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Abstract

In this paper, we propose a novel formulation for multi-
feature clustering using minimax optimization. To find a
consensus clustering result that is agreeable to all feature
modalities, our objective is to find a universal feature em-
bedding, which not only fits each individual feature modal-
ity well, but also unifies different feature modalities by mini-
mizing their pairwise disagreements. The loss function con-
sists of both (1) unary embedding cost for each modality,
and (2) pairwise disagreement cost for each pair of modal-
ities, with weighting parameters automatically selected to
maximize the loss. By performing minimax optimization,
we can minimize the loss for the worst case with maximum
disagreements, thus can better reconcile different feature
modalities. To solve the minimax optimization, an iterative
solution is proposed to update the universal embedding, in-
dividual embedding, and fusion weights, separately. Our
minimax optimization has only one global parameter. The
superior results on various multi-feature clustering tasks
validate the effectiveness of our approach when compared
with the state-of-the-art methods.

1. Introduction
In visual recognition, the image or video data can be nat-

urally characterized by multiple types (modalities) of fea-
tures to describe different aspects of visual characteristics,
such as color, texture, or motion. Instead of using a sin-
gle feature type to perform image or video categorization,
it is of great interests to combine multiple complementary
feature modalities to improve the clustering or classification
result [12, 28, 31].

Such a multi-feature fusion, however, is challenging
due to the possible incompatibility of heterogeneous fea-
tures. For example, a simple concatenation of them does not
guarantee good performance [6]. To perform better multi-
feature clustering, some previous work chooses to exploit
different feature types separately followed by combining
the results through a weighted fusion. However, it is diffi-

cult to determine the fusion coefficients for different feature
modalities. Kernel fusion k-means [39] and affinity aggre-
gation spectral clustering [12] are recent additions to this
family. Alternatively, some approaches aim to seek a fea-
ture representation or clustering result that can fit in dif-
ferent feature types. Different fitting criteria can bring a
variety of consensus methods, such as correlational spec-
tral clustering [4] and common convex representation [11].
Some recent methods propose to enforce the clustering re-
sults of different feature types to agree with each other by
mutual regularization of each pair of feature modalities. For
example, Kumar et al. [15] perform pairwise regularization
to push pairs of Laplacian embeddings of different feature
types close to each other, as well as centroid regularization
to push all Laplacian embeddings of different feature types
towards a consensus embedding for multi-feature cluster-
ing. However, both the pairwise and centroid regularization
still need to specify the weights to reflect the confidence of
each feature modality, which is difficult to select without
prior knowledge.

We propose a novel minimax formulation to reach a con-
sensus clustering, without requiring to specify the weight-
ing parameter to fuse the multiple feature modalities. Our
objective of consensus clustering is to find a universal fea-
ture embedding, which not only fits each feature modality
well, but also unifies different modalities by minimizing the
pairwise disagreement between any two of them. As a re-
sult, two types of loss need to be minimized: (1) the unary
embedding cost terms for each feature modality, and (2) the
pairwise disagreement cost terms for each pair of the fea-
ture modalities. The unary embedding cost is measured by
the Laplacian embedding at each feature modality. While
for the pairwise disagreement cost, instead of measuring the
consistency of their data distribution, we project the Lapla-
cian embedding from each feature type to a Regularized
Data-Cluster Similarity Matrix using the universal feature
embedding, and compute the pairwise Frobenius distance
through pairs of regularized data-cluster similarity matrices.
Such a measure is more robust to noises.

Our minimax formulation has the following advantages:
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• It has only one global parameter, while all fusing weights
can be automatically determined via minimax optimiza-
tion.

• It reaches a harmonic consensus by weighting the cost
terms differently during minimax optimization, such that
the disagreements among different feature modalities can
be effectively reconciled.

Our minimax optimization can be nicely solved via it-
eratively optimizing (1) the universal feature embedding,
(2) individual Laplacian embeddings, and (3) the fusing
weights. We test our multi-feature clustering method on
four different datasets to categorize images or videos. The
superior performances compared with the state of the arts
validate that our method can well fuse heterogeneous fea-
ture modalities for multi-feature clustering.

