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Abstract—Local binary pattern (LBP) and its variants have
shown promising results in visual recognition applicatiors. How-
ever, most existing approaches rely on a pre-defined structa to
extract LBP features. We argue that the optimal LBP structure

should be task-dependent and propose a new method to learn

discriminative LBP structures. We formulate it as a point
selection problem: Given a set of point candidates, the goas$ to
select an optimal subset to compose the LBP structure. In we of
the problems of current feature selection algorithms, we popose
a novel Maximal Joint Mutual Information criterion. Then, t he
point selection is converted into a binary quadratic program-
ming problem and solved efficiently via the branch and bound
algorithm. The proposed LBP structures demonstrate supewr
performance to the state-of-the-art approaches on classiing
both spatial patterns in scene recognition and spatial-teiporal
patterns in dynamic texture recognition.

Index Terms—LBP structure optimization, maximal joint mu-
tual information, binary quadratic programming, scene recogni-
tion, dynamic texture recognition

|. INTRODUCTION

sampling strategy in a data-driven way [16]. Some other
approaches aim to directly extract discriminative infotioa
from LBP-histogram bins, e.g. Adaboost bin selection [22],
[23] and dictionary learning [24], [25].

In this paper, we propose a new method to learn the data-
driven LBP (DDLBP) structure. Our motivation originates
from volume-LBP [5]. The number of its histogram bins
increases exponentially, e.d/ LBPy, pr has 23F*2 bins.
Even for a smallP = 8, it has 226 = 67,108,864 bins.

It is intractable to reduce the dimensionality of such high-
dimensional data. To solve this problem, we propose to find a
small structure that generates a feature vector of a mahbkgea
size. We formulate it as a point selection problem, i.e. tecte

an optimal subset to compose the LBP structure that is most
suitable for a specific application.

For feature selection, it is desirable to maximize the depen
dency of the target class on the data distribution, known as
Max-Dependency scheme. It is difficult to directly estimate
such a dependency. Thus, approximated algorithms such as

OCAL binary pattern and its variants have wide applicdMax Relevance and mRMR were often utilized [26]. We
tions, e.g. texture classification [1]—[3], dynamic texturfind that these may not closely approximate Max-Dependency

(DT) recognition [4]-[6], scene recognition [7]-[9], fati criterion for LBP structure optimization. Thus, we propose
analysis [10]-[16] and human detection [17]-[19]. LBP iso approximate it using joint mutual information between a
popular because of its simplicity, ability to capture imag&eature pair and the classification variable. Then, a Makima
micro-structures and robustness to illumination variaio Joint Mutual Information (MJMI) scheme is proposed to
However, it remains challenging to derive the best LBBptimize the LBP structure.
structure for a specific application. In the traditionalgipe, Given a feature selection criterion, greedy algorithmsewer
a handcrafted LBP structure was often utilized [8]-[10Q]R2 often used [7], [26], which may only find a locally optimal
[25]. The popular LBP structure consists of 8 nearest neigbelution. In this paper, we learn a globally optimal LBP
bors or P neighbors in a circle [8]-[10]. Other geometriestructure by casting the point selection into a binary qatclr
such as line and disc were explored in Local Quantized Pattgarogramming (BQP) problem [27] and solving it via the
(LQP) [25]. The handcrafted structure may not be optimal &sanch and bound algorithm [28].
it is often selected heuristically. More importantly, th&R Our contributions are three-fold: a) We propose a new for-
structure should be task-dependent because the intrinaigd mulation of LBP structure optimization by casting it as arpioi
characteristics of different applications or even imageelpes selection problem. b) We find that Max-Dependency criterion
may be different. In [13], a heuristic hill-climbing teclpie is better approximated using joint mutual information. $hu
was utilized to select the LBP structure. Lei et al. proposedMJMI scheme is proposed for LBP structure optimization.
to learn discriminant image filters and optimal neighborhoc) Instead of greedy search, we cast the proposed MJIMI
i . d b the Si Natitasioarch as a BQP problem and derive a globally optimal structure.
Founljatrgieirr?de;sitzuﬁ]‘ig;i\tioﬂaf)i?rtesga:cﬁ C(Ienn%?epog ShattglaFur?girr?g The proposed approach demonstrates superior performance o
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Il. THE PROPOSEDDATA-DRIVEN LBP
A. Overview

The block diagram is shown in Fig. 1. It consists of two
steps: DDLBP structure optimization and DDLBP feature gen-
eration. We cast the DDLBP structure optimization as a point
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selection problem. Formally, the problem is defined as:mgivevhere I(z;; z;|c) is conditional mutual informationt Only
a set of potential candidates = {z;,i = 1,2,...,n} and when I(x,,;¢) in Egn. (5) is dominated by the first term,
target classification variable the goal is to find a subspaceMax-Relevance defined in Eqgn. (3) is a good approximation of
R™ of m candidates,,, C x that optimally characterizas  I(x,,;c). mMRMR defined in Eqn. (4) differs from Eqgn. (5) by
a missing termzwwjexnb I(z;; xj]c) and a weighting factor
DDLBP Structure Discovery:  for the second term. In general, Max-Relevance and mRMR
: are not a close approximation &fx,,; c).

