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Learning Actionlet Ensemble for 3D Human
Action Recognition

Jiang Wang, Student Member, IEEE, Zicheng Liu, Senior Member, IEEE, Ying Wu, Senior Member, IEEE,
and Junsong Yuan, Member, IEEE,

Abstract—Human action recognition is an important yet challenging task. Human actions usually involve human-object interactions,
highly articulated motions, high intra-class variations, and complicated temporal structures. The recently developed commodity depth
sensors open up new possibilities of dealing with this problem by providing 3D depth data of the scene. This information not only
facilitates a rather powerful human motion capturing technique, but also makes it possible to efficiently model human-object
interactions and intra-class variations. In this paper, we propose to characterize the human actions with a novel actionlet ensemble
model, which represents the interaction of a subset of human joints. The proposed model is robust to noise, invariant to translational
and temporal misalignment, and capable of characterizing both the human motion and the human-object interactions. We evaluate
the proposed approach on three challenging action recognition datasets captured by Kinect devices, a multiview action recognition
dataset captured with Kinect device, and a dataset captured by a motion capture system. The experimental evaluations show that the
proposed approach achieves superior performance to the state-of-the-art algorithms.

Index Terms—Action recognition, Kinect, ensemble method, human pose, human-object interaction

1 INTRODUCTION

RECOGNIZING human actions has many applications
including video surveillance, human computer inter-

faces, sports video analysis and video retrieval. Despite
remarkable research efforts and many encouraging advances
in the past decade, accurate recognition of the human actions
is still a quite challenging task. There are two major issues
for human action recognition. One is the sensory input,
and the other is the modeling of human actions that are
dynamic, ambiguous and interactive with other objects.

Human motion is articulated in nature. Extracting such
highly articulated motion from monocular video sensors
is a very difficult task. This difficulty largely limits the
performance of video-based human action recognition, as
indicated in the studies in the past decade. The recent intro-
duction of the cost-effective depth cameras may change the
picture by providing 3D depth data of the scene, which
largely eases the task of object segmentation. Moreover, it
has facilitated a rather powerful human motion capturing
technique [28] that outputs the 3D joint positions of the
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human skeleton. As we will show in this paper, although
the estimated 3D skeleton alone is not sufficient to solve
the human action recognition problem, it greatly alleviates
some of the difficulties in developing such a system.

The depth cameras in general produce better quality 3D
depth data than those estimated from monocular video sen-
sors. Although depth information alone is very useful for
human action recognition, how to effectively combine such
3D sensory data with estimated 3D skeletons is nontrivial.
First, the 3D skeleton alone is not sufficient to distin-
guish the actions that involve human-object interactions.
For example, “drinking” and “eating snacks” exhibit very
similar skeleton motions. Additional information is needed
to distinguish the two actions. Second, human actions may
have specific temporal structure. For example, the action
“washing a mug” may consist of the following steps: “arriv-
ing at the mug”, “taking the mug”, “arriving at the basin”
and “dumping the water”. The temporal relationship of
these steps is crucial to model such actions. Finally, human
actions may have strong intra-class variations. A person
may use either his left hand or right hand to make a phone
call, and different people have different ways of washing a
plate. Modeling these variations is also challenging.

This paper proposes novel features to represent human
actions in depth data. First of all, we propose a new 3D
appearance feature called local occupancy pattern (LOP).
Each LOP feature describes the “depth appearance” in
the neighborhood of a 3D joint. Translational invariant
and highly discriminative, this new feature is also able to
capture the relations between the human body parts and
the environmental objects that the person is interacting
with. Secondly, to represent the temporal structure of an
action, we propose a new temporal representation called
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Fig. 1. General framework of the proposed approach.

Fourier Temporal Pyramid. This representation is insensitive
to temporal sequence misalignment, robust to noise, and is
discriminative for action recognition.

More importantly, we propose a new model called the
Actionlet Ensemble Model, illustrated in Fig. 1. The artic-
ulated human body has a large number of kinematic
joints, but a particular action may only involve a small
subset of them. For example, for right-handed people,
action “drinking” typically involves joints “right wrist” and
“head”. Thus the combinational feature of the two joints
is a discriminative feature. For left-handed people, action
“drinking” typically involves joints “left wrist” and “head”.
Therefore the combinational feature of joints “left wrist”
and “head” is another discriminative feature for this action.
Therefore, we introduce the concept of actionlet. An actionlet
is a conjunction of the features for a subset of the joints. As
the number of possible actionlets is enormous, we propose a
novel data mining solution to discover discriminative action-
lets. An action is then represented as an actionlet ensemble,
which is a linear combination of the actionlets whose dis-
criminative weights are learnt via a multiple kernel learning
method. This new action model is more robust to the errors
in the features, and it can better characterize the intra-class
variations in the actions.

Our main contributions include the following three
aspects. First, this paper proposes the actionlet ensemble
model as a new way of characterizing human actions.
Second, we propose a novel feature called local occupancy
pattern, which is shown through our extensive experi-
ments to be well suitable for the depth data-based action

recognition task. Third, the proposed Fourier temporal
pyramid is a new representation of temporal patterns, and
it is shown to be robust to temporal misalignment and
noise.

The proposed features and models are evaluated
on five benchmark datasets: CMU MoCap dataset [1],
MSR-Action3D dataset [19], MSR-DailyActivity3D dataset,
Cornell Activity dataset (CAD-60) [29] and Multiview 3D
Event dataset. The first dataset contains 3D joint positions
captured by a multi-camera motion capturing system, and
the other four datasets are captured with Kinect devices.
Our extensive experimental results show that the proposed
method is able to achieve significantly better recognition
accuracy than the state-of-the-art methods. Moreover, we
demonstrate that the proposed algorithm is insensitive to
noise and translation and can handle view changes.

