurrences, respectively.

A. Spatial Visual Pattern Discovery

To validate whether our methods can really capture spatial
visual patterns [21], we test a number of images using spatial
context-aware clustering and/or multi-context-aware clustering
presented in Figs. 4 and 5. Given an image, we first extract
one or more (e.g., c types of) features for the detected visual
primitives: Dv = {vn}N

n=1, and apply spatial K -NN groups to
build spatial context group database {G(s)

n }N
n=1.
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Fig. 5. Pattern discovery from a colored group photo. Best seen in color.
(a) Spatial context-aware clustering. (b) Multi-context-aware clustering.

A mono-colored LV monogram fabric image is shown in
Fig. 4. Because of cloth warping, the monogram patterns are
deformed, which makes pattern discovery more challenging.
We detect 2604 image patches as visual primitives, and use
SIFT features to describe them [48]. To build spatial context
groups, K -NN with K = 8 is applied. Other parameters are
set as M = 20, Ms = 4, τs = 1 for our spatial context-
aware clustering. It is interesting to notice that we can also
locate the monogram patterns of different spatial structures
in Fig. 4, where different colors indicate different (4 in total)
discovered spatial patterns. In comparison, without considering
spatial dependencies of visual primitives, k-means clustering
cannot obtain satisfactory results.

A comparison between spatial context-aware clustering and
multi-context-aware clustering is shown in Fig. 5, where
422 image patches [48] are extracted2. In spatial context-
aware clustering, SIFT features [48] are used to describe these
patches. While in multi-context-aware clustering, the patches
are represented by SIFT features [48] and Color Histograms
(CH) [22]. Both methods construct spatial context groups by
K -NN with K = 12, and aim to detect three categories
of spatial patterns: human faces, text logos, and background
edges. We highlight the instances of each discovered spatial
pattern. The 1st column shows the results of spatial context-
aware clustering; parameters are: M = 10, Ms = 3, τs = 0.8.
The results of the 2nd column is based on multi-context-aware
clustering; parameters are: Mi = 10, ∀ i = 1, 2, Mv = 10,
Ms = 3, τv = 1.5, τs = 0.8. By using multiple features, the
discovered patterns are more accurate. Particularly, in spatial
context-aware clustering, there are more confusions between

2This image is from source: http://www.abf-online.org/.

Fig. 6. Two scene categories: “sheep+grass” and “bicycle+road.”

TABLE I

CLUSTERING PERFORMANCE OF IMAGE REGIONS FROM

IMAGE COLLECTION SHOWN IN FIG. 6

face patterns and edge patterns than those in multi-context-
aware clustering.

B. Image Region Clustering Using Multiple Contexts

To evaluate how much feature contexts and spatial con-
texts can improve the clustering performance, in this section,
we perform image region clustering to test our proposed
multi-context-aware clustering on MSRC-V2 dataset [49].
The ground-truth labeling of MSRC-V2 is provided by [50].
To describe each region (i.e., the visual primitive) in
MSRC-V2 dataset, we employ three types of features as
in [22]: Texton Histogram (TH), Color Histogram (CH), and
pyramid of HOG (pHOG) [51]. The dimensionalities of TH,
CH, pHOG, are 400, 69, 680, respectively.

Given an image region, all other regions in the same image
are considered as in its spatial context group. Each scene
category has its own region compositions and our goal is to
cluster image regions by leveraging the spatial co-occurrence
patterns. As baseline methods, k-means clustering results on
each single feature type (TH/CH/pHOG, k-means) or feature
concatenation (All features, concatenation for k-means) are
compared. Besides that, as context features, feature context
transactions and spatial context transactions are concatenated
with all feature types for k-means clustering (All features, con-
catenation with context transactions for k-means) to compare
with our multi-context-aware clustering on multiple types of
features (All features, multi-context-aware).