) Proposed Binary Branch and Data-
Pot;:ir(llual MIMI quadratic bound algo- || driven |:
candidates scheme program- | LBP : ; i
] rithm C. The Proposed Maximal Joint Mutual Information Scheme

Our target is to derive a close approximationidk,,;c).

Generate | [ PCA to reduce Recall the chain rule fof (x,,; ¢),
DDLBP feature dimensionality .

. m
DDLBP Feature Generation I(xXp;c) = Z I(zisclzy, ..o min). (6)
i=1
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Fig. 1. Block diagram of the proposed method to extract LBRuies. For ¢« > 3, I(x;;¢lxy,...,x;—1) is high-order conditional

) ) ) mutual information.I(x,,;c) is decomposed inton terms
In_ many scenarios, especially for spatial-temporal LB Eqn. (6). In fact, including Eqn. (6) there are! —

(STLBP), the number of neighbors may be large, and henge, .~ 1y. " . 9 « 1 different ways to do the decomposition.
it is not feasible to enumerate the histogram using S”ChAeeraging over these:! decompositions, we have:

large structure. Thus, we treat them as potential candidate . )
and aim to find an optimal subset. The potential candidat oy 1 . .

can be natural extension of widely used handcrafted strestu Tonic) = m Z T@ise) + m(m — 1) Z T@i; clei)
Compared with deriving a good handcrafted structure, it is 1
much easier to obtain a good set of potential candidates. +-- 4 — ZI(% se|Ti, Ty -4y, ), (7

i1=1

i1 702

B. Feature Selection via Mutual Information where {z; },k = 1,2,...,m is an ordered set ok,, for

For feature selection, it is desirable to maximize the depeiff® last term. We notice that all these terms are positive.
dency of selected features on classification variab{¢lax- YWhen high-order conditional mutual information is nedbigi,

Dependency) [26]. We use mutual information to charaogeriZ (Xm; ¢) can be approximated by:

the dependency. The goal is to fizg, C x so that: 1™ 1
I(oxmic) ~ = ;Im; )t ) 2 (@ielay)

Xy, = argmax I (X,,; ¢), (1) - o
" 1
= I iy Lj;C), (8)
I(xm;c) = / / P(Xm, c) log pilzz%((ji) dxpde.  (2) m(m —1) ; (0, 253¢)

In general, it is difficult to reliably estimatp(x,,) and WhereI(zi,z;;c) = I(zi;c) + I(zj;cle;) is joint mutual
p(xm, ¢) due to the limited number of samples available arlgformation between feature pair;, z; and c. Then, we
the large number of joint states to be estimated. Altersigtiy ProPose a Maximal Joint Mutual Information scheme for

Max-Relevance is utilized, which approximatgs,,; ¢) as: LBP structure optimization. Instead of maximizing intiauie
I(x,;c), the goal is to find a subset,, C x that maximizes

m

x5 = argmax — Zl(xi;C)- @) s approximation _, . I(z;, ;3 c), i.e.
Xm i=1 "
] X’ = argmax I(x;,x;;¢). 9
The features selected according to Max-Relevance may m o Z (@, 53¢) ©

Ti,T5 EX oy, iF]

have rich redundancy, and hence Min-Redundancy criterion
was added to select mutually exclusive featurgs; =

argmin, _ # Z%Ijex’m I(2i:;). In [26], Min-Redundancy D. Deriving a Globally Optimal DDLBP Structure

and Max-Relevance (MRMR) were combined: To derive a globally optimal solution to Egn. (9), we convert
m . the proposed MJMI scheme into a binary quadratic program-
XE = argmaxzf(xim) S Z I(x;;x;). (4) ming problem. Denote = (a1, az, .. yan)t a; € {0,1} as
N My €xm the indication vector fox, i.e. a; = 1 meansz; is selected
Recent research [29] shows that when high-order interactignd @: = 0 otherwise. Then, Eqn. (9) is equivalent to:
information is negligible(x,,; ¢) can be approximated by: n
a* = argmaxa’ Ma, s.t. Z a; = m. (20)
I(xpm;c) = Z I(x;;c) — Z I(zi;xj) a =1
Ti€Xm TiHTjEXm