After a brief review of the related work in Section 2, the
proposed LOP feature and the Fourier temporal pyramid
are described in Section 3. Section 4 presents the actionlet
ensemble model and its learning method. The empirical eval-
uations are given in Section 5. This paper is an extension
of the conference paper [32].

2 RELATED WORK

Actions are spatio-temporal patterns. There are two impor-
tant issues in action recognition: the extraction and rep-
resentation of suitable spatio-temporal features, and the
modeling and learning of dynamical patterns.

Features can be sensor-dependent. In video-based meth-
ods, it is a common practice to locate spatio-temporal
interest points like STIP [15], and then use the local distri-
butions of the low-level features like gradients and optical
flow (e.g., HOF [16] or HOG [9]) to represent the local
spatio-temporal pattern. When we want to use depth data,
however, because there is no texture in the depth map, these
local features are not suitable.

It is generally agreed that knowing the 3D joint positions
is helpful for action recognition. Multi-camera motion cap-
ture (MoCap) systems [4] can produce accurate 3D joint
positions, but such special equipment is marker-based and
expensive. It is still a challenging problem to develop a
marker-free motion capturing system using regular video
sensors. Cost-effective depth cameras have been used for
motion capturing, and produced reasonable results, despite
the noise when occlusion occurs. Because of the difference
in the motion data quality, the action recognition methods
designed for MoCap data might not be suitable for depth
cameras.

In the literature, there have been many different tem-
poral models for human action recognition. One way to
model the human actions is to employ generative models,
such as a Hidden Markov model (HMM) and Conditional
Random Field (CRF). [20] used HMM over pre-defined
relative positions obtained from the 3D joints. [13] used
CRF over 3D joint positions. Similar approaches are also
proposed to model human actions in normal videos [7],
[24]. The 3D joint positions that are obtained via skeleton
tracking from depth maps sequences are generally more
noisy than the MoCap data. When the difference between
the actions is small, without careful selection of the features,
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determining the accurate states is usually difficult, which
undermines the performance of such generative models.
Moreover, with limited amount of training data, training
a complex generative model is prone to overfitting.

Temporal patterns can also be modeled by a lin-
ear dynamical systems or a nonlinear Recurrent Neural
Network [22]. Although these approaches are good models
for time series data and are robust to temporal misalign-
ment, it is generally difficult to learn these models from
limited amount of training data.

Another method for modeling actions is the dynamic
temporal warping (DTW) [23], which defines the distance
of two time series as their edit distance. The action recog-
nition can be done through nearest-neighbor classification.
DTW’s performance heavily depends on a good metric
to measure the frame similarity. Moreover, for periodic
actions (such as “waving”), DTW is likely to suffer from
large temporal misalignment thus degrading classification
performance [18].

Different from these approaches, we propose a Fourier
Temporal Pyramid for temporal pattern representation. The
Fourier temporal pyramid is a descriptive model. It does
not require complicated learning as in the generative mod-
els (e.g., HMM, CRF and dynamical systems), and it is
much more robust than DTW to noise and temporal mis-
alignment.

In the actions with a complex articulated structure, the
motions of the individual parts may be correlated. The rela-
tionship among these parts (or high-order features) is often
more discriminative than the individual ones. Such combi-
natorial features can be represented by stochastic AND/OR
structures. This idea has been pursued for face detec-
tion [8], human body parsing [41], object recognition [39],
and human object interaction recognition [38]. This paper
presents an initial attempt of using the AND/OR ensem-
ble approach for action recognition. We propose a novel
data mining solution to discover the discriminative con-
junction rules based on [2], which is a branch-and-bound
algorithm that guarantees to find all the frequent patterns
efficiently, and apply multiple kernel learning framework to
learn the ensemble. Other work that involves learning the
interactions of human joints include poselet model [3] and
phraselet model [10]. Poselet has been successfully applied
in action recognition by mining discriminative appearance
patterns to classify actions [21]. These models learn the
relationship among human parts in annotated images.

Recently, a lot of efforts have been made to develop
features for action recognition in depth data and skele-
tons. [19] represents each depth frame as a bag of 3D points
along the human silhouette, and utilizes HMM to model
the temporal dynamics. [31] learns semi-local features auto-
matically from the data with an efficient random sampling
approach. [30] also uses spatio-temporal occupancy pat-
terns, but all the cells in the grid have the same size,
and the number of cells is empirically set. [36] proposes
a dimension-reduced skeleton feature, and [37] develops a
histogram of gradient feature over depth motion maps. [25]
selects most informative joints based on the discriminative
measures of each joint. [40] utilizes distances between all
pairs of joints as features and multiple instance learning for
feature selection. [27] utilize Kinect cameras to recognizes

Fig. 2. Human joints tracked with the skeleton tracker [28].

dance actions. [6] uses linear dynamic systems to model the
dynamic medial axis structures of human parts and pro-
poses discriminative metrics for comparing sets of linear
dynamics systems for action recognition, but it organizes
skeleton joints into human parts manually rather than auto-
matically learns from data. Our work is the first attempt
to model the structure and relationship among the human
parts and achieves state-of-the-art performance on multiple
benchmark datasets.

3 SPATIO-TEMPORAL FEATURES

This section gives a detailed description of two types of fea-
tures that we utilize to represent the actions: the 3D joint
position feature and the Local Occupancy Pattern (LOP).
These features can characterize the human motions as well
as the interactions between the objects and the human. In
addition, the Fourier Temporal Pyramid is proposed to rep-
resent the temporal dynamics. The proposed features are
invariant to the translation of the human body and robust to
noise and temporal misalignment. The orientation normal-
ization method, which can improve the proposed method’s
robustness to human orientation changes, is also discussed.

3.1 Invariant Features for 3D Joint Positions
The 3D joint positions are employed to characterize the
motion of the human body. One key observation is that
representing the human movement as the pairwise rela-
tive positions of the joints results in more discriminative
features.