From MSRC-V2 dataset [49], we first select a collection of
images with two region pairs that often appear together in an
image: “sheep+grass” and “bicycle+road” as shown in Fig. 6.
Each region pair has 27 image instances. There are in total
31 sheep regions, 32 grass regions, 27 bicycle regions, and
32 road regions. Because the spatial contexts of a region are
the regions occurring in the same image, the spatial contextual
relations only appear between regions of “sheep” and “grass”
or regions of “bicycle” and “road.”

Table I shows the clustering errors of k-means clustering on
individual features and concatenated features, where the best
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Fig. 7. Class disambiguation by using spatial contexts.

Fig. 8. Confusion matrices of k-means clustering and multi-context-aware
clustering for image regions from image collection shown in Fig. 6.

error rate is 10.65%. In contrast, with suitable parameters,
our multi-context-aware clustering can achieve a much better
result with error rate 5.73%, which significantly enhances the
clustering performance. The parameters used are: k = 4 for
k-means clustering; and Mi = 4, ∀ i = 1, 2, 3, Mv = 4,
Ms = 2, τv = 3.5, τs = 1 for multi-context-aware clustering.
Each result in Table I is obtained by selecting the best (i.e.,
the minimum total distortion) from 100 random repetitions.

In the case of using multiple features, k-means clustering
on the concatenated features still suffers from the confusion
between “sheep” class and “road” class as shown in Fig. 7,
where the “sheep” regions are mislabeled as the “road” class.
However, by exploring spatial contexts of image regions, our
multi-context-aware clustering can better distinguish the two
classes. Specifically, “grass” regions are in favor of labeling
their co-occurring image regions as the “sheep” class; and
similarly, the “bicycle” regions with correct labels can support
the co-occurring “road” regions.

In order to further evaluate how multiple contexts
improve the clustering of individual region classes, we
show the confusion matrices of k-means clustering and our
multi-context-aware clustering in Fig. 8. We observe that
k-means clustering easily mislabeled “bicycle” as “sheep”
when using TH features. This is because these TH features
encode the texture of regions, and “sheep” regions have similar
texture to “bicycle” regions. When using CH features, it is
easy to mislabel “sheep” regions as “road” regions because of
their similar colors. Also, with similar shape features, quite
a lot of “sheep” regions are mislabeled as “bicycle” class

Fig. 9. Sample images of five region compositions: “sheep+grass,”
“cow+grass,” “aeroplane+grass+sky,” “boat+water,” and “bicycle+road.”

TABLE II

CLUSTERING PERFORMANCE OF IMAGE REGIONS FROM

IMAGE COLLECTION SHOWN IN FIG. 9

when using pHOG features. Besides the limited description
ability of a single type of feature, as k-means does not
consider the spatial dependencies among regions, it also cause
confusions among different classes. By considering the fea-
ture co-occurrences of CH, TH and pHOG, and the spatial
co-occurrences of “sheep” and “grass” regions, as well as
“bicycle” and “road” regions, our multi-context-aware clus-
tering can well improve the clustering results on individual
features, and finally reduce the confusion among the region
classes. Specifically, our method can leverage the “grass”
regions to correct the confused “sheep” regions, and vice versa.
A similar improvement can be observed for “bicycle” and
“road.”

In the above experiment, we show the advantage of our
multi-context-aware clustering in dealing with image regions
of clear spatial contexts. We next evaluate our method on
image regions of ambiguous spatial contexts. In this exper-
iment, we focus on images describing frequent occurring
region compositions and select 5 different compositions with
in total 9 categories of image regions from MSRC-V2
dataset [49]. Some sample images are shown in Fig. 9. In this
image collection, there are 30 “sheep+grass,” 29 “cow+
grass,” 30 “aeroplane+grass+sky,” 31 “boat+water,” and
30 “bicycle+road.” The numbers of “sheep,” “grass,” “cow,”
“sky,” “aeroplane,” ‘’boat,” “water,” “bicycle,” “road” are 34,
104, 34, 53, 30, 47, 39, 30, and 51, respectively. Notice
that in this challenging dataset, different image regions may
share the same spatial context. For example, “grass” occurs
in three different scenes: “sheep+grass,” “cow+grass,” and
“aeroplane+grass+sky.”