2. Related Work
To perform multi-feature clustering, some work exploits

different feature types separately and then combine the re-
sults with specific weights. The traditional way is to build a
probabilistic model for each feature type, and then estimate
a mixture of them [3, 27]. Alternatively, relying on ker-
nel combination, one can use each feature type to compute
a similarity kernel matrix for a weighted sum [16, 39]. In
such a case, similarity matrices are weighted and combined
for graph structure fusion [41, 36, 12]. In these methods,
weighting scheme is critical to the effectiveness of multi-
feature fusion.

Some other work choose to seek a consensus solution
that meets different feature types as much as possible. One
direct strategy is to pursue a partition consensus from mul-
tiple clustering results of different feature types [18]. An-
other type of consensus analysis is to look for a shared fea-
ture representation, such as canonical correlation analysis
(CCA) [4, 7], general sparse coding [37], convex multi-view
subspace learning [11], Pareto embedding [35], common
non-negative matrix factorization (NMF) [1], and structured
feature selection [30]. Other consensus methods include
multipartite spectral graph partition to minimize disagree-
ments among multiple views [8] and multi-feature low-rank
affinity pursuit for spectral clustering [10].

Recently, mutual regularization has shown its effective-
ness in multi-feature clustering. The idea is to enforce clus-
tering results of different feature types to agree with each
other, which is widely applied to k-means [40, 32, 33],
NMF [17], topic model [13], and spectral clustering [15,
14, 6]. Among these methods, pairwise regularization is a
representative strategy. However, it generally outputs dif-
ferent solutions from multiple feature types such that a late
fusion step is required. Therefore, some approaches apply
centroid regularization that regularizes each view towards
a consensus solution, e.g., [40, 15, 6]. However, both the

pairwise and centroid regularization still need to specify the
weights to reflect the confidence of each regularization cost,
which is difficult to select without prior knowledge.

Our method falls into the category of mutual regulariza-
tion for multi-feature spectral clustering. Unlike pervious
work, it can automatically determine the weights among
different regularization costs using only one hyper parame-
ter, and enable pairwise regularization to reach a consen-
sus solution. The work directly related to our approach
are compared in this paper, which include pairwise/centroid
co-regularized spectral clustering (PRSC/CRSC) [15] and
multi-modal spectral clustering (MMSC) [6]. Besides the
above approaches, we also provide a comparison with the
recent work: affinity aggregation spectral clustering with
optimized weights (AASC) [12].

3. Our Method

3.1. Laplacian Embedding

Spectral embedding of data Laplacian matrix is widely
used to disclose data clustering structure [25, 20]. Given
N data samples X = {xi}Ni=1 and the corresponding fea-
ture descriptors F = {fi}Ni=1 of a specific feature type, one
can compute the similarity between any sample pair using
Gaussian kernel:

wij = exp
{
−dist2

(
fi, fj

)/(
2σ2
)}
, (1)

where dist(fi, fj) denotes the distance between a pair of
feature descriptors; σ is the bandwidth parameter. All
pairwise similarities compose the similarity matrix W ∈
RN×N , which is further transformed to the N ×N normal-
ized Laplacian matrix:

L = D−
1
2 (I−W)D−

1
2 , (2)

where D ∈ RN×N is the diagonal degree matrix, whose
diagonal entries are given by dii =

∑N
j=1 wij . Spectral

embedding is to optimize the following problem [25, 20]:

minimize
U∈RN×K

Q = tr
(
UTLU

)
subject to UTU = I.

(3)

The Rayleigh-Ritz theorem [19] states that the solution of
U consists of the eigenvectors corresponding to the first
K smallest eigenvalues (the first K smallest eigenvectors)
of L. In spectral clustering, the entries of U measure the
similarities between data samples and clusters, as they indi-
cate how likely data samples belong to specific clusters. A
simple k-means clustering on rows of U can transform the
real valued cluster similarities into discrete cluster indica-
tors [25, 20].



