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a b s t r a c t

Fusion of information gathered from multiple sources is essential to build a comprehensive situation pic-
ture for autonomous ground vehicles. In this paper, an approach which performs scene parsing and data
fusion for a 3D-LIDAR scanner (Velodyne HDL-64E) and a video camera is described. First of all, a geom-
etry segmentation algorithm is proposed for detection of obstacles and ground areas from data collected
by the Velodyne scanner. Then, corresponding image collected by the video camera is classified patch by
patch into more detailed categories. After that, parsing result of each frame is obtained by fusing result of
Velodyne data and that of image using the fuzzy logic inference framework. Finally, parsing results of
consecutive frames are smoothed by the Markov random field based temporal fusion method. The pro-
posed approach has been evaluated with datasets collected by our autonomous ground vehicle testbed
in both rural and urban areas. The fused results are more reliable than that acquired via analysis of only
images or Velodyne data.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Autonomous situation awareness is an important research as-
pect for robots and unmanned vehicles. Besides whether the ter-
rain is traversable, they also require more specific object
category information to carry out their tasks: e.g., approaching a
tree, or the water area. For decades, computer vision approaches
have been studied to classify scenes from images. Studies of the
human visual system show us that scene perception is a highly
complex process of information fusion which involves not just
the human eyes, but also other human senses including hearing,
tasting, etc. Even within a human vision system, there is clearly fu-
sion of information from color, motion, depth and a whole variety
of ways to infer shape, movement and physical characteristics of
the things within the view [1]. In other words, efficient perceptual
performance often requires integration of multiple sources of
information, both within the senses and between them. As a mat-
ter of fact, other sensors like infrared laser projector in Kinect [2]
and LIDAR scanners [3] have been applied to complement video
cameras in recent years.

In this work, in order to help unmanned vehicles to understand
their environment, two sensors are used: Velodyne HDL-64E 3D-
LIDAR scanner [3] and monocular video camera. A Velodyne
scanner provides 3-dimensional but sparse pointcloud of the
surrounding environment. The pointcloud is trustworthy for obsta-
cle detection but lacks color and texture information, which is

valuable for more detailed categorization of objects. Besides,
although Velodyne HDL-64E is a powerful LIDAR scanner in the
market, its effective coverage limits within 70 m from the center
of the sensor. Considering some time will be taken for information
processing and task scheduling, the 70 m distance may not be suf-
ficient for an unmanned moving vehicle to respond. Furthermore,
for some tasks, we hope the vehicle can ‘‘see’’ as far as 200 m for
advanced planning. On the contrary, images captured by video
cameras can easily cover a much broader and further area and pro-
vide more discriminative information to classify objects into cate-
gories. However, due to the lack of depth information, image-based
detection of obstacles of various shapes, sizes and orientations re-
mains challenging. Due to the above-mentioned complementary
features between cameras and LIDAR sensors, it is possible to ac-
quire more reliable scene parsing by fusing information derived
from these two sensors.

In addition, the sequential scene parsing also requires fusing re-
sults of consecutive frames. In fact, even after fusing results of two
sensors, the obtained parsing results of consecutive frames may
have abrupt changes due to stochastic errors. These abrupt changes
of parsing results may confuse the vehicle navigation system. Intu-
itively, it is possible to obtain more cohesive sequential parsing re-
sults by including the temporal fusion.

In this research, we first propose a new way to fuse the results
of two sensors by employing fuzzy logic inference [4]. Then we
propose a Markov random field based approach to fuse the results
of consecutive frames. Fig. 1 illustrates the fusion process. Fuzzy
logic is preferable for our application due to its advantages. First,
fuzzy logic is built on top of the knowledge and experience of
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experts. Therefore, it can employ not only results from LIDAR and
video camera data but also a priori knowledge. Second, fuzzy logic
can model nonlinear functions of arbitrary complexity. This is
important as scene parsing is not a trivial problem. Third, fuzzy lo-
gic can tolerate imprecise results of two sensors. Moreover, fuzzy
logic is a flexible fusion framework so that results of more sensors
can be easily integrated to the system in future.

To fuse results of consecutive frames, we propose a Markov ran-
dom field (MRF) based temporal fusion method [5,6]. Correspon-
dences between consecutive frames are first estimated by using
the dense optical flow method [7]. Then, a MRF model is built to
integrate results of multiple consecutive frames. The result of each
frame is refined by the Belief Propagation (BP) algorithm [8]. The
following contributions have been made in this paper:

1. To the best of our knowledge, the proposed approach is the first
systematic fuzzy logic inference based fusion work for scene
understanding by fusing results of Velodyne 3D-LIDAR scanner
and monocular video camera.

2. The MRF based temporal fusion method is introduced to obtain
cohesive video parsing results. It can smooth whole frame
simultaneously by integrating results of multiple consecutive
frames.

3. We test the proposed approach on datasets collected by our
autonomous ground vehicle testbed. The datasets are captured
from urban and rural areas either in day or night time. The
results validate the robustness and effectiveness of our fusion
approach for scene parsing.

A preliminary version of this paper was described in [9]. The
current version described here differs from the former in several
ways, including: the introduction of MRF based temporal fusion
method; comprehensive evaluation of the method with three
more datasets; further analysis and discussion of the whole ap-
proach, as well as the introduction of more related works about
sensor fusion and scene parsing. While the preliminary version
in [9] focuses on fuzzy logic based fusion strategies, the current
version will provide more details on image parsing techniques,
too.

This paper is organized as follows: In Section 2, we briefly sur-
vey the sensor fusion and scene parsing literature. After giving the
parsing methods for individual sensors, we describe the fuzzy logic
based method to fuse the results of two sensors in Section 3.1. The
MRF based temporal fusion is presented in Section 3.1. Thorough
experiments are conducted in Section 3.1 for evaluation, and in-
depth discussion is provided in Section 3.1. We conclude our paper
in Section 3.1.

2. Related work

By combining data from multiple sensors, we can achieve im-
proved accuracies and more specific inferences than that achieved
by the use of a single sensor alone [10]. The existing methods for
fusing LIDAR data and camera images can be grouped into two cat-
egories: centralized approaches, decentralized approaches. In cen-
tralized approaches, the fusion process occurs at the pixel-level or
feature level, i.e., features from both LIDAR and video camera are
combined in a single vector for posterior classification. Douillard
et al. present a logical rule based object classifier by combining
Velodyne data and monocular camera data [11]. A set of twenty-
one binary features are defined based on 3D pointclouds and cam-
era images. The logical rules are learned from training data. Häse-
lich et al. present a novel approach for online terrain classification
from fused camera and laser range data [12]. Laible et al. propose
to handle the terrain classification at different lighting conditions
by fusing the camera and LIDAR data [13]. Kaempchen et al. per-
form centralized free-form object tracking using laser scanner
and camera [14]. Schneider et al. address the problems of synchro-
nization, correction and occlusion reasoning for the fusion of cam-
era and LIDAR [15]. Centralized methods can simplify the posterior
classification process but are difficult to integrate the human
knowledge and experience. Furthermore, in the centralized meth-
od, only the regions commonly observed by both sensors can be
processed. This greatly limits the area they can cover due to the
short range of one sensor.