For a human subject, 21 joint positions are tracked by
the skeleton tracker [28] and each joint i has 3 coordinates
pi(t) = (xi(t), yi(t), zi(t)) at a frame t. The illustration of the
skeleton joints are shown in Fig. 2. The coordinates are nor-
malized so that the motion is invariant to the initial body
orientation and the body size. The details of the orientation
normalization can be found in Section 3.4.

For each joint i, we extract the pairwise relative position
features by taking the difference between the position of
joint i and any other joint j:

pij = pi − pj, (1)

The 3D joint feature for joint i is defined as:

pi = {pij|i �= j}.
Although enumerating all the joint pairs introduces

some information that may be irrelevant to our classifica-
tion task, our system is capable of selecting the joints that
are most relevant to our recognition task. The selection will
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Fig. 3. Local occupancy pattern feature models the “depth appearance”
around each joint. Note that there is a local occupancy pattern feature
for every joint.

be handled by the actionlet mining algorithm as discussed
in Section 4.

Relative joint position is actually a quite intuitive way
to represent human motions. Consider, for example, the
action “waving”. It can be interpreted as “arms above the
shoulder and moving left and right”. This can be effectively
characterized through the pairwise relative positions.

3.2 Local Occupancy Patterns
Using the 3D joint positions alone is insufficient to represent
an action, especially when an action includes the interac-
tions between human subject and other objects. Therefore, it
is necessary to design a feature to describe the local “depth
appearance” for the joints. In this paper, the interaction
between the human subject and the environmental objects
is characterized by the Local Occupancy Patterns or LOP at
each joint. For example, suppose a person is drinking a cup
of water. When the person fetches the cup, the space around
his/her hand is occupied by the cup. Afterwards, when the
person lifts the cup to his/her mouth, the space around
both the hand and the head is occupied. The occupancy
information can be useful to characterize this interaction
and to differentiate the drinking action from other actions.

In each frame, as described below, an LOP feature com-
putes the local occupancy information based on the 3D
point cloud around a particular joint. The temporal dynam-
ics of these occupancy patterns can discriminate different
types of interactions. An illustration of the spatial-temporal
occupancy pattern is shown in Fig. 3. Note that we only
draw the LOP box for a single joint in Fig. 3, but in fact, a
local occupancy pattern is computed for every joint.

At frame t, we have the point cloud generated from
the depth map of this frame. For each joint j, its local
region is partitioned into Nx × Ny × Nz spatial grid. Each
bin of the grid is of size (Sx, Sy, Sz) pixels. For example,
if (Nx, Ny, Nz) = (12, 12, 4) and (Sx, Sy, Sz) = (6, 6, 80), the
local (72, 72, 320) region around a joint is partitioned into
12 × 12 × 4 bins, and the size of each bin is (6, 6, 80).

The number of points at the current frame that fall into
each bin bxyz of the grid is counted, and a sigmoid normal-
ization function is applied to obtain the feature oxyz for this
bin. In this way, the local occupancy information of this
bin is:

oxyz = δ(
∑

q∈binxyz

Iq) (2)

where Iq = 1 if the point cloud has a point in the location
q and Iq = 0 otherwise. δ(.) is a sigmoid normalization

Fig. 4. Illustration of the Fourier Temporal Pyramid.

function: δ(x) = 1
1+e−βx . The LOP feature of a joint i is a

vector consisting of the feature oxyz of all the bins in the
spatial grid around the joint, denoted by oi.

3.3 Fourier Temporal Pyramid
Two types of features are extracted from each frame t : the
3D joint position features pj[t], and the LOP features oj[t].
In this subsection, we propose the Fourier temporal pyra-
mid to represent the temporal patterns of these frame-level
features.

When using the current cost-effective depth camera, we
always experience noisy depth data and unreliable skele-
tons. Moreover, temporal misalignment is inevitable. We
aim to design a temporal representation that is robust to
both noisy data and the temporal misalignment. We also
want such temporal features to be a good representation
of the temporal structure of the actions. For example, one
action may contain two consecutive sub-actions: “bend the
body” and “pick up”.

The proposed Fourier Temporal Pyramid is a descrip-
tive representation that satisfies these properties. It is partly
inspired by the Spatial Pyramid approach [17]. In order to
capture the temporal structure of the actions, in addition
to the global Fourier coefficients, we recursively partition
the action into a pyramid, and use the short time Fourier
transform for all the segments, as illustrated in Fig. 4. The
final feature is the concatenation of the Fourier coefficients
from all the segments.

For each joint j, let gj = (pj, oj) denote its overall feature
vector, where pj is its 3D pairwise position vector and oj is
its LOP vector. Let Nj denote the dimension of gj, i.e., gj =
(g1, . . . , gNj). Note that each element gn is a function of time
and we can write it as gn[t]. For each time segment at each
pyramid level, we apply Short Fourier Transform [26] to
the element gn[t] and obtain its Fourier coefficients, and we
utilize its low-frequency coefficients as features. The Fourier
Temporal Pyramid feature at joint j is defined as the low-
frequency coefficients at all levels of the pyramid, and is
denoted as Gj.
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Fig. 5. Orientation alignment first fits a plane to the joints shown as red
in the figure. Then, we compute a rotation matrix that rotates this plane
to the x-y plane.

The proposed Fourier Temporal Pyramid feature has
several benefits. First, by discarding the high-frequency
Fourier coefficients, the proposed feature is robust to noise.
Second, this feature is insensitive to temporal misalign-
ment, because a temporally translated time series has the
same Fourier coefficient magnitudes. Finally, the temporal
structure of the actions is characterized by the pyramid
structure.

3.4 Orientation Normalization
The proposed joint position features and local occupancy
patterns are generally not invariant to the human orienta-
tion. In order to make the system more robust to human
orientation changes, we perform the orientation normaliza-
tion using the tracked skeleton positions. An illustration of
the orientation normalization procedure is shown in Fig. 5.