3.2. Regularized Data-Cluster Similarity Matrix

For each feature type, we follow [15] to obtain the Data-
Data Similarity Matrix by inner product:

S (U) = UUT. (4)

Let V ∈ RN×K be the final cluster indicator matrix agreed
among multiple feature types. We define the Regularized
Data-Cluster Similarity Matrix as the projection of S onto
V:

PV (U) = S (U)V = UUTV. (5)

Compared to the original data-cluster similarity matrix
U, the regularized data-cluster similarity matrix PV (U)
measures the data-cluster similarity of each data sample
with the final clustering solution V. In the following, we
will relax the final clustering solution V to be a real-valued
universal feature embedding with orthonormal constraints:
VTV = I. As a result, Eq. 5 enables self projection to be
invariant:

PV (V) = VVTV = V. (6)

3.3. Towards Agreement among Regularized Data-
Cluster Similarity Matrices

Suppose we have M different types of features in total.
Our motivation is to encourage the regularized data-cluster
similarity matrices to be similar between any two feature
types, e.g., type i and type j. Therefore, we propose to
minimize the following disagreement measure:

DV (Ui,Uj) = ‖PV (Ui)−PV (Uj)‖2F . (7)

Instead of forcing pairwise data-data similarity matrices to
agree between two feature types in [15], we relax the con-
straint to data-cluster similarity matrices for noise suppres-
sion. Besides that, we propose an additional requirement
that the two feature embeddings Ui and Uj in Eq. 7 should
accommodate the universal feature embedding V. Thus
DV (Ui,V) and DV (Uj ,V) should also be minimized.
We thus further extend Eq. 7 into Eq. 8 to measure the dis-
agreement among Ui, Uj and V:

Qij =
1

2
{DV (Ui,Uj) +DV (Ui,V) +DV (Uj ,V)}

= tr
{
VT

[
I− sym

(
UiU

T
i UjU

T
j

)]
V
}
,

(8)
where sym (A) =

(
A + AT

)/
2 for any square matrix A.

To derive Eq. 8, we use the trace expansion of the Frobe-
nius norm, as well as the linearity and cyclicity properties
of matrix trace. Now Let

Lij = I− sym
(
UiU

T
i UjU

T
j

)
, (9)

then Eq. 8 becomes

Qij = tr
(
VTLijV

)
. (10)

In addition, according to Eq. 3, we also need to minimize
the unary cost of spectral embedding in each feature type
for 1 ≤ i ≤M :

Qii = tr
(
UT
i LiUi

)
, (11)

where Li denotes the normalized Laplacian matrix of a spe-
cific feature type; Ui corresponds to Laplacian embedding.

Therefore, ∀1 ≤ i ≤ j ≤ M , we need to minimize both
the pairwise disagreement cost defined by Eq. 10, as well
as the unary spectral embedding cost defined by Eq. 11:∑M
j=i

∑M
i=1Qij . However, as the pairwise costs {Qij}i<j

and the unary costs {Qii} have different properties, they
cannot be simply fused using the same weight. Moreover,
even for the same type of costs, assigning equal weights
may not be the optimal choice either, as a poor feature
modality or two opposing feature modalities may introduce
a larger cost of embedding or disagreement. Instead of as-
signing equal weights, we prefer to assign a larger penalty
weight to Qij of higher cost, which enables us to concen-
trate more on minimizing Qij of higher cost, such that not
only the overall cost can be reduced, but also the consen-
sus can be reached by suppressing high values of individual
cost Qij . To achieve our goals, we propose the following
optimization problem:

min max
{Um}Mm=1,V {αij}Mj≥i

M∑
j=i

M∑
i=1

αγijQij

subject to αij ∈ R+,

M∑
j=i

M∑
i=1

αij = 1,

Um ∈ RN×K ,UT
mUm = I,

V ∈ RN×K ,VTV = I,

(12)

where γ ∈ [0, 1) is a parameter to control the distribution
of weights αγij . When γ = 0, it is a special case with equal
weights.