Decentralized approaches separately classify the data for indi-
vidual sensor first, the classification results are then combined by
a fusion method. Kidono et al. propose a fusion system for reliable
pedestrian recognition using Velodyne and a vision sensor to
achieve high performance under various conditions [16]. Himmels-
bach et al. propose to evaluate the tentacle by fusing LIDAR and
camera for autonomous navigation [17]. Labayrade et al. propose
a fusion strategy by matching the set of obstacles from laser scan-
ner with the set of obstacles coming from stereo-vision based on
the belief theory [18]. Premebida et al. also obtain a better perfor-
mance than the single classifiers by using the decentralized
scheme [19]. Generally, these methods require training data to
determine the fusion model and the fusion parameters.

Besides the two fusion strategies, there are works which try to
use them together [20–23]. Garcia and Olmeda propose a hybrid
fusion strategy by fusing the low and high level information simul-
taneously [20]. Tang et al. propose to learn the contextual informa-
tion from input data and then combined with given expert
knowledge in classification [21]. Habtemariam et al. propose a
multiple detection probabilistic data association (MD-PDA) filter

Fig. 1. Illustration of the proposed sensor fusion approach. The data of Velodyne scanner and camera are first parsed simultaneously. Then the results of two sensors are fused
by the proposed fuzzy logic based method. After that, parsing results of consecutive frames are smoothed by the proposed Markov random field based temporal fusion
method. By fusing results of two sensors, it localizes the obstacles correctly and therefore improves the scene parsing result.
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for tracking a target when more than one target originated mea-
surement may exist within the validation gate [22]. Martin ex-
plores another type of fusion by updating the classifications of
multiple objects simultaneously when given a measurement on
only one of the objects [23]. Matthaei and Dyckmanns use laser
and radar to classify motion for cross traffic in urban environments
[24].

Scene parsing is one of the fundamental problems of computer
vision. Image scene parsing aims to assign a category label to each
pixel of a given image. Over the last several years, many methods
have been proposed for this problem. They can be broadly catego-
rized on the basis of their basic process units. Several methods are
using the pixels as basic units [6], others using segments [25–27],
group of segments [28], or intersections of multiple segmentations
[29], while the whole image is considered in the extreme case [30].
Several methods are using multiple types of information to im-
prove the parsing results. Tu et al. propose to combine segmenta-
tion, detection, and recognition for the scene parsing [31].
Ladický et al. [32] propose an image segmentation and parsing
method by combing object recognition, detection and segmenta-
tion with a conditional random field defined on pixels, segments
and objects. Felzenszwalb and Veksler propose a tiered scene label-
ing method by using the dynamic programming approach [33].

Other scene parsing methods employ the nonparametric classi-
fication method [5,34] or deep feature learning [35]. Liu et al. [5]
propose a nonparametric scene parsing method via label transfer
algorithm. Tighe and Lazebnik [34] pre-process the video using a
spatio-temporal segmentation method that gives 3D regions that
are spatially coherent within each frame as well as temporally
coherent between frames. Then each 3D region is classified. Far-
abet et al. propose a scene parsing method by leveraging the deep
learning method [35].

Besides the image parsing work, several approaches have tried
many strategies to employ the cues contained in video data. Bros-
two et al. [36], Strurgess et al. [37] and Zhang et al. [38] recover the
3D structure information (e.g., dense depth maps or sparse point
clouds) from the video sequences and then combine the 3D infor-
mation and image information to parse individual frames. Xiao and
Quan [39] propose a region-based parsing system on each frame
and enforce temporal coherence between regions in adjacent
frames by temporal fusion in a batch model.

With the development of range sensors, several recent works
obtain the scene semantic labels with the 3D-LIDAR data only. Spi-
nello et al. track the people in 3D pointcloud data using a bottom-
up top-down pedestrian detector [40]. Bradley et al. employ the 3D
pointcloud to detect vegetation for driving in complex environ-
ments [41]. Teichman and Thrun propose a semi-supervised ap-
proach to the problem of track classification in dense 3D range
data [42]. Behley et al. evaluate several local features for the clas-
sification of 3D laser range data in urban environments [43].

3. Parsing modules for individual sensors

As a decentralized fusion method, a geometry segmentation
algorithm is proposed to detect obstacles and ground from Velo-
dyne data for this work. In the meantime, one algorithm, which
combines both bottom-up and top-down analyses, is designed to
classify image patches into multiple categories. In this section,
we first describe the two detection algorithms separately and then
summarize their advantages and disadvantages.

3.1. Obstacles and ground classification using Velodyne scanner

As mentioned earlier, due to the sparseness of pointcloud, we
detect only traversability of the terrain (i.e., classifying the point-

cloud into ground and candidate obstacles) from the Velodyne
data. To achieve it, we first voxelize the pointcloud P. Then we sep-
arate the ground points using a RANSAC plane fitting algorithm
[44]. After that, all the above-ground points are obtained and the
candidate obstacles are localized by partitioning the above-ground
points using 3D adjacency. Fig. 2 illustrates the result of each step.
To speed up the process, we first build a 3D cubic voxel grid using
the pointcloud P. The pointcloud data are stored in cubic voxels for
efficient retrieval and the grid resolution is set to be 0.1 m. By
voxelizing, the spatial neighborhood relationships of the 3D points
are modeled explicitly.

The second step separates the points into two categories:
ground and non-ground. Points are considered in batches, defined
by their membership in a single cubic voxel in space. A voxel is
considered to contain ground data if the voxel is a member of
the lowest (in elevation) set of adjacent non-empty voxels in a ver-
tical column (i.e., not part of an overhang). All 3D points stored in
that set of voxels are fitted to a plane using the RANSAC algorithm
and the inliers points are the ground points. All inliers points
should be near the hypothesis plane (i.e., the distance to the plane
is less than 0.3 m). The RANSAC algorithm terminates after testing
100 hypothesis planes. All of the voxels that contain ground points
are called ground voxel set G. Other voxels are called the above-
ground voxel set U . One above-ground voxel Vi;j;k 2 U may contain
a number of above-ground points or be an empty voxel, where i; j
and k denotes the indexes of the 3D voxel grid.