The results of k-means clustering and multi-context-aware
clustering are shown in Table II, where the same 10% seeds per
category from ground-truth are randomly chosen for initializa-
tion. The clustering error rate of our multi-context-aware clus-
tering is 29.86%. It brings a considerable improvement than
the best one (i.e., 33.65%) obtained by k-means clustering on
the individual features or the concatenated multiple features.
In k-means clustering, we set k = 9 as there are 9 different
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Fig. 10. Confusion matrices of k-means clustering and multi-context-aware
clustering for image regions from image collection shown in Fig. 9.

Fig. 11. Exemplar clustering results of multi-context-aware clustering.

types of image regions. Similar to the setting on the dataset
shown in Fig. 6, we also set τv = 3.5, τs = 1 in multi-context-
aware clustering. Other parameters used in our approach are
Mi = 9, ∀ i = 1, 2, 3, Mv = 9, Ms = 5.

Besides the total clustering error rates, we also compare
the clustering performance of individual region classes using
k-means clustering and our multi-context-aware clustering in
Fig. 10. Because both “sheep” and “cow” share the same
spatial context, i.e., “grass,” it is difficult to utilize “grass”
to distinguish “sheep” and “cow” using the TH and pHOG
features. However, our approach can leverage the CH features
to distinguish “sheep” and “cow.” On the other hand, with the
help of spatial context regions, the mislabeled “bicycle” and
“aeroplane” regions in CH features and the mislabeled “boat”
regions in TH and pHOG features can be partially corrected
using our method. Overall, due to the regularization of feature
contexts and spatial contexts, our approach can effectively
refine the mislabeling results of k-means clustering.

Some representative clustering results of our approach are
shown in Fig. 11. Despite large intra-class variations, our

Fig. 12. Sample images of different sports events in UIUC sports dataset.

TABLE III

CLASSIFICATION ACCURACY ON UIUC SPORTS DATASET

method can still obtain a satisfactory clustering results by
using both spatial and feature contexts. For example, the “cow”
regions are with different colors and perspectives. We also
note that in Fig. 9, there contain “water” regions in some
“sheep+grass” and “cow+grass” region compositions. These
small amount of “water” regions are mislabeled as “grass”
class because of its preference of “cow”/“sheep” contexts.
Moreover, because the feature appearance and spatial contexts
are similar, there still exist confusions between a few regions
of “sheep” and “cow,” “bicycle” and “sheep,” “boat” and
“aeroplane,” “water” and “sky,” “boat” and “bicycle,” and
“water” and “road.” Nevertheless, the mislabeling results are
only among the minority.

C. Bag-of-Words for Image Classification

As validated by the simulation experiment in
Sec. III-D, our method can build a better visual vocabulary
using spatial contexts of visual primitives than k-means
clustering. To justify the effectiveness of our method on the
real world dataset, we conduct an experiment on the UIUC
sports dataset [52]. It contains 8 categories of sport events:
rowing, badminton, polo, bocce, snowboarding, croquet,
sailing, and rock climbing, with 137 to 250 images in each.
Some sample images are shown in Fig. 12. We use MSER
detector [53] to generate visual primitives and use SIFT
descriptor [48] for primitive representation. Finally, we obtain
4, 997, 849 visual primitives totally. After that, we can build
a bag-of-word representation (BOW) for each image using
k-means clustering or our method. We then train a SVM
classifier with RBF kernel using 90 images per category and
test on the rest over 5 random training/test splits. In k-means
clustering, we set k to 256. In our spatial context-aware
clustering, K -NN with K = 8 is applied to build spatial
context groups. In addition, we set τs = 0.5, M = 256,
and Ms = 64. We report the results in Table III. As our
method learns visual vocabulary with the spatial configuration
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Fig. 13. Clustering error rate of multi-context-aware clustering for image regions from image collection shown in Fig. 6 w.s.t. parameters: τs and τv.

information of visual primitives which ignored by k-means
clustering, we can see that the BOW features built by our
method outperforms than those built by k-means clustering.