This optimization in Eq. 12 aims to achieve multi-feature
fusion via minimizing the maximum weighted disagree-
ment costs. On the one hand, maximizing the overall cost
w.r.t. weight variables will highlight Qij of high costs, i.e.,
large disagreement or high embedding cost. On the other
hand, minimizing the overall cost w.r.t. embeddings can fur-
ther reduce the highlighted costs. Moreover, it is worth not-
ing that our objective function has only one parameter γ.
Instead of manually selecting weights αij for Qij , our ob-
jective function can optimize the fusion weights too.

3.4. Optimization

It is infeasible to simultaneously achieve the optimal
values of all variables in Eq. 12, because they depend
on each other. However, the objective function Ω =∑M
j=i

∑M
i=1 α

γ
ijQij is concave w.r.t. each of {αij}Mj≥i, and



Algorithm 1 MULTI-FEATURE SPECTRAL CLUSTERING WITH

MINIMAX OPTIMIZATION

Input: data {Xi}Ni=1; M types of features {F(m)}Mm=1; number of
clusters K; parameter γ

Output: data clustering assignment indexes Y ∈ RN
/ / Initialization

1: αij ← 1

/
M∑
q=p

M∑
p=1

1,∀1 ≤ i, j ≤M

2: for i ∈ [1,M ] do
3: Lreg,i ← Li (Eq. 2)
4: Ui ← first K smallest eigenvectors of Lreg,i
5: end for

/ / Main loop
6: repeat
7: Lij ← I− sym

(
UiU

T
i UjU

T
j

)
, ∀1 ≤ i < j ≤M (Eq. 9)

8: LV ←
M∑

j=i+1

M∑
i=1

αγijLij (Eq. 14)

9: V← first K smallest eigenvectors of LV

10: αγij ← Qij
γ

1−γ

/(
M∑
q=p

M∑
p=1

Qpq
1

1−γ

)γ
, ∀1 ≤ i, j ≤ M

(Eq. 18)
11: for i ∈ [1,M ] do
12: Lreg,i = αγiiLi −

∑
j 6=i

αγijsym
(
UjU

T
jVVT

)
(Eq. 16)

13: Ui ← first K smallest eigenvectors of Lreg,i
14: end for
15: until Ω (Eq. 12) is converged or max iterations is reached

/ / Discrete solution
16: return Y ← k-means clustering on rows of V

is convex w.r.t. each of {Um}Mm=1 and V. Since Ω is differ-
entiable, it is easy to reach local optimum of the objective
w.r.t. one variable when fixing others. Therefore, we pro-
pose to alternatively update V, {Um}Mm=1 and {αij}Mj≥i.
This update can converge to the local saddle with mild con-
straints (refer to [24] for detail). We will justify the conver-
gence of our approach in Section 4.4 experimentally.

Initialization. We initialize each Ui using Laplacian
embedding of the corresponding feature type, and assign
equal weights to different costs.

Minimization: optimizing V. To minimize the objec-
tive function Ω, it can be transformed to Eq. 13 using the
linearity of matrix trace:

Ω = tr
(
VTLVV

)
+

M∑
i=1

αγiiQii, (13)

where

LV =

M∑
j=i+1

M∑
i=1

αγijLij , (14)

and only the first term is related to V. Under the orthonor-
mal constraints of V (Eq. 12), V can be updated by per-
forming spectral embedding of LV, i.e., by seeking the first
K smallest eigenvectors of LV.

Minimization: optimizing Ui. To minimize the ob-
jective function Ω, it can be transformed to Eq. 15 using
the linearity and cyclicity of matrix trace, where we let
αij = αji,∀j < i:

Ω = tr
(
UT
i Lreg,iUi

)
+ Ci, (15)

where

Lreg,i = αγiiLi −
∑
j 6=i

αγijsym
(
UjU

T
jVVT), (16)

and
Ci =

∑
j≥h,j 6=i

∑
h6=i

αγhjQhj +K
∑
j 6=i

αγij . (17)

Since Ci is not related to Ui, under the orthonormal con-
straints of Ui (Eq. 12), Ui can be updated by performing
spectral embedding of Lreg,i, i.e., by seeking the first K
smallest eigenvectors.