The third step detects the possible obstacles by clustering the
non-empty above-ground voxels according to 3D adjacency [45].
Each obstacle is represented by a voxel cluster. Denote all the voxel
clusters as C and the voxels in one voxel cluster O 2 C should meet
the following 3D adjacency criterion:

8Vi;j;k 2 O 9Vi0 ;j0 ;k0 2 O
� �

^ ji� i0j < d _ jj� j0j < d _ jk� k0j < d
� �

;

ð1Þ

We set d ¼ 2 in current implementation. The detected results are
projected to the image as shown in Fig. 2(f). Each bounding box
localizes one candidate obstacle. The green circles represent the
projection of ground points and the blue circles represent the pro-
jection of above-ground points.

3.2. Image parsing module

Contrary to Velodyne information processing which concerns
whether the terrain is traversable [46], we intend to identify more
specific categories of objects from the images. From the camera
images that we have collected, we identified nine possible catego-
ries, which include ground (road), building, water, tree, grass and
obstacles, etc. As a matter of fact, obstacles can be further divided
into human, car, etc. But this detailed division requires sufficient
training data for each specific class. Viewing that there are many
types of possible known or unknown obstacles, we simply classify
all of them into obstacles. For a particular task, specific models can
be trained for individual interesting classes too. Table 1 summaries
all employed categories. The classification of images is realized by
two steps: bottom-up classification of local image patches and top-
down contextual analysis to further resolve uncertainties in the
bottom-up classification.

During bottom-up classification phase, an image is first over-
segmented into small image patches [47]. From each patch, 131
features are extracted, including 24 features from color histograms
and 107 features corresponding to different texture descriptors. 36
of them are derived from anisotropic Gauss filtered images, 12
from Gabor filtered images, and 59 Local Binary Patterns [48]. An
MLP (multilayer perceptron) classifier is trained to classify the lo-
cal image patches into object categories [49]. Fig. 3(b) is an
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example of bottom-up classification result, where patches of origi-
nal image in Fig. 3(a) are classified into different categories.

Sometimes, errors will occur in the bottom-up classification.
For instance, in Fig. 3(b), some image patches of ‘‘sky’’ (area A)
are wrongly classified into ‘‘ground’’, some part of ‘‘tree’’ (area
B) is classified into ‘‘water’’, and a part of ‘‘grass’’ (area C) is clas-

sified as ‘‘tree’’. Some errors in bottom-up classification can be
further corrected by a top-down contextual analysis process. This
is because only local features of the image patches are consid-
ered during the bottom-up classification phase. It is possible that
local patches of different object categories may look similar,
leading to uncertainties in the bottom-up classification. However,
when looking at an image patch from its surrounding context,
e.g., the categories of its neighbors, the uncertainty can be re-
solved. For example, ‘‘ground’’ cannot be above ‘‘tree’’ in the im-
age if it is taken from a moving vehicle. This property has been
well recognized and employed in several computer vision sys-
tems [50]. However, most of them either treat contextual infor-
mation equally with local, low-level features or mix the
contextual information with low-level features in one classifier.
Our work is different from them in that we model the contextual
relations independent of the bottom-up classification process,
allowing the contextual analysis result to feedback to the
bottom-up classification module so as to update the final
classification result.

Fig. 2. Illustration of obstacle and ground classification using Velodyne scanner. (a) is the 3D pointcloud of Velodyne scanner; (b) is the ground points; (c) is the above-ground
points; (d) shows the detected bounding boxes of the candidate obstacles; (e) shows the pointcloud and the detected results; (f) shows the detected results which are
projected to the camera image. Each bounding box represents one candidate obstacle in (d)–(f).

Table 1
The category summary.

Category Explanation

Ground Traversable ground plane
Obstacle Pedestrian, vehicle and other objects above ground
Building Human-made structure
Grass Vegetation with height less than 0.3 m
Bush Vegetation with height between 0.3 m and 2.0 m
Tree Vegetation with height more than 2.0 m
Pavement /
Sky /
Water /
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To acquire the top-down contextual relation module, the con-
nected image patches classified into the sample category by the
bottom-up classification process are first grouped into bigger com-
ponents, where each component corresponds to a connected area.
Then, the existence of neighboring categories of a component is de-
rived from three directions: top, down and sides (both left and
right sides). For each direction, we check the existence of each cat-
egory, as well as whether the component is adjacent to the bound-
ary of the image. They form the contextual information of the
component. This contextual information is then passed to the
Bayesian network as evidence. The probability of the node category
will be updated through Bayesian network inference.

Denote the number of categories as L, the number of nodes in
the Bayesian network is 3ðLþ 1Þ þ 1. The coefficient 3 means that
three directions are considered: top, bottom and sides. Lþ 1 means
for each direction, we check the existence of each category, as well
as whether the component is adjacent to the boundary of the im-
age. Fig. 4 illustrates the corresponding Bayesian network with
four categories ‘‘Tree’’, ‘‘Road’’, ‘‘Obstacle’’ and ‘‘Image’’ (i.e., pseudo
category for image boundary) for drawing convenience. The root
node ‘‘Class’’ corresponds to the component under consideration.
Denote the category probability of this component as
PðComp ClassÞ and its initial value is acquired based on bottom-
up classification result as described above. The probability of this
node will be updated based on the evidence from other nodes,
which correspond to different contextual information respectively.
For example, the node ‘‘Top-Tree’’ corresponds to whether the top
neighbor of the component is ‘‘Tree’’ while the ‘Side-Image’’ corre-
sponds to whether the side neighbor of the component is ‘‘Image’’
(i.e., image boundary). The model was learned using the TAN (tree

augmented Naive Bayes) training algorithm [51]. Therefore, for
each node, except the root node, there will be at most two parents.
The training data comes from the combination of bottom-up initial
classification module and manually labeled ground truth of the
training images.

With the learned model, the probability of the root node
PðComp ClassÞ is updated through Bayesian network inference.
This updated probability is fused with the bottom-up classification
confidence via multiplication:

PðComp ClassjSide Image; . . . ;Bottom ObstacleÞ
¼ PðComp ClassÞPðSide ImagejComp ClassÞ; . . . ;

PðBottom ObstaclejComp ClassÞ: ð2Þ

As shown in Fig. 3(c), the classification errors in area A–C are cor-
rected after contextual analysis.