In our experiment, we employ the up-right pose for
orientation normalization. We find the frames where the
human is approximately in an up-right pose, and use the
pose of these frames for orientation alignment. If there is
no up-right pose in a sequence, we do not perform orienta-
tion normalization for this sequence. For each frame where
the human subject is in an up-right pose, we fit a plane
to the joints “head”, “neck”, “hip”, “left shoulder”, and
“right shoulder”. The plane normal is used for orientation
normalization.

Denote the 3D positions of the joints “head”,
“neck”, “hip”, “left shoulder”, and “right shoul-
der” by p1, p2, . . . , p5, respectively. The plane
f (p) = πT[p; 1] = 0, ‖π‖2 = 1, that best fits these
joints can be found by minimizing the sum of the distances
of the points p1, p2, . . . , p5 to the plane:

min
π

5∑

i=1

‖f (pi)‖2 = min
π

‖Pπ‖2

s.t.‖π‖2 = 1

(3)

where P is an constraint matrix defined as
[

p1 p2 p3 p4
1 1 1 1

]T

(4)

The plane parameters π = [πx;πy;πz;πt] that minimize
Eq. (3) are the right singular vector of P corresponding to
the smallest singular value, which can be found by singular
value decomposition.

In addition, we employ RANSAC procedure [11] to
robustly estimate the plane. The RANSAC procedure iter-
ates between the plane fitting step and the outlier detection
step. The plane fitting step fits a plane to the non-outlier

points by solving Eq. (3). The outlier detection step identi-
fies the points that are too far from the plane as the outliers.
The RANSAC procedure is more robust to the outliers of
the 3D joint positions. When some joints are incorrectly
tracked or the human pose we employ is not precisely
upright, the RANSAC procedure can still robustly find the
correct plane with small error.

To use the fitted plane for orientation normalization, we
find a rotation matrix R that maps orientation of the plane
f (p) = πT[p; 1] = 0 to the x-y plane: u(p) = ez[p; 1] = 0,
where ez is the vector [0; 0; 1; 0]. Denote the normal of the
plane f (p) = 0 and u(p) = 0 as

π ′ = [πx;πy;πz]
‖[πx;πy;πz]‖2

(5)

e′z = [0; 0; 1] (6)

This is equivalent as rotating the plane normal from π ′ to
e′z, shown in Fig. 5. The rotation axis x and rotation angle
θ of the rotation matrix R can be found as:

x = [x1; x2; x3] = π ′ × e′z
‖π ′ × e′z‖

(7)

θ = cos−1(
π ′.e′z

‖π ′‖.‖e′z‖
) (8)

Then the rotation matrix R can be defined according to
exponential map:

R = I cos θ + A sin θ + (1 − cos θ)xxT (9)

where A is a skew-symmetric matrix corresponding to x

A =
⎡

⎣
0 −x3 x2
x3 0 −x1
−x2 x1 0

⎤

⎦ (10)

When there are more than one frame with up-right pose,
orientation normalization utilizes the average of the fitted
plane normals of all the up-right poses in this sequence.

This rotation matrix can be applied to the 3D joint posi-
tions and 3D point cloud of all the frames for orientation
normalization.

In addition to orientation normalization, we also per-
form scale normalization. The scale of the body can be
estimated from the average pairwise distances of the skele-
ton joints “head”, “neck”, “hip”, “left shoulder”, and “right
shoulder”.

4 ACTIONLET ENSEMBLE

To deal with the errors of the skeleton tracking and better
characterize the intra-class variations, an actionlet ensemble
approach is proposed in this section as a new representation
of human actions.

An actionlet is defined as a conjunctive (AND) structure
on the base features. One base feature is defined as the
Fourier Temporal Pyramid features of an individual joint.
A novel data mining algorithm is proposed to discover the
discriminative actionlets, which are highly representative of
one action and highly discriminative compared to the other
actions.

Once we have mined a set of discriminative actionlets,
a multiple kernel learning [5] approach is employed to
learn an actionlet ensemble structure that combines these
discriminative actionlets.
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4.1 Mining Discriminative Actionlets
The human body consists of a large number of kinematic
joints, but a particular action may only involve a small
subset of them. For example, for right-handed people,
action “calling cellphone” typically involves joints “right
wrist” and “head”. Therefore, the combinatorial feature
of the two joints is a discriminative feature. Moreover,
strong intra-class variation exists in some human actions.
For left-handed people, action “calling cellphone” typi-
cally involves joints “left wrist” and “head”. Therefore,
the combinatorial feature of joint left wrist and head is
another discriminative feature for this action. We propose
the actionlet ensemble model to effectively characterize the
combinatorial structure of human actions. An actionlet is a
conjunction (AND) of the features for a subset of the joints.
We denote an actionlet as its corresponding subset of joints
S ⊆ {1, 2, . . . , N}, where N is the total number of joints.
Since one human action contains an exponential number of
the possible actionlets, it is time consuming to construct an
ensemble from all of the possible actionlets. In this section,
We propose an effective data mining technique to discover
the discriminative actionlets.

We employ the training data to determine whether an
actionlet is discriminative. Suppose we have the training
pairs (x(i), y(i)), where x(i) is the features of i-th example and
y(i) is the label of the i-th example. In order to determine
how discriminative each individual joint is, a SVM model
is trained on the feature Gj of each joint j. For each training
example x(i) and the SVM model on the joint j, the prob-
ability that its classification label y(i) is equal to an action
class c is denoted as Pj(y(i) = c|x(i)), which can be estimated
from the pairwise probabilities by using pairwise coupling
approach[34].