D. Parameter Comparison and Selection

We use the image dataset shown in Fig. 6 to study how the
two parameters τv and τs influence the image region clustering
result. It is worth noting that in our multi-context clustering,
the larger the τv and the smaller the τs, the more faithful the
clustering results follow the multiple feature spaces, where
image regions of similar features are grouped together; while
a smaller τv and a larger τs favor the clustering results that
support the discovered spatial patterns, thus regions have
similar spatial contexts are more likely to be grouped together.
To study the impact of parameters, we fix Mi (i = 1, 2, 3),
Mv, Ms, but vary τv and τs in turn. We then draw the curves
of clustering error rates in Fig. 13. When we fix τs = 1
and alter τv from [1, 5], the clustering error rates fall into
[5.73%, 10.66%]. The best result (i.e., 5.73% error rate) can
be obtained when τv = 3.5, which balances the distortions
between primitive features and visual patterns. Then we fix
τv = 3.5 and alter τs from [0.1, 2.0]. The largest error
rate of 12.3% is still much better than the best one using
k-means clustering. The best agreement is reached when
τs = 1 by balancing the feature domain and spatial domain,
where the lowest error rate 5.73% is attained. The experiment
also suggests the optimal parameters for this dataset are:
τv = 3.5, τs = 1, which we have used to report the result
in Table I.

Besides the two explicit parameters τv and τs studied in
Fig. 13, we discuss how to set the other parameters involved
in our method. Firstly, similar to the build of visual vocabulary
using k-means clustering, it is data dependent to set the feature
word number (M), feature pattern number (Mv) and spatial
pattern number (Ms). For example, in image region clustering
experiment (Sec. V-B), the numbers of feature words and
feature patterns are determined by the region class number,
while the number of spatial patterns is determined by the
image class number. Secondly, regarding spatial neighborhood
size (K ) of visual primitives, we notice that a too small or too
big K will not provide a satisfactory result. When treating
a single image (e.g., images shown in Figs. 4 and 5), the

optimal choice of K depends on sizes of the spatial patterns.
However, in the image region clustering experiment, we do
not need to specify the size of spatial neighborhood, as given
a region of an image, all other regions in the same image
are considered as in its spatial context group. In such a
case, the neighborhood size is automatically set. Moreover,
in the image classification experiment (Sec. V-C), it does not
require discovering the accurate spatial patterns, but focuses
on encoding the spatial configuration of visual primitives into
visual vocabulary. Such spatial structure can be learned based
on a flexible choice of the sizes of feature words, spatial
patterns and spatial neighborhood.

VI. CONCLUSION

Because of the structure and content variations of complex
visual patterns, they greatly challenge most existing methods
to discover meaningful visual patterns in images. We propose
a novel pattern discovery method to construct low-level visual
primitives, e.g., local image patches or regions, into high-
level visual patterns of spatial structures. Instead of ignoring
the spatial dependencies among visual primitives and simply
performing k-means clustering to obtain the visual vocabulary,
we explore spatial contexts and discover the co-occurrence
patterns to resolve the ambiguities among visual primitives.
To solve the regularized k-means clustering, an iterative top-
down/bottom-up procedure is developed. Our proposed self-
learning procedure can iteratively refine the pattern discovery
results and guarantee to converge. Furthermore, we explore
feature contexts and utilize the co-occurrence patterns among
multiple types of features to handle the content variations
of visual patterns. By doing so, our method can leverage
multiple types of features to further improve the performance
of clustering and pattern discovery. The experiments on spatial
visual pattern discovery, image region clustering and image
classification validate the advantages of the proposed method.
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