3.3. Summarization of two methods

By analysing the results, it can be seen that both methods have
their own advantages and disadvantages. The laser scanner based
method can separate the ground and above-ground points ro-
bustly. It can also segment the obstacles if they are not adjacent
to other obstacles. However, the laser scanner can only obtain a
sparse pointcloud and it has no information about water, sky and
the areas out of the sensor’s range, as shown in Fig. 5. Besides,
the detected obstacles include many tree and bush areas, which
will increase the possibility of the vehicle deviating from the road
region. As for the camera based method, it can classify the image
into multiple categories. However, due to the diversity of the

Fig. 3. Illustration of image classification. (a) is the original image; (b) is the classification result of bottom-up phase; (c) is the final classification result after top-down
contextual analysis; (d) shows the color of each category. The classification errors in area A–C in (b) are corrected after top-down contextual analysis. (For interpretation of
the references to colour in this figure caption, the reader is referred to the web version of this article.)
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Fig. 4. Illustration of the Bayesian networks for contextual analysis. Here we show four categories ‘‘Tree’’, ‘‘Road’’, ‘‘Obstacle’’ and ‘‘Image’’ (i.e., pseudo category for image
boundary) for drawing convenience. For each category, we consider three diresctions: Top, Bottom and Side (both left and right sides). The root node ‘‘Comp_Class’’
corresponds to the category of the component under consideration. As learned by using the TAN (tree augmented Naive Bayes) algorithm [51], for each node, except the root
node, there will be at most two parents.

Fig. 5. Illustration of the range covered by Velodyne. (a) shows one camera image. (b) shows the projected Velodyne points. It can be seen that only nearby areas have the
corresponding Velodyne points.
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obstacles, some obstacle regions may be classified as wrong cate-
gories. The complementary performance of two methods shows
the possibility to boost the scene parsing and obstacle detection
by combining them.

4. Fuzzy logic based sensor fusion

Both the results of laser scanner and the results of camera im-
age have their own advantages and disadvantages. To parse the
scene correctly, the primary work of fusion is to categorize the de-
tected candidate obstacles by Velodyne scanner. The scene parsing
results are then improved based on the categorization. As a good
way to utilize the a priori knowledge and experience of human ex-
perts [4], we propose to use the fuzzy inference method to fuse the
results of two sensors.

4.1. Fuzzification of the fusion

The inputs to the fuzzy fusion module are five related attributes
of each candidate obstacle: the size of candidate obstacle (size), the
image classification result (class), the spatial context (s-context),
the temporal context (t-context) and the absolute height (height)
of the candidate obstacles. The output result classification (rc) is
the detection result for the candidate obstacles. Each input and
output parameter is defined as a fuzzy variable.

To employ the a priori knowledge, all the associated fuzzy vari-
ables are first fuzzified into linguistic labels. The input variable size
is simply expressed using four linguistic labels TIN (tiny), SMA
(small), MID (middle) and LAR (large) within the universe of dis-
course (0,100) percents. The candidate obstacle size is defined as
the percents of all image pixels which are inside the candidate
obstacle bounding box. The variable class is expressed using three
linguistic labels NOBS (non-obstacle), MID (middle) and OBS
(obstacle) within the universe of discourse (0,100) percents. The
classification is measured by the percent of non-obstacle pixels
among all the pixels inside the candidate obstacle bounding box.
All the detected grass, bush, tree and building pixels by image clas-
sification method are considered as non-obstacle pixels. When
most of inside pixels belong to the non-obstacle category, the can-
didate obstacle is probably not the pedestrian and vehicle, and vice
versa. We count the number of non-obstacle pixels to describe the
bounding boxes as the tree, bush or building areas are possible to be
detected as candidate obstacles while they might be far from the
traversable ground area. Therefore, by removing the tree, bush or
building from the candidate obstacles, the autonomous vehicle will
focus on the obstacles which are above on the traversable ground.

The spatial context s-context is expressed using two linguistic
labels NOBS (non-obstacle) and OBS (obstacle) within the range
(0,8). It is obtained from the classification results of eight pixels
around the candidate obstacle bounding box. Four of them are
the corners of the box and the other four are the middle point of
each edge of the bounding box. If one pixel is classified as ground,
s-context is added by one. The temporal context is expressed using
two linguistic labels LOW (low) and HIG (high) within the range
(0,1). The temporal context describes the existence possibility of
current obstacle in the previous frame. By checking the
neighborhood of current position in the previous frame, if there
is one obstacle with similar size and classification as current one,
the temporal context is HIG. Otherwise, the temporal context is
LOW. The height is the absolute height of the candidate obstacle
obtained by the scanner directly. It is expressed using three
linguistic labels LOW (low), MID (middle) and HIG (high) within
the range (0,10) m. If the obstacle is very high (i.e., >4 m), it is more
likely to be a tree rather than a car. It is important to note that the
flat-world assumption is used here to make the absolute height
work.

The output result score (rc) is simply expressed using three lin-
guistic labels NOBS (non-obstacle), MID (middle) and OBS (obsta-
cle) within the universe of discourse (0,1). All the membership
functions of input and output variables are illustrated in Fig. 6.

4.2. Knowledge rules of scene classification

Based on the human knowledge and experience, a vehicle is re-
quired to move on the ground and avoid all the obstacles simulta-
neously. To detect the categorization of each candidate obstacle,
both the detection results of scanner and the camera are used. Be-
sides, the spatial and temporal context of the obstacle is also impor-
tant knowledge. When the candidate obstacle is surrounded by
ground region, it is probably an obstacle. However, when the candi-
date obstacle is on the edge of ground region, its categorization
highly depends on image classification result and other information
like height of the obstacle. By analyzing the application scenario of
our auto-driving vehicle, the following rules are selected.

The group of rules when the size of object box is large:

R1: if size is LAR and class is OBS then rc is OBS;
R2: if size is LAR and class is MID then rc is MID;
R3: if size is LAR and class is NOBS then rc is NOBS;
R4: if size is LAR and class is NOBS and s-context is NOBS then rc is

NOBS;
R5: if size is LAR and class is NOBS and t-context is NOBS then rc is

NOBS;
R6: if size is LAR and class is NOBS and s-context is OBS then rc is

OBS;

The italic assertion in R1–R6 is the condition part of each rule,
which is contributed by the detection result of two sensors. These
rules indicate that the size of the obstacle is not the only criterion
to decide categorization of the obstacle boxes. The image classifica-
tion result and the context information are also very important for
scene classification.

When the size of obstacle is becoming smaller and smaller, the
image classification result and the context information will play a
more important role for scene classification:

R7: if size is MID and class is OBS then rc is OBS;
R8: if size is MID and class is MID then rc is MID;
R9: if size is MID and class is NOBS then rc is MID;
R10: if size is MID and class is MID and s-context is NOBS

then rc is NOBS;
R11: if size is MID and class is NOBS and s-context is NOBS

then rc is NOBS;
R12: if size is MID and class is NOBS and t-context is NOBS

then rc is NOBS;
R13: if size is MID and class is NOBS and height is MID then rc

is NOBS;
R14: if size is SMA and class is OBS then rc is MID;
R15: if size is SMA and class is OBS and s-context is OBS then

rc is OBS;
R16: if size is SMA and class is OBS and s-context is NOBS

then rc is NOBS;
R17: if size is TIN then rc is MID;

The absolute height of one candidate obstacle is also an impor-
tant criterion to decide the result. If the obstacle’s height is very
large (e.g., higher than 4 m), the obstacle is more likely a tree rather
than a car. The height attribute is included in the following rules:
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R18: if class is NOBS and height is MID then rc is NOBS;
R19: if class is MID and height is MID then rc is NOBS;
R20: if height is HIG then rc is NOBS;

Although 20 rules do not cover the complete relationships of
different attributes, these rules help to integrate the results of
two sensors and the human knowledge and experience.