Maximization: optimizing αij . It becomes a maxi-
mization problem w.r.t. αij . Applying the Lagrange mul-
tiplier method, we can obtain the closed-form of αγij as

αγij =
Qij

γ
1−γ(

M∑
q=p

M∑
p=1

Qpq
1

1−γ

)γ . (18)

Because γ ∈ [0, 1), Eq. 18 shows that larger costs will be
assigned with larger weights. As a result, larger disagree-
ments will be suppressed across heterogeneous features in
the process of total cost minimization. Further analyzing
Eq. 18, we can see that, when γ → 0, different weights will
come close to each other; when γ → 1, the weight of the
largest cost will tend to be 1, while other weights will ap-
proach 0; 0 < γ < 1 achieves a trade-off weighting. We
will also discuss the influence of parameter γ in the experi-
ments.

We show our complete solution in Algorithm 1. As can
be seen, the computational complexity within each iteration
of our method mainly relies onM+1 times of eigendecom-
position (Lines 9 and 13), which can be efficiently solved by
state-of-the-art eigensolvers.

4. Experiments
4.1. Datasets and Experimental Setting

To evaluate our multi-feature clustering, we conduct ex-
periments on three image datasets: UCI Digits [2], Ox-
ford Flowers [21], UC Merced Land Uses [38], and a video
dataset: Body Motions [26].

UCI Digits. We integrate multiple feature types for
handwritten digit recognition on the UCI Digit Dataset,
which consists of features of handwritten numerals (‘0’–
‘9’) extracted from 2, 000 Dutch utility maps [2]. Each



Feature Type Body Motions Oxford Flowers UC Merced Land Uses UCI Digits

Feature Dimension Feature Dimension Feature Dimension Feature Dimension

1 HOG 4000 Color 500 LLC 1× 1 1024 FOU 76
2 MBH 4000 Shape 1000 LLC 2× 2 4096 FAC 216
3 – – Texture 700 LLC 4× 4 16384 KAR 64
4 – – – – pHOG 680 PIX 240
5 – – – – GIST 512 ZER 47
6 – – – – Color Histograms 784 MOR 6

Table 1. The image/video datasets used in our experiment and their feature descriptors.

digit category contains 200 samples. These digits are rep-
resented by six types of features: (1) Fourier coefficients of
the character shapes (FOU); (2) profile correlations (FAC);
(3) Karhunen-Loeve coefficients (KAR); (3) pixel averages
in 2 × 3 windows (PIX); (5) Zernike moments (ZER); and
(6) morphological features (MOR).

Oxford Flowers. The Oxford Flower Dataset is com-
posed of 17 flower categories, with 80 images for each cat-
egory [21]. Each image is described by different visual fea-
tures using color, shape, and texture.

UC Merced Land Uses. The UC Merced Land Use
dataset [38] contains 21 classes of aerial orthoimagery,
with 100 images each category. For local visual features,
we represent each image as three pools of LLCs (locality-
constrained linear codes) over dense SIFTs with 1×1, 2×2,
and 4× 4 partitions [34]. For global visual features, we ex-
tract pHOG [5], GIST [22] and Color Histograms [23].

Body Motions. Appearance and motion features com-
plement each other for body motion description and recog-
nition in video data. Therefore, we combine such two fea-
ture types for action clustering. The human body motion
dataset, which is introduced by UCF101 [26], contains 16
categories of human body actions and 1910 videos in to-
tal. For appearance features, each video is described by
dense appearance trajectories based on Histogram of Ori-
ented Gradients (HOG); while for motion features, each
video is represented as dense motion trajectories based on
Motion Boundary Histograms (MBH) [29].

We summarize the feature descriptors in Table. 1 for the
four datasets, including feature type IDs and feature dimen-
sions. In all experiments, we compute pairwise image sim-
ilarities using Gaussian kernel (Eq. 1). The bandwidth pa-
rameter σ is equal to the median of the pair-wise χ dis-
tances (for Oxford Flowers [21])1 or Euclidean distances
(for UCI Digits [2], UC Merced Land Uses [38] and Body
Motions [26]) of corresponding feature descriptors.