Since an actionlet takes a conjunctive operation, it pre-
dicts y(i) = c if and only if every joint j ∈ S (the joint
contained in this actionlet) predicts y(i) = c. Thus, assum-
ing the joints are independent, the probability that the
predicted label y(i) is equal to an action class c given an
example x(i) for an actionlet S can be computed as:

PS(y(i) = c|x(i)) =
∏

j∈S

Pj(y(i) = c|x(i)) (11)

Define Xc as the set of the training data with class label
c: {i:t(i) = c}. For a discriminative actionlet, the probability
PS(y(i) = c|x(i)) should be large for some data in Xc, and be
small for all the data that does not belong to Xc. Define the
confidence score for actionlet S as

ConfS = max
i∈Xc

log PS(y(i) = c|x(i)) (12)

and the ambiguity score for actionlet S as

AmbS =
∑

i/∈Xc
log PS(y(i) = c|x(i))

∑
i/∈Xc

1
(13)

The discriminativeness of an actionlet S can be charac-
terized by its confidence score ConfS and ambiguity score
AmbS. A discriminative actionlet should exhibit large con-
fidence score ConfS and small ambiguity score AmbS. Since
one action contains an exponential number of actionlets, it
is time consuming to enumerate all actionlets. We propose

Algorithm 1: Discriminative Actionlet Mining

1 Take the set of joints, the feature Gj on each joint j, the
number of the classes C, thresholds Tconf and Tamb.

2 Train the base classifier on the features Gj of each
joint j.

3 for Class c = 1 to C do
4 Set Pc, the discriminative actionlet pool for class c

to be empty : Pc = {}. Set l = 1.
5 repeat
6 Generate the l-actionlets by adding one joint

into each (l − 1)-actionlet in the discriminative
actionlet pool Pc.

7 Add the l-actionlets whose confidence scores
are larger than Tconf to the pool Pc.

8 l = l + 1
9 until no discriminative actionlet is added to Pc in this

iteration;
10 remove the actionlets whose ambiguities scores

are larger than Tamb in the pool Pc.
11 end
12 return the discriminative actionlet pool for all the

classes.

an Aprior-based data mining algorithm that can effectively
discover the discriminative actionlets.

An actionlet S is called an l-actionlet if its cardinality
|S| = l. One important property of the actionlet is that if
we add a joint j /∈ S to an (l − 1)-actionlet S to gener-
ate an l-actionlet S ∪ {j}, we have ConfS∪{i} ≤ ConfS, i.e.,
adding a new joint into one actionlet will always reduce
the confidence score.

As a result, the Aprior mining process [2] can be applied
to select the actionlets with large ConfS and small AmbS.
The Aprior-based algorithm is essentially a branch and
bound algorithm that effectively prunes the search space by
eliminating the actionlets that do not have the confidence
score larger than the threshold. If the confidence score
ConfS of an actionlet S is already less than the confidence
threshold, we do not need to consider any actionlets S′
with S′ ⊃ S, because the confidence score of these actionlets
ConfS′ < ConfS is less than the confidence threshold.

The outline of the mining process is shown in
Algorithm 1. For each class c, the mining algorithm out-
puts a discriminative actionlet pool Pc which contains
the actionlets that meet our criteria: AmbS ≤ Tamb and
ConfS ≥ Tconf.

The speed of the proposed data mining algorithm is a
lot faster than naively enumerating all the candidate action-
lets. We implement the proposed data mining algorithm
with Python and run it on a Corei7-2600K machine with
8 GB memory. In our experiment on MSR-DailyActivity3D
dataset, which contains 20 human joints and 320 sequences,
we set the threshold for confidence scoreTconf = −1, and the
threshold for ambiguity score Tamb = −2. The data mining
algorithm generates 180 actionlets in 5.23 seconds. In con-
trast, naively enumerating all the candidate actionlets takes
307 seconds under the same environment.

Since we do not impose the constraints that the discrim-
inative actionlets are significantly different from each other,
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Fig. 6. Sample frames of the MSR-Action3D dataset.

there may be some redundancies among the discovered
discriminative actionlets. We will employ multiple kernel
learning algorithm to select the discriminative actionlets as
described in the next subsection.

4.2 Learning Actionlet Ensemble
The discriminative power of a single actionlet is limited.
In this subsection, we propose to learn an actionlet ensemble
with multiple kernel learning approach.

An actionlet ensemble is a linear combination of the action-
let classifiers. For each actionlet Sk in the discriminative
actionlet pool, we train an SVM model on it as an action-
let classifier, which defines a joint feature map �k(x, y) on
data X and labels Y as a linear output function fk(x, y)

parameterized with the hyperplane normal wk and bias bk:

fk(x, y) = 〈wk,�k(x, y)〉 + bk

=
∑

i

αikKk((xi, yi), (x, y)) + bk
(14)

Where each kernel Kk(., .) corresponds to the conjunctive
features of an actionlet. The predicted class y for x is chosen
to maximize the output fk(x, y).

Multiclass-MKL considers a convex combination of p
kernels, K(xi, xj) =

∑p
k=1 βkKk(xi, xj). Equivalently, we con-

sider the following output function:

ffinal(x, y) =
p∑

k=1

[
βk〈wk,�k(x, y)〉 + bk

]
(15)

We aim at choosing w = (wk) , b = (bk) , β =
(βk) , k = 1, . . . , p, such that given any training data pair
(x(i), y(i)), ffinal(x(i), y(i)) ≥ ffinal(x(i), u) for all u ∈ Y − {y(i)}.
The resulting optimization problem becomes:

min
β,w,b,ξ

1
2
	(β, w) + C

n∑

i=1

ξi

s.t. ∀i:ξi = max
u�=yi

l(ffinal(x(i), y(i)) − ffinal(x(i), u))

(16)

where C is the regularization parameter and l is a con-
vex loss function, and 	(β, w) is a regularization term
on β and w. Following the approach in [12], we choose
	(β, w) = ‖β‖2

1 + C2‖w‖2
2. Since there exists redundan-

cies among the discriminative actionlets discovered with
the data mining algorithm, the l1 regularization ‖β‖2

1 acts as
a feature selection regularization by encouraging a sparse β

, so that an ensemble of a small number of non-redundant
actionlets is learned. The regularization ‖w‖2

2 encourages
the actionlet classifiers to have large margin.