4.3. Fuzzy reasoning

After synthesizing these 20 rules for fusion, their roles are fur-
ther coordinated through Mamdani’s fuzzy reasoning method in
this section [52]. The process of Mamdani fuzzy inference involves
steps fuzzification, inference, aggregation and defuzzification. The
information flow of the fuzzy reasoning is shown in Fig. 7.

Fuzzification converts the input values into a degree via mem-
bership functions. The input is always a crisp numerical value
and the output is a fuzzy degree of membership in the qualifying

linguistic set. The membership functions are illustrated in Fig. 6.
After the inputs are fuzzified, the inference of a rule uses the min-
imal operation to combine different condition assertions for logical
operator and and generate the output grade for the conclusion
assertion. Taking rule R7 as an example, given a set of inputs size
size� and class�, the output grade rs

� of the label OBS due to this rule
can be inferred as:

U7
OBSðrs

�Þ ¼minðUMIDðsize�Þ;UOBSðclass�ÞÞ; ð3Þ

where UMIDðsize�Þ and UOBSðclass�Þ represent the membership func-
tions of the corresponding labels.

There are two steps involved in the aggregation process: the
maximum operation of the output grades of each output label
due to several rules, and the generation of the output membership
function. The aggregated output grade belonging to one corre-
sponding label (such as label OBS) is calculated as:

UOBSðrs
�Þ ¼maxðU1

OBSðrs
�Þ;U2

OBSðrs
�Þ; . . . ;U20

OBSðrs
�ÞÞ: ð4Þ

The aggregated output membership function UOðrsÞ is obtained by
cutting the membership function UOBSðrsÞ;UMIDðrsÞ and UNOBSðrsÞ

Fig. 6. Illustration of membership function for input and output fuzzy variables. (a) shows membership function of size; (b) shows membership function of class; (c) shows
membership function of s-context; (d) shows membership function of t-context; (e) shows membership function of height; (f) shows membership function of rc .
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respectively at the grades UOBSðrsÞ�; UMIDðrsÞ� and UNOBSðrsÞ�, and
combing them point by point:

UOðrsÞ ¼maxðminðUOBSðrs
�Þ;UOBSðrsÞÞ;minðUMIDðrs

�Þ;UMIDðrsÞÞÞ;
minðUNOBSðrs

�Þ;UNOBSðrsÞÞÞ: ð5Þ

After aggregation, the input for the defuzzification process is a fuzzy
set and the output is a single number. The defuzzification process
finds the center of gravity of the output membership function as
the real value of the output variable:

r�s ¼
R

UOðrsÞrs drsR
UOðrsÞdrs

; ð6Þ

rs
� is the final crisp classification score for the candidate box. Based

on the classification score, the categories of the candidate obstacles
are decided. If the result score of one candidate obstacle is large en-
ough (i.e., rc > 0:65), it is classified as the obstacle. Otherwise, its re-
sult depends on the image classification method. After that, we
update the categories of the patches inside the obstacle bounding
boxes by considering the results of two sensors.

4.4. Automatic setting the fuzzy logic inference

To fuse the results of two sensors, the fuzzy logic is employed
by defining the fuzzy variables and fuzzy rules. Although the fuzzy
rules and fuzzy variables are decided manually by analyzing the
application scenarios in our implementation, the neuro-fuzzy ap-
proach can select the rules and tune the parameters automatically
[53]. Neuro-fuzzy approach combines the human-like reasoning
style of fuzzy systems with the learning and connectionist struc-
ture of neural networks. Through the neuro-fuzzy approach, the
proposed fuzzy logic based fusion method is easy to be applied
in many different applications.

5. Temporal fusion of consecutive frames

By fusing the results of camera and scanner, we can have a bet-
ter parsing result of each frame. The image parsing result is helpful
to understand the environment for the ground vehicle. However,
the results of consecutive frames may have abrupt changes due
to the car moving, partial occlusion, etc. Fig. 8 shows this phenom-
enon and several incohesive regions are marked in one frame by
the white circles. These abrupt changes of parsing results will mis-
lead the vehicle navigation system. One major reason of cohesive

problem is that the temporal information is not included in the
scene parsing process.

There are several challenges to do temporal fusion for video
scene parsing. First, the whole frame should be considered simul-
taneously to obtain the spatial coherence for all pixels. Second, to
do the temporal fusion, the pixels should be matched densely be-
tween consecutive frames. Therefore, we can not use the sparse
feature matching algorithm as hundreds of visual features are
not enough to cover the whole frame. Moreover, one single previ-
ous frame may not have the enough information for temporal fu-
sion and multiple previous frames are required.

As we do not assume the type of dynamical system and the prob-
ability distribution of errors and measurements, we prefer not to
use the popular filter algorithm like Kalman filter. Instead, to ad-
dress the above problems for temporal fusion, we model each frame
as a Markov random field (MRF) [5,6]. The correspondences be-
tween two consecutive frames are first estimated by using the dense
optical flow method [7]. Then each frame is represented by a MRF
model to integrate results of multiple previous frames. After that re-
sult of each frame is refined by solving the MRF model using Belief
Propagation (BP) algorithm [8]. Fig. 9 describes the MRF model.

For a given frame It , we consider its k previous frames for tem-
poral fusion. Each previous frame Ii is described by its initial scene
parsing result ci and the optical flow field v i. The k previous frames
are denoted by the set fci;v igt�k6i6t�1. For previous frame
Ii; ciðpÞ 2 ½0;1�L is the category probability vector for pixel p ob-
tained by image parsing algorithm, i.e., jciðpÞj ¼ 1. Here we assume
there are a total of L categories as defined in Table 1. ctðpÞl repre-
sents the probability of pixel p is classified to category l. v i is the
optical flow field (from It to Ii). We want to obtain the smoothed
parsing result cs

t for given frame It by fusing result of frame It

and that of k previous frames. Therefore we build a probabilistic
Markov random field model to integrate results of multiple frames
and impose a spatial smoothness constraint. Inspired by Liu et al.
[5] and Shotton et al. [6], the posterior probability is defined as:

� log Pðcs
t jct ; fci;v igÞ ¼

X
p
/1ðcs

tðpÞ; ctÞ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{current frame cohesive

þ
X

p
/2ðcs

tðpÞ; ct�1;v t�1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{previous frame cohesive

þ
X

p
/3ðcs

tðpÞ; fci;v igÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{historical prior cohesive

þ
X

fp;qg2�
/4ðcs

tðpÞ; cs
tðqÞ; ctÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{spatial cohesive

þ logZ
zfflffl}|fflffl{normalization constant

; ð7Þ

where Z is the normalization constant of the probability and � is the
set which represents the neighborhood relation of all pixels in

Fig. 7. Information flow of fuzzy reasoning for scene parsing.
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frame It . p and q are pixels in frame It . Among four components of
this posterior, /1 ensures the smoothed result similar to parsing re-
sult of current frame ct while /2 forces the smoothed result close to
parsing result of previous frame ct�1. /3 depends on parsing results
of corresponding pixels in multiple previous frames fci;v igt�k6i6t�1

and /4 incorporates a spatial smoothness constraint which depends
on smooth parsing result of current frame cs

t . Optical flow field
fv igt�k6i6t�1 is used to find corresponding points between current
frame and previous frames.