Except for the parameter sensitivity experiment, we fix
the parameter γ to 0.33 for al experiments. As adopted

1χ2 distances for different flower features are provided online: http://www.
robots.ox.ac.uk/˜vgg/data/flowers/17/index.html

in [15, 6, 12], we evaluate clustering performance using
two standard measures: Clustering accuracy and normal-
ized mutual information (NMI) from 10 random runs. Gen-
erally, the higher the measures, the better the performance.

4.2. Baseline Algorithms

To validate the performance of the proposed multi-
feature clustering approach, we compare it with various
baselines:

• Single Feature Type Spectral Clustering (SC(#)): run-
ning spectral clustering [20] with graph Laplacian derived
from a single feature type.

• Kernel Averaging Spectral Clustering (KASC): averag-
ing normalized kernel matrix derived from individual fea-
ture types, followed by applying spectral clustering [20]
with corresponding Laplacian. The kernel normalization
is obtained by (ker)

1
dim , where ker denotes a feature ker-

nel matrix, and dim denotes the feature dimension.

• Centroid Co-regularized Spectral Clustering (CRSC):
pushing all spectral embeddings of different feature types
close to a centroid embedding using data-data similarity
matrices (Eq. 4) [15], followed by k-means with the cen-
troid embedding. We set the parameters in this algorithm
to be 0.01 as suggested.

• Pairwise Co-regularized Spectral Clustering (PRSC):
pushing pairwise spectral embeddings of different feature
types close to each other using data-data similarity ma-
trices (Eq. 4) [15], followed by k-means clustering with
embedding concatenation. We set the parameter in this
algorithm to be 0.01 as suggested .

• Multi-Modal Spectral Clustering (MMSC): learning a
shared graph Laplacian from different feature types [6],
followed by NMF-based spectral clustering [9]. We report
the best results by tuning the parameter of this algorithm
in the range from 10−2 to 102 with incremental step 100.2

as suggested.

• Affinity Aggregation Spectral Clustering (AASC): ag-
gregating affinities of different feature types with opti-

http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html
http://www.robots.ox.ac.uk/~vgg/data/flowers/17/index.html


Method Body Motions Oxford Flowers UC Merced Land Uses UCI digits

Accuracy NMI Accuracy NMI Accuracy NMI Accuracy NMI

SC (1) 0.273 ± 0.009 0.263 ± 0.005 0.343 ± 0.013 0.371 ± 0.009 0.381 ± 0.011 0.459 ± 0.012 0.679 ± 0.044 0.649 ± 0.015
SC (2) 0.312 ± 0.010 0.342 ± 0.004 0.404 ± 0.016 0.425 ± 0.007 0.364 ± 0.020 0.440 ± 0.017 0.631 ± 0.048 0.622 ± 0.016
SC (3) – – 0.257 ± 0.010 0.239 ± 0.009 0.387 ± 0.010 0.449 ± 0.006 0.692 ± 0.087 0.652 ± 0.042
SC (4) – – – – 0.093 ± 0.004 0.242 ± 0.003 0.710 ± 0.053 0.660 ± 0.027
SC (5) – – – – 0.336 ± 0.007 0.397 ± 0.005 0.569 ± 0.021 0.500 ± 0.009
SC (6) – – – – 0.234 ± 0.006 0.269 ± 0.006 0.420 ± 0.028 0.469 ± 0.008

KASC 0.301 ± 0.013 0.328 ± 0.009 0.370 ± 0.012 0.403 ± 0.009 0.294 ± 0.010 0.349 ± 0.009 0.709 ± 0.042 0.668 ± 0.016
PRSC [15] 0.275 ± 0.007 0.263 ± 0.005 0.419 ± 0.013 0.435 ± 0.008 0.368 ± 0.022 0.447 ± 0.010 0.769 ± 0.049 0.728 ± 0.020
CRSC [15] 0.317 ± 0.020 0.335 ± 0.012 0.449 ± 0.019 0.461 ± 0.009 0.395 ± 0.011 0.468 ± 0.006 0.770 ± 0.036 0.713 ± 0.011
MMSC [6] 0.266 ± 0.008 0.305 ± 0.010 0.416 ± 0.015 0.427 ± 0.012 0.123 ± 0.012 0.265 ± 0.007 0.731 ± 0.011 0.675 ± 0.008
AASC [12] 0.250 ± 0.011 0.292 ± 0.008 0.410 ± 0.028 0.422 ± 0.014 0.226 ± 0.009 0.291 ± 0.007 0.683 ± 0.047 0.649 ± 0.018