This problem can be solved by iteratively optimizing β

with fixed w and b through sparse solver, and optimizing
w and b with fixed β through a generic SVM solver such
as LIBSVM.

TABLE 1
Recognition Accuracy Comparison for

MSR-Action3D Dataset

5 EXPERIMENTAL RESULTS

We choose CMU MoCap dataset [1], MSR-Action3D
dataset [19], MSR-DailyActivity3D dataset, Cornell Activity
dataset [29], and Multiview 3D Event dataset to evaluate
the proposed action recognition approach. In all the exper-
iments, we use two-level Fourier temporal pyramid, with
1/4 length of each segment as low-frequency coefficients.
The coefficients of all levels are concatenated sequentially.
The empirical results show that the proposed framework
outperforms the state-of-the-art methods.

5.1 MSR-Action3D Dataset
MSR-Action3D dataset [19] is an action dataset of depth
sequences captured by a depth camera. This dataset con-
tains twenty actions: high arm wave, horizontal arm wave,
hammer, hand catch, forward punch, high throw, draw x, draw
tick, draw circle, hand clap, two hand wave, side-boxing, bend,
forward kick, side kick, jogging, tennis swing, tennis serve, golf
swing, pick up & throw. Every action was performed by ten
subjects three times each. The frame rate is 15 frames per
second and resolution 640×480. Altogether, the dataset has
402 action sequences with a total of 23797 frames of depth
maps. Some examples of the depth sequences are shown in
Fig. 6.

Those actions were chosen to cover a variety of move-
ments of arms, legs, torso and their combinations. The
subjects were advised to use their right arm or leg if an
action is performed by a single arm or leg. Although the
background of this dataset is clean, this dataset is challeng-
ing because many of the actions in the dataset are highly
similar to each other.

The 3D joint positions are extracted from the depth
sequence by using the real time skeleton tracking algorithm
proposed in [28]. Since there is no human-object interaction
in this dataset, we only extract the 3D joint position features
in this experiment.

We compare our method with the state-of-the-art meth-
ods on the cross-subject test setting [19], where the exam-
ples of half of the subjects are used as training data, and
the rest of the examples are used as testing data. The com-
parison of the recognition accuracy is shown in Table 1.
The recognition accuracy of the dynamic temporal warp-
ing is only 54%, because some of actions in the dataset
are very similar to each other, and there are typical large
temporal misalignment in the dataset. The accuracy of
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Fig. 7. Confusion matrix for MSR-Action3D dataset.

recurrent neural network is 42.5%, while he accuracy of
Hidden Markov Model is 63%. The recently proposed joint-
based action recognition methods, including Histogram of
3D joints, Eigenjoints and Sequence of most informative
joints, achieve accuracy 78.9%, 82.3% and 47.06%, respec-
tively. The proposed method achieves an accuracy of 88.2%.
This is a very good performance considering that the skele-
ton tracker sometimes fails and the tracked joint positions
are quite noisy. We also compare the proposed relative
joint position features with the absolute joint position fea-
tures. The proposed method using absolute joint positions
achieves much worse accuracy than the proposed method
using relative joint positions.

The confusion matrix is illustrated in Fig. 7. For most of
the actions, our method works very well. The classification
errors occur if two actions are too similar to each other,
such as “hand catch” and “high throw”, or if the occlusion

Fig. 8. Relationship between the relative accuracy and the variance of
noise or temporal misalignment.

Fig. 9. Recognition accuracy of the proposed Actionlet Ensemble
method using different levels of Fourier Pyramid.

is so large that the skeleton tracker fails frequently, such as
the action “pick up and throw”.

The proposed temporal representation Fourier Temporal
Pyramid has two advantages: robustness to the noise and
temporal misalignment, which are common in the action
sequences captured with Kinect camera. In this experiment,
we compare its robustness with a widely utilized tempo-
ral representation: Hidden Markov Model. The comparison
of the noise robustness of the Fourier Temporal Pyramid
features and that of Hidden Markov Model is shown in
Fig. 8(a). In this experiment, we add white Gaussian noise
to the 3D joint positions of the samples, and compare the
relative accuracies of the two methods. For each method, its
relative accuracy is defined as the accuracy under the noisy
environment divided by the accuracy under the noise-
less environment. We can see that the proposed Fourier
Temporal Pyramid feature is much more robust to noise
than Hidden Markov Model, because the clustering algo-
rithm employed in Hidden Markov Model to obtain hidden
states is relatively sensitive to noise, especially when the
different actions are similar to each other.

The temporal shift robustness of the proposed method
and the Hidden Markov model is also compared. In this
experiment, we circularly shift all the training data, and

Fig. 10. Sample frames of the DailyActivity3D dataset.
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TABLE 2
Recognition Accuracy Comparison for

MSR-DailyActivity3D Dataset

keep the testing data unchanged. The relative accuracy is
shown in Fig. 8(b). Hidden Markov Model is very robust
to the temporal misalignment, because learning a Hidden
Markov Model does not require the sequences to be tem-
porally aligned. We find that the proposed approach is also
robust to the temporal shift of the depth sequences, though
the Fourier Temporal Pyramid is slightly more sensitive to
temporal shift.

Thus, compared with widely applied Hidden Markov
Model, the proposed Fourier Temporal Pyramid is a tem-
poral representation that exhibits more robustness to noise
while retaining the Hidden Markov Model’s robustness to
temporal misalignment. These properties are important for
the action recognition with the depth maps and joint posi-
tions captured by Kinect devices, which can be very noisy
and contain strong temporal misalignment.