The first term /1 is defined as:

/1ðcs
tðpÞ ¼ lÞ ¼ ð1� ctðpÞlÞ; ð8Þ

where ctðpÞl represents the probability of pixel p is labeled as cate-
gory l in image parsing result. The higher the probability ctðpÞl, the

more chance smoothed parsing result of pixel p is set to be l. The
second term /2 is defined as:

/2ðcs
tðpÞ ¼ lÞ ¼ kItðpÞ � Iðt�1Þðpðt�1ÞÞkð1� ct�1ðpÞlÞ if 9 pðt�1Þ;

s else;

(

ð9Þ

where pðt�1Þ ¼ pþ v t�1ðpÞ is p’s corresponding pixel in previous
frame It�1. s is set to be the maximum intensity difference value be-
tween corresponding pixels of two frames s ¼maxp;pðt�1ÞkItðpÞ�
Iðt�1Þðpðt�1ÞÞk.

The term /3 incorporates the probability that category l appears
at pixel p’s corresponding pixels in several previous frames. /3 is
considered as the historical prior for category l and its value is ob-
tained from counting the occurrence of category l at pixel p’s cor-
responding pixels in k previous frames:

Fig. 8. The cohesive problem between consecutive frames. (a) and (b) are two consecutive frames while (c) and (d) are the corresponding image parsing results. The white
circles in (d) illustrate several places which do not have cohesive parsing results between two frames.

Fig. 9. Illustration of the MRF model for frame t. The frame t; t � 1 and t � 2 are shown and each black circle represents one pixel. The red edges show the neighborhood
relation in the same frame while the green edges show the corresponding relation between consecutive frames. The smoothed parsing result of pixel A is decided by
considering both its neighbor pixels in the same frame (e.g., B;C and D) and its corresponding pixels in previous frames (e.g., E in frame t � 1 and F in frame t � 2). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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/3ðcs
tðpÞ ¼ lÞ ¼ � logðNl þ 1Þ; ð10Þ

where Nl is occurrence number of category l in p’s corresponding
pixels in k previous frames. The smoothness term /4 compels
neighboring pixels to have the same label in the event that no other
information is available and its value depends on parsing result of
current frame ct:

/4ðcs
tðpÞ; cs

tðqÞÞ ¼ d½cs
tðpÞ– cs

tðqÞ�kctðpÞl� � ctðqÞl� k; ð11Þ

where ctðpÞl� represents the maximum probability value in category
probability vector of pixel p. To compel neighboring pixels have the

same label, d½cs
tðpÞ – cs

tðqÞ� is set to be 1 when cs
tðpÞ – cs

tðqÞ and it is
set to be 0 when cs

tðpÞ ¼ cs
tðqÞ. /4 can add a penalty if two neighbor-

ing pixels have different smoothed labels. Once these energy func-
tions are calculated for frame It , we use BP algorithm to minimize
the energy [8] and the parsing result is smoothed consequently.

6. Performance evaluation

To evaluate our fusion approach, we test it on four datasets col-
lected by our autonomous ground vehicle testbed when driving in
rural and urban areas and one public pedestrian dataset [54]. In the
experiments, we compare the fusion result with that of using video
camera only. In addition, the MRF based temporal fusion method is
further evaluated.

6.1. Dataset and sensor calibration

The datasets are collected by an autonomous ground vehicle
testbed while the vehicle is outfitted with a Velodyne 3D-LIDAR
scanner, a monocular camera and other sensors. The calibration

Table 2
The information of five datasets.

Dataset Frame No. Label level

Dataset 1 440 Pixel’s category
Dataset 2 450 Pixel’s category
Dataset 3 1500 Pixel’s category
Dataset 4 1500 Pixel’s category
Dataset 5 [54] 150 Pedestrian’s bounding box

Fig. 10. Sample results of scene parsing and obstacle detection using Dataset 1 and Dataset 2. Panel (a) presents the result of Dataset 1 while panel (b) presents the result of
Dataset 2. In each panel, the first row shows the original camera image and the second row shows the image classification result. The red color illustrates the region of
detected obstacles and other colors have similar meaning as in Fig. 3(d). The third row shows the detected result using scanner pointcloud and the results are projected to the
camera image. Each bounding box localizes one candidate obstacle. The fourth row shows the result of our fusion method. Each white bounding box localizes one detected
obstacle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of camera and Velodyne is done in a coarse-to-fine manner. We
first estimate extrinsic parameters of camera using Caltech cali-
bration toolbox [55]. Then we initially estimate the tilt, roll and
yaw of camera with regard to the world coordinate system based
on the estimated vanishing line on selected images. In this step,
we assume the Velodyne coordinate system is the world coordi-
nate system as the calibration is done when the vehicle is static.
After obtaining the initial result, we fine-tune the parameters
based on the mapping result between Velodyne points and image
pixels.

Table 2 summaries all five datasets. The first dataset corresponds
to an open ground in rural area while the second one corresponds to
the road in rural area. The first dataset consists about 440 frames and
the second one consists about 450 frames. The third and fourth
datasets correspond to the road in urban area while they both have
about 1500 frames. The first three datasets are collected in the day
time while the fourth one is collected in the night time. Besides these
four self-collected datasets, we select the pedestrian data from the
recent public dataset [54] as our fifth dataset. Two challenging
video sequences are selecetd: ‘‘2011-09-28-drive-0038’’ and
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Fig. 11. The scene parsing performance of the proposed fusion based scene parsing method (fusion) and the image parsing method (camera only) using Dataset 1 and Dataset
2. The results of all categorizes are averaged to obtain the F-measure, precision and recall values for each frame. (a) shows the F-measure value of Dataset 1; (b) shows precision
value of Dataset 1; (c) shows recall value of Dataset 1; (d) shows the F-measure value of Dataset 2; (e) shows precision value of Dataset 2; (f) shows recall value of Dataset 2.
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‘‘2011-09-28-drive-0045’’. To quantify the performance of the pro-
posed approach, we manually labeled about 20% of all frames in
the first and second datasets, and 5% of all frames in the third and
fourth datasets. There are total 9 labeled categorizes which include
road, obstacle, building, tree, sky, water, etc. For the fifth dataset, we
use the groundtruth of pedestrians provided by Geiger et al. [54].
Dataset 1, Dataset 2 and Dataset 5 contain data of both
camera and Velodyne while Dataset 3 and Dataset 4 contain data
of camera.