Ours 0.322 ± 0.015 0.352 ± 0.010 0.493 ± 0.039 0.484 ± 0.022 0.404 ± 0.021 0.482 ± 0.015 0.800 ± 0.102 0.785 ± 0.049

Table 2. Comparisons of various baselines with the proposed approach.
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Figure 1. Iteration comparisons of PRSC, CRSC and our
method w.r.t. NMI performance of each feature embedding
and the fusion result on the body motion and Oxford flower
datasets. Best viewed in color.

mized weights [12], followed by applying normalized
cut [25] with corresponding Laplacian.

4.3. Experimental Results

We compare our method with baseline methods in Ta-
ble 2. For the experiment of Body Motion clustering, there
are only two types of features: motion features (MBH)
and appearance features (HOG). Spectral clustering results
show that motion features perform better than appearance
features in human body motion clustering. Although most
compared algorithms perform better than spectral clustering
on the poorer feature type, they are difficult to beat spec-
tral clustering on the better feature type. For example, only
CRSC performs better than the better feature type. In con-
trast, thanks to our new formulation for multi-feature fu-
sion in Eq. 12, our approach can enhance the poorer feature
embedding with iterations (Algorithm 1), thus generating a
good clustering result. As can be seen in Table 2, our ap-

proach is not only better than the compared algorithms, but
also can compete against the result of the better feature type.

Similarly, our approach also outperforms all compared
methods on the other benchmark datasets, which further
verifies the effectiveness of the proposed multi-feature clus-
tering. Regarding flower clustering, all the compared meth-
ods perform better than spectral clustering on a single fea-
ture type. However, our approach can achieve much higher
accuracy and NMI values than the other methods. For scene
clustering, spectral clustering performs poorly on pHOG
and color histograms. Despite such poor features, our ap-
proach still achieves a noticeable performance gain thanks
to heterogeneous feature fusion. In handwritten digit group-
ing, since each single feature type reaches a good spec-
tral clustering, the compared multi-feature clustering meth-
ods all obtain commendable results. Again, our approach
achieves the most significant improvement than other com-
pared methods. All the results obtained with our approach
can benefit from effectively unveiling and fusing comple-
mentary information from heterogeneous features by opti-
mizing Eq. 12.

To further illustrate the advantage of our approach, we
study how different regularization methods influence the
performance of each feature embedding, as well as the per-
formance of the fusion result. As shown in Fig. 1, we com-
pare the most related work PRSC and CRSC with our ap-
proach on the body motion and Oxford flower datasets.

PRSC adopts pairwise regularization among different
modality-specific Laplacian embeddings using data-data
similarity matrices. Form Fig. 1 (a) and (d), we can see that,
PRSC is sensitive to the poorer feature types, e.g., HOG
features in body motion dataset and color/texture features
in Oxford flower dataset. In the initialization, i.e., the first
iteration, the fusion result approaches/exceeds the perfor-
mance of the best feature type. However, with more itera-
tions, the regularization may lead to a worse result. In such
a case, it is not a good choice for multi-feature clustering.
Similarly, CRSC also leverages data-data similarity matri-
ces to perform regularization. But it aims to force each
modality-specific Laplacian embedding towards a consen-
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(a) Body Motions

0 2 4 6 8 10 12
0.3

0.35

0.4

0.45

0.5

0.55

0.6

Iteration

N
M

I

 

 

0 2 4 6 8 10 12
20

30

40

50

60

O
b

je
ct

iv
e 

va
lu

e

NMI

OBJ

(b) Oxford Flowers
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(c) UC Merced Land Uses
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(d) UCI Digits

Figure 2. Convergence study of our algorithm: NMI and objective values with iterations.
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Figure 3. Parameter study of our algorithm: NMI values
with different parameters.