Another advantage of the proposed Fourier Temporal
Pyramid is its robustness to the number of action repeti-
tions in the sequences. In order to evaluate the robustness
of the proposed method to the number of action repeti-
tions, we manually replicate all the action sequences two
times and four times and apply the proposed algorithm to
the new sequences. The recognition accuracy is 86.45% and
86.83% for two-times repetitions and four-times repetitions,
respectively. If we repeat half of the action sequences two
times, and the other half of the action sequences four times,

Fig. 11. Confusion matrix of the proposed method on DailyActivity3D
dataset.

Fig. 12. Comparison between the accuracy of the proposed actionlet
ensemble method and that of the support vector machine on the Fourier
Temporal Pyramid features.

the recognition accuracy is 84.24%. This experiment shows
that the proposed method is relatively insensitive to the
number of action repetitions.

We also study the relationship between the levels of
Fourier pyramid and the recognition accuracy of the pro-
posed Actionlet Ensemble method, and the result is shown
in Fig. 9. Each level of pyramid divides one temporal seg-
ment into two parts. For example, 2-level Fourier Temporal
Pyramid contains 1, 2, 4 segments in level 0, 1 and 2, respec-
tively. We can see that the proposed method achieves the
best performance when the number of pyramid levels is 2,
although the performance is quite close when the number
of pyramid levels is 1 or 3.

5.2 DailyActivity3D Dataset
DailyActivity3D dataset is a daily activity dataset captured
by a Kinect device. There are 16 activity types: drink, eat,
read book, call cellphone, write on a paper, use laptop, use vacuum
cleaner, cheer up, sit still, toss paper, play game, lay down on sofa,
walk, play guitar, stand up, sit down. If possible, each subject
performs an activity in two different poses: “sitting on sofa”
and “standing”. The total number of the activity sequences
is 320. Some example activities are shown in Fig. 10.

This dataset is designed to cover daily activities in a
living room. This dataset is more challenging than MSR-
Action3D dataset. When the performer stands close to the
sofa or sits on the sofa, the 3D joint positions extracted by
the skeleton tracker are very noisy. Moreover, most of the
activities involve the humans-object interactions.

We apply the cross-subject setting to evaluate the pro-
posed algorithm on this dataset. Half of the subjects are
used as training data, while the other half are used as test-
ing data. Table 2 shows the accuracies of different methods.
By employing an actionlet ensemble model, we obtain a

Fig. 13. Examples of the mined actionlets. The joints contained in each
actionlet are marked as red. (a), (b) are actionlets for “drink” (c), (d) are
actionlets for “call”. (e), (f) are actionlets for “walk”.
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Fig. 14. Relationship between the recognition accuracy and the param-
eters Tconf and Tamb, which are the threshold of the confidence score
and ambiguity score in the actionlet mining algorithm, respectively.

recognition accuracy of 85.75%. This is a decent result con-
sidering the challenging nature of the dataset. If we directly
train an SVM on the Fourier Temporal Pyramid features, the
accuracy is 78%. When only the LOP feature is employed,
the recognition accuracy drops to 42.5%. If we only use 3D
joint position features without using LOP, the recognition
accuracy is 68%. If we train an Multiple Kernel Learning
classifier on all the base features, the recognition accu-
racy is 80%. We also evaluate Random Occupancy Pattern
(ROP) [33] method on MSR-DailyActivity3D dataset. Since,
the ROP method requires a segmentation of the human, we
manually crop out the human, and apply the ROP method
on this dataset. The accuracy of ROP method is 64%.

Fig. 11 shows the confusion matrix of the proposed
method. The proposed approach can successfully discrim-
inate “eating” and “drinking” even though their motions
are very similar, because the proposed LOP feature can cap-
ture the shape differences of the objects around the hand.
Fig. 12 compares the accuracy of the actionlet ensemble
method and that of the support vector machine on the
Fourier Temporal Pyramid features. We can observe that
for the activities where the hand gets too close to the body,
the proposed actionlet ensemble method can significantly
improve the accuracy. Fig. 13 illustrates some of the action-
lets with large kernel weights discovered by our mining
algorithm.

We also study the effect of the parameters of the action-
let mining algorithm on the recognition accuracy, shown
in Fig. 14. In this experiment, we adjust Tamb while fix-
ing Tconf = −1 and adjust Tconf while fixing Tamb = −1.8.
We find that the proposed data mining algorithm is not
sensitive to these two parameters as long as they are in
a reasonable range. However, setting Tconf too high or set-
ting Tamb too low may seriously undermine the recognition
accuracy because the actionlet mining algorithm rejects dis-
criminative actionlets in these cases. On the other hand,
setting Tconf too low or setting Tamb too high may lead to

Fig. 15. Action captured from three views and their aligned skeletons.

Fig. 16. Sample frames of the Multiview 3D event dataset.

a large number of the actionlets generated by the actionlet
mining algorithm, which greatly slows down the actionlet
mining and the actionlet ensemble learning procedures.

5.3 Multiview 3D Event Dataset
Multiview 3D event dataset1 contains RGB, depth and
human skeleton data captured simultaneously by three
Kinect cameras. This dataset includes 8 event categories:
drink with mug, make a call, read book, use mouse, use keyboard,
fetch water from dispenser, pour water from kettle, press button.
Each event is performed by 8 actors. Each actor repeats each
event 20 times independently with different object instances
and action styles. An example action captured from three
view points is illustrated in Fig. 15. In total, there are 480
sequences per action class. Fig. 16 shows some examples
of this dataset. The background of this dataset is relatively
clean. The difficulty of this dataset is to generalize across
different views. We apply our algorithm to this dataset to
evaluate the robustness of our algorithm across different
views.

Before applying the proposed approach to this dataset,
we first perform a human orientation normalization
described in Section 3.4. Although the human body orienta-
tions are aligned, action recognition across multiple views
is still challenging due to the following two reasons. Firstly,
the occlusions of different views are very different even for
the same action, as shown in Fig. 15. Since the occluded
joints are usually non-critical joints (“legs”), these occlu-
sions can be handled effectively by the proposed actionlet
ensemble model, because the actionlet ensemble model
usually does not contain the non-critical joints. Secondly,
the orientation normalization is usually not perfect due to
skeleton tracking noise and errors. The proposed action-
let ensemble model is also robust to these noises thanks to
the Fourier temporal pyramid representation. As a result,
the proposed algorithm achieves very good performance
on cross-view action recognition experiment.