The proposed scene parsing approach aims to provide the envi-
ronment situation awareness ability for autonomous ground vehi-
cles. We evaluate our fusion method on these collected datasets.
The k ¼ 4 previous frames are considered in the temporal fusion step
and � contains eight neighbors of each pixel in order to obtain the
spatial smooth. For each category, the set of pixels which are classi-
fied to this category by our method is denoted as DR (i.e., detect re-
gion). The set of pixels which are manually labeled to this category is
denoted as GT (i.e., ground truth). The performance is measured by
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Fig. 12. The obstacle detection performance of the proposed fusion based scene parsing method (fusion) and the image parsing method (camera only) using Dataset 1 and
Dataset 2. (a) shows the F-measure value of Dataset 1; (b) shows precision value of Dataset 1; (c) shows recall value of Dataset 1; (d) shows the F-measure value of Dataset 2; (e)
shows precision value of Dataset 2; (f) shows recall value of Dataset 2.
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two criteria: precision ¼ jGT\DRj
jDRj and recall ¼ jGT\DRj

jGTj . By combining pre-
cision and recall, we use a single F-measure as the metric for perfor-
mance evaluation. F-measure ¼ 2�recall�precision

recallþprecision is the weighted

harmonic mean of precision and recall. In each frame, these criteria
values are first calculated for each category, respectively. Then the
average value of all categories is used to evaluate one frame.

Fig. 13. Sample results of pedestrian detection using Dataset 5 [54]. Panel (a) presents the result of pedestrian detection using the image only; panel (b) shows the projected
Velodyne points; panel (c) shows the pedestrian detection result using the proposed sensor fusion method. Each bounding box represents one detected pedestrian. By fusing
of camera and Velodyne, we can remove many false detections. Meanwhile there is clearly room for improvement. For example, detect pedestrians in shadow.
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Fig. 14. The pedestrian detection performance of the proposed fusion based method (fusion) and the image based method [56] (camera only) using Dataset 5. (a) shows the F-
measure value of Dataset 5; (b) shows precision value of Dataset 5; (c) shows recall value of Dataset 5.
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6.2. Scene parsing by fusing results of two sensors

Fig. 10 shows the result of several frames. The top panel shows
the result of Dataset 1 and the bottom panel shows the result of
Dataset 2. In each panel, the first row shows the original camera
image and the second row shows the image classification result.
The red color illustrates the region of detected obstacles and other
colors have similar meaning as in Fig. 3(d). The third row shows
the detected result using scanner pointcloud and the results are
projected to the camera image. Each bounding box localizes one
candidate obstacle. The green circles represent the projection of
ground points and the blue circles represent the projection of
above-ground points. There are ground points inside several
bounding boxes due to the 3D–2D projection. The fourth row
shows the result of our fusion method. Each white bounding box
localizes one detected obstacle. In the sequences, the obstacles
are subject to variations introduced by moving vehicles and pedes-
trians, static obstacles, road curvature changes, etc. It is possible
that some frames contain only one obstacle and some frames do
not contain any obstacles. These results show that the proposed

approach performs well for scene parsing and obstacle detection
from real-world driving environment.

To further evaluate the proposed method, we compare its result
with that of using image only. As shown in Fig. 11, our proposed fu-
sion approach improves the scene parsing result in terms of F-mea-
sure value. The position of obstacles is very important information
in the scenario of autonomous ground vehicles. The obstacle pars-
ing evaluation is shown in Fig. 12 and our proposed fusion approach
improves the obstacle parsing significantly in terms of F-measure
value. This is because the detected results of our method include
major parts of or the complete obstacle regions. On the contrary,
the image parsing method only detects small parts of the obstacle
regions due to the diversity of the obstacles. Therefore, it obtains
a high precision value but with a low recall value. These comparisons
clearly demonstrate the advantages of the proposed fusion method.

6.3. Pedestrian detection by using the fusion method

Recently, Geiger et al. published one dataset which has both
camera image and Velodyne scanner pointcloud [54]. As this

Fig. 15. Sample results of scene passing of consecutive frames using Dataset 3 and Dataset 4. Panel (a) presents the result of day-time Dataset 3 while panel (b) presents the
result of night-time Dataset 4. In each panel, the first row shows the original camera image and the second row shows the image parsing result. The third row shows the result
smoothed by the temporal fusion method. The red color illustrates the region of detected obstacles and other colors have similar meaning as in Fig. 3(d). After the temporal
fusion, the results between consecutive frames are more cohesive. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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dataset provides only the pedestrian bounding box information,
we evaluate our fusion method for pedestrian detection only. We
first detect pedestrians from camera images using the method pro-
vided by Dollár et al. [56]. Each detected pedestrian is located by a
bounding box and the corresponding image classification result
class is set to be the pedestrian detection response [56]. Other fuz-
zy variables are set according to the description in Section 3.1.
Then we apply the proposed sensor fusion method to remove the
false pedestrian detections. Fig. 13 shows the sample results of pe-
destrian detection. It can be seen that by fusing data of camera and
Velodyne, we can remove many false detections. The quantitative
evaluation is shown in Fig. 14 and our proposed fusion approach
improves the pedestrian detection significantly in terms of F-mea-
sure value. However, there is clearly room for improve the detec-
tion performance. For example, detect pedestrians who are in
shadow using the Velodyne pointcloud directly as [40].

6.4. Evaluate the temporal fusion method

The temporal fusion method is proposed to smooth the results
of consecutive frames as the abrupt changes of parsing results will
mislead the vehicle navigation. Fig. 15 shows the sample scene
parsing results of consecutive frames using two datasets in urban
area. In each panel, the first row shows the original camera image.
The second row shows the image parsing result before the tempo-
ral fusion and it can be seen that each frame has several places
which are not cohesive with its consecutive frames. After the
temporal fusion, the results are more cohesive between consecu-
tive frames, as shown in the third row. To measure the cohesive
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Fig. 16. The comparison of the Jump factor with or without using the temporal fusion. (a)–(d) show the results of Dataset 1–Dataset 4, respectively. The Jump factor values are
significantly reduced by the proposed MRF based temporal fusion method. The Jump factor is only used for qualitative evaluation of the proposed temporal fusion method.