sus embedding. From Fig. 1 (b) and (e), we can see that,
CRSC is not very sensitive to poor feature types. How-
ever, it cannot effectively enhance the poor feature types.
As shown in Fig. 1 (e), successive regularization does not
improve the bad performances of color and texture features.
In such a case, CRSC is unable to bring different modality-
specific Laplacian embeddings close enough, which finally
influences the consensus result. On the contrary, we do not
directly use data-data similarity matrices for regularization.
By projecting each data-data similarity matrix onto the uni-
versal feature embedding, we relax the data-data similarity
matrix from each feature type to obtain the regularized data-
cluster similarity matrix (using Eq. 5) for our regularization
framework. As shown in Fig. 1 (c) and (f), although our
method may not perform better than the best individual fea-
ture initially (Fig. 1 (c)), the regularization can gradually
reduce the disagreements among different feature embed-
dings to refine the performance, and finally enhance the fu-
sion result.

4.4. Convergence Analysis

To evaluate the convergence of the proposed solution in
Algorithm 1, Fig. 2 shows the objective function value to-
gether with its NMI performance indicator over iterations,
with γ = 0.33. The dashed line shows the objective val-
ues, while the solid line shows the NMI values. As can be
seen, the objective function first moves down then upwards
and flattens. After less than 20 iterations, the algorithm will

Feature Order Accuracy NMI

1 2 3 0.493± 0.039 0.484± 0.022
3 2 1 0.471± 0.018 0.474± 0.012
3 1 2 0.490± 0.029 0.489± 0.017
2 3 1 0.458± 0.026 0.464± 0.015
2 1 3 0.458± 0.017 0.471± 0.009
1 3 2 0.491± 0.029 0.484± 0.019

Table 3. Performance of flower clustering with different
feature input orders using our algorithm.

converge to a saddle, which meets minimax optimization of
the objective function in Eq. 12. Besides, it is interesting to
notice that, although the objective function value has almost
no change after several iterations, the performance can still
benefit from the min-max iteration, e.g., the results shown
in Fig. 2 (b) and (e). This further verifies the effectiveness
of our proposed algorithm. When testing other parameter
values, we observe that, γ < 0.5 can generally generate a
converged solution. When γ ≥ 0.5, we choose to stop the
iteration in less than 20 iterations and output the final result.

4.5. Sensitivity of Parameters

In our objective function in Eq. 12, we have only one pa-
rameter γ to control the weights. As another factor, our pro-
posed method relies on the input order of different features
as shown in lines 10-13 of Algorithm 1. The sensitivity of
the related factors will be studied in this section.

Parameter γ. As formulated in the objective function of
Eq. 12, our proposed approach only has one parameter γ to
balance different cost terms. γ is in the interval [0, 1). We
plot NMI performance curve w.r.t. parameter γ in Fig. 3. As
can be seen, different values of γ do not influence much for
appearance and motion feature fusion on the body motion
dataset. The reason may be that these two types of features
can regularize each other, and the weight assignments are
not so critical in such a case. For each of the other datasets,
the result are not very sensitive to γ.

Feature Order. To study how the input order of fea-
ture types influences clustering performance, we test our al-
gorithm using different feature input orders on the Oxford



flower dataset. We enumerate all six possible permutations
of feature types, as shown in the first column of Table 3.
The corresponding feature IDs are given in Table 1. All the
results (in Table 3) perform better than the baseline methods
(as shown in Table 2), and the result is not sensitive to the
feature input order.

5. Conclusion
Multi-feature clustering is a challenging problem as it

is difficult to find a clustering result agreeable to all fea-
ture modalities. To find the consensus, we explore an loss
function consisting of both the unary term based on the
cost of the Laplacian embedding of each individual feature
modality and the pairwise disagreement term between any
pair of feature modalities. To optimize the objective func-
tion, we propose a minimax formulation by minimizing the
maximum loss. Our multi-feature clustering approach has
only one parameter and does not need to specify the fusion
weights. Our multi-feature clustering results on four image
and video datasets show superior performance when com-
pared with the state-of-the-art methods.
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