1. This dataset will be released to public.

TABLE 3
Recognition Accuracy Comparison for Multiview 3D

Event Dataset
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Fig. 17. Confusion matrix for Multiview 3D event dataset on cross-
subject setting.

First, we perform cross-subject recognition experiment.
In this setting, we use examples of 1/3 of the subjects
as training data and the rest of the examples as testing
data. We implement the dynamic temporal warping [23]
and Hidden Markov Model [20] and compare the proposed
model to these models. The classification accuracy compar-
ison of these algorithms is shown in Table 3. The dynamic
temporal warping achieves 47.12%, and the hidden Markov
model achieves 84.8% accuracy on this setting, while the
proposed algorithm achieves an accuracy of 88.34%. Most
of the confusion occurs between the actions “drinking” and
“make a phone call”, because the movement of these two
actions are very similar.

Then, we perform evaluation under the cross-view
recognition setting. In this setting, the data are partitioned
into three subsets each corresponding to a different camera.
We use the subset from one camera as the testing data and
use the data from the other two cameras for training. Three-
fold cross-validation is applied to measure the overall
accuracy. The results are listed in Table 3. One observation
is that the proposed algorithm is quite robust across multi-
ple views. The proposed algorithm achieves an accuracy of
86.75% on cross-view setting, which is only 1.4% lower than
the accuracy on cross-subject setting. The confusion matrix
of the proposed algorithm under cross-subject and cross-
view settings are shown in Fig. 17 and Fig. 18, respectively.

The experimental results show that, with orientation nor-
malization, the proposed algorithm can achieve good action
recognition accuracy under cross-view action recognition
setting.

Fig. 18. Confusion matrix for Multiview 3D event dataset on cross-view
setting.

TABLE 4
Recognition Accuracy Comparison for Cornell Daily

Activity Dataset

5.4 Cornell Activity Dataset
Cornell Activity dataset (CAD-60)[29] contains the RGB
frames, depth sequences and the tracked skeleton joint posi-
tions captured with Kinect cameras. The actions in this
dataset can be categorized into 5 different environments:
office, kitchen, bedroom, bathroom, and living room. Three
or four common activities were identified for each envi-
ronment, giving a total of twelve unique actions: “rinsing
mouth”, “brushing teeth”, “wearing contact lens”, “talk-
ing on the phone”, “drinking water”, “opening pill con-
tainer”, “cooking (chopping)”, “cooking (stirring)”, “drink-
ing water”, “talking on couch”, “relaxing on couch”, “talk-
ing on the phone”, “writing on whiteboard”, “drinking
water”, “working on computer”

The recognition accuracy is shown in Table 4. We employ
the same experimental setup as [29]: The same-person
experiment setup employs half of the data of the same per-
son as training, and the other half is used as testing. The
cross-person experiment setup uses leave-one-person-out
cross-validation. The proposed method achieves an accu-
racy of 97.06% for the same-person setup and 74.70% for
the cross-person setup. Both results are better than those of
the state-of-the-art methods.

The confusion matrices of the proposed algorithm on
Cornell Activity dataset under the same-person setting and
the cross-subject setting are shown in Figs. 19 and 20,
respectively. We can see that the proposed algorithm cor-
rectly classifies most of the actions under the same-person
setting. The cross-person setting is more challenging, and
we find that many actions are classified into “still” under
this setting, because the motions of these actions are very

Fig. 19. Confusion matrix for Cornell Activity dataset on same-person
setting.
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Fig. 20. Confusion matrix for Cornell Activity dataset on cross-person
setting.

subtle and there are serious noises in Kinect skeleton track-
ing. Thus, it is difficult to distinguish the action “still” from
those actions with subtle motions.

5.5 CMU MoCap Dataset
We also evaluate the proposed method on the 3D joint posi-
tions extracted by a motion capture system. The dataset we
use is the CMU Motion Capture (MoCap) dataset.

Five subtle actions are chosen from CMU MoCap
datasets following the configuration in [13]. The five actions
differ from each other only in the motion of one or two
limbs. The actions in this dataset include: walking, march-
ing, dribbling, walking with stiff arms, walking with wild legs.
The number of segments of each action is listed in Table 5.
The 3D joint positions in CMU MoCap dataset are relatively
clean because they are captured with high-precision camera
array and markers. This dataset is employed to evaluate
the performance of the proposed 3D joint position-based
features on 3D joint positions captured by Motion Capture
system.

The comparison of the performance is shown in Table 6.
Since only the 3D joint positions are available, the proposed
method only utilizes the 3D joint position features. It can be
seen that the proposed method achieves comparable results
with the state-of-the-art methods on the MoCap dataset.

6 CONCLUSION

In this paper, we propose a novel actionlet ensemble
model that characterizes the conjunctive structure of 3D
human actions by capturing the correlations of the joints

TABLE 5
Description of the Subtle Action Dataset

TABLE 6
Recognition Accuracy Comparison for CMU MoCap

Dataset

that are representative of an action class. We also pro-
pose two novel features to represent 3D human actions
with depth and skeleton data. Local occupancy pattern
describes “depth appearance” in the neighborhood of a
3D joint. Fourier temporal pyramid describes the tempo-
ral structure of an action. The proposed features effectively
discriminate human actions with subtle differences and
human-object interactions and are robust to noise and
temporal misalignment. Our extensive experiments demon-
strated the superior performance of the proposed approach
to the state-of-the-art methods. In the future, we aim to
exploit the effectiveness of the proposed technique for the
understanding of more complex activities.
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