Table 3
The F-measure of two temporal smoothing methods in Dataset 1.

Method Obstacle Road Bush Tree Sky Average

MRF 0.76 0.97 0.70 0.84 0.81 0.59
MFV 0.48 0.96 0.68 0.77 0.77 0.53

Table 4
The F-measure of two temporal smoothing methods in Dataset 2.

Method Obstacle Road Bush Tree Sky Average

MRF 0.79 0.94 0.21 0.91 0.68 0.44
MFV 0.51 0.93 0.24 0.90 0.67 0.41

Table 5
The F-measure of two temporal smoothing methods in Dataset 3.

Method Obstacle Road Building Tree Sky Average

MRF 0.35 0.82 0.67 0.47 0.57 0.30
MFV 0.31 0.81 0.66 0.44 0.53 0.29

Table 6
The F-measure of two temporal smoothing methods in Dataset 4.

Method Obstacle Road Building Tree Sky Average

MRF 0.35 0.87 0.24 0.65 0.61 0.25
MFV 0.37 0.85 0.18 0.65 0.61 0.24
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performance of the proposed approach, we define a Jump factor cri-
terion for each frame:

Jump factor ¼ No: of pixels changing label
No: of all pixels

:

The Jump factor represents the ratio of pixels which have different
labels with their corresponding pixels in the previous frame and it
is used for qualitative evaluation of the proposed temporal fusion
method. The pixel to pixel correspondence between two consecu-
tive frames are obtained by dense optical flow method [7]. The lar-
ger the Jump factor, the more pixels in one frame have changed their
parsing labels comparing with the previous frame. Fig. 16 shows the
comparison of the Jump factor values with or without using the tem-
poral fusion in four datasets. It can be seen that the Jump factor val-
ues are significantly reduced by the proposed temporal fusion
method.

To further evaluate the proposed Markov random field based
temporal fusion method, we compare its result with that of multi-
ple frames voting (MFV) method. The multiple frames voting
method decides the label of pixel p in current frame by the voting
of pixel p and its corresponding pixels in the k ¼ 4 previous frames.
The label with maximum votes is assigned to pixel p. Tables 3–6
show the comparison of F-measure values for four datasets. As
Dataset 5 only has the bounding box label, we do not evaluate
the temporal fusion performance on it. It can be seen that the

proposed MRF based temporal fusion method can obtain a better
performance with more than 3% improvement in terms of the aver-
age F-measure values for these datasets. The MRF based temporal
fusion method has a better performance in Dataset 1 and Dataset
2 as the obstacles are moving fast in these two datasets. These
comparisons clearly demonstrate the advantages of the proposed
MRF based temporal fusion method.

It is important to note that temporal fusion will introduce a la-
tency in scene parsing result. This can be seen in Fig. 15(a).
Although pixels behind the vehicle are classified to be road by
the image classifier, the fusion method adopts these new measure-
ments after several frames.

7. Discussions

7.1. Selection of image classifier

An MLP (multilayer perceptron) classifier has been finally cho-
sen to parse the image superpixels due to its lower computational
cost than other classifiers like kernel support vector machine
(SVM) or structured learning approaches like conditional random
field (CRF) [32]. According to our experiments, the linear SVM does
not work in our case. The non-linear SVM with RBF kernel could
achieve comparable F-measure with MLP. However, the non-linear
SVM runs much slower than the MLP as the number of learned

Fig. 17. Illustration of occlusion problem. (a) shows one camera image. (b) shows the projected Velodyne points. The white bounding box localizes one cyclist. Due to the
occlusion problem, wrong color information will be assigned to a number of 3D points inside the bounding box.
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support vectors amounts to 8000, while the MLP contains only
about 200 nodes.

Our image parser only requires about 0.5 s to process one
frame (400 � 300 pixels) in the common PC computer. The whole
system can have a real time performance after the appropriate
optimization. We suggest to speed up the feature extraction using
GPU parallel computing technique as Benenson et al. [57]. Besides,
both the optical flow and MRF can obtain a real time implemen-
tation by using GPU technique [58]59. Moreover, both the pro-
posed fuzzy logic based sensor fusion method and the MRF
based temporal fusion method are able to integrate the results
of any classifiers.

7.2. Fusing two sensors at feature level

In this paper, we have demonstrated promising results of the
fuzzy logic fusion method by showing how it outperforms the re-
sults of individual sensors. Due to the sparseness of the pointcloud
data of Velodyne scanner, we propose the geometry segmentation
method to detect the obstacles and ground area from the scanner
data. However, we do not think that our system alone is the ultimate
answer to fuse Velodyne scanner and camera data. It is possible to
extract discriminative features from the pointcloud sequence [43]
and train a scene classifier by using both the image features and
pointcloud features. Therefore, a natural future step is to combine
the centralized and decentralized fusion methods for scene parsing.

7.3. Occlusion reasoning for fusion of camera and LIDAR

The fusion of data is correct if both sensors capture data from
same view point. However, due to different viewpoints of both sen-
sors, the occlusion occurs sometimes in the process of sensor fu-
sion [15]. This lets LIDAR obtain 3D points of objects which are
occluded in camera view. One occlusion example is shown in
Fig. 17. Occlusion problem results in wrong fused categorization
of 3D points that are not visible to camera. Although the occlusion
problem is not handled in this paper, it can be solved by ordering
the occluded 3D points or by using the pointcloud segmentation
algorithm. Further details can be found in [15].

7.4. Integration of dynamic object tracking results

In the temporal fusion process, we represent each frame by a
MRF model and integrate results of multiple previous frames.
Although this can smooth the scene parsing results, the object mo-
tion information is not incorporated. By considering dynamic ob-
jects, we can leverage object detection techniques [60] and
object tracking techniques [61] to obtain the category of corre-
sponding pixels directly. Furthermore, object track information is
also helpful for occlusion reasoning and collision warning.

8. Conclusions

In this paper, we present a sensor fusion method for scene pars-
ing using laser scanner and video camera. By employing fuzzy logic
inference, our method can incorporate not only results of two sen-
sors, but also the human experience and knowledge. To smooth
parsing results of consecutive frames, we further propose a Markov
random field based temporal fusion method. The proposed ap-
proach has been evaluated with five datasets. Four of them are col-
lected by our autonomous ground vehicle testbed in rural and
urban areas while the fifth one is a new public vision and laser
scanner dataset [54].

Our experiments underline the observation that fused results
are more reliable than those provided by individual sensors. For

future work it would be interesting to explore the fusion with com-
plementary sensors such as RADAR or stereo camera, which should
allow for further improvements. The feature level fusion of laser
scanner and video camera also deserved to be explored. Moreover,
occlusion handling and dynamic object tracking are also important
for robust environment perception.
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