Il 5 IFor discrete random variables, y, z, conditional mutual information
+ D @il ®) t@iyle) = E{i@iyley = Sy, P(3, Y, 2) log ZEOEELE where
TiyTjEXm E.{.} is the expectation om.
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M is a matrix of sizen x n, whose diagonal elements are|Ce |Ciwo|Cu |Ci |Ci3

zero and off-diagonal elemeniel (i, j) = I(z;,z;;¢). This |ca|c|c |c |ca 1 t Ll

optimization problem can be solved efficiently via the bilanc|eca| cs | ic | cs |cis calieaicy ([Eafcrgic ) |icalEnifies

and bound algorithm [28]. c2|cr|cs|cs|ew Ca|Cs[Cs| |C13|ic [Cia| |Cor|Ca2|Caz
We branch the feasible regia into & smaller subregions |ca [cuo|cws|ce|cir C7 | Cs|Co| |Cis|cis |Cir| [caa|Cos|cas

such thatS = Ulesi. These subregions naturally form a @) (b)

tree structure. More specifically, it is a branCh_an_d_bomed_ Fig. 2. Potential candidates for: (a) Spatial LBP, (b) Spaémporal LBP.

of n levels, and each level corresponds to one binary variable

a;. We bound the objective function of the subproblem in the

node using quadratic relaxation created by relaxing thegit

constraints to interval constraints, i. € [0,1]. If a partial class, the images are randomly split into five equal-sizesl se
solution from a subregion is less than the lower bound, it four of them are used for training and the held-out set is used

discarded from the search. There are three possible cad§édesting. We use CENTRIST [8] as the baseline algorithm,
of pruning a subtree: 1) Infeasibility, i.e. the subprobleas and construct the DDLBP structures using 8 neighbors, same

no feasible solution. 2) Opt|ma||ty, i.e. an 0pt|ma| sobutito @S CENTRIST. Flg 3 shows some learnt DDLBP structures.
the sub-problem is found. 3) Dominance, i.e. the solution fdhey are significantly different from each other, as themstc
the subproblem is no better than the current one. To redftage characteristic of each patch is different.

a feasible solution fastDepth-first searchis employed. We
utilize the Gurobi optimizer [30] to solve this BQP problem.
The joint probability mass functiom(z;,z;,c) can be
estimated efficiently. Denotg,, , as the joint histogram for
featuresz;, x; usingg¢-th sample ofp-th class.p(z;, z;|c) is

estimated as:

1 X
paizjle=p) — 5= D o (11) [l
p q &

Level 0

x
x
x
x

Level 1

where N, is the number of samples for clags Then, X

plei,xj,¢ = p) = pli,zjlc = p)p(c = p), wherep(c = _

p) = Np/N and N is the total number of samples. As we

only need to estimate the joint pmf of three variables omtly, i

which z;, z; are binary, the computational cost is low. T
Image patches at different scales or locations may exhibit

totally different characteristics. Instead of using a wuifi Fig. 3. DDLBP structures of the 21-land-use dataset.

structure for all patches, we utilize the proposed MJMI sche

to learn the DDLBP structures on a patch-wise basis to better

capture the characteristics of different patches. They RC ~ We compare the proposed approach with the following:

applied on the LBP histogram of each patch to reduce the Direct feature selection/extraction from the LBP-higtam

dimensionality. The features of all patches are concagertat bins: Adaboost bin selection [23], k-means bin clustering

form the final feature vector, which is classified by a suppol@’ LQP [25] and PCA dimensionality reduction for CEN-
vector machine with a RBF kernel [31]. TRIST [8]. 2) Other LBP-structure-learning approaches: di

criminant face descriptor (DFD) [16], and discriminative
LBP structure learning using a heuristic hill-climbing hec

nigque [13]. 3) Other point selection algorithms under the-pr

The proposed approach can be used in many applicatiofSseq framework: the proposed DDLBP with Max-relevance

We show two examples: learning a set of patch-wise LBE,§ nRMR. 4) Other state-of-the-art solutions for scene

structures for scene recognition and a STLBP structure fr%rcognition: SPCK, SPCK+, SPCK++ [32] and BRSP [34].

DT recognition. We use binarized pixel differences between . _ .
24 neighbors and the central pixel as potential candidaﬁghe results are summarized in Table I. BRSP achieves the

for spatial LBP as shown in Fig. 2(a), and those betwe st recognition rate of 77.8% in literature [34]. We improv

26 neighbors and the central pixel of frameas potential it to 87.2%. The proposed approach also outperforms those
candidates for STLBP as shown in Fig. 2(b) directly extract features from the LBP-histogram bins gsin

handcrafted structure, in which the best one is CENTRIST [8]
N with a recognition rate of 85.9%. Our approach significantly
A. Scene Recognition on the 21-Land-Use Dataset outperforms DFD [16] and discriminative LBP [13]. This is
The 21-land-use dataset contains 21 classes of aerial partly because DFD [16] cannot well handle large image
thoimagery, and each class has 100 images of resolutiariations of scene images and discriminative LBP [13] cann
256 x 256 pixels [32]. Spatial pyramid [33] is utilized, i.e. eachguarantee structure optimality. In summary, the proposed-s
image is hierarchically divided into 31 patches, as shown tare optimization consistently outperforms other apphesc
Fig. 3. We follow the same setup as in [8], [32], [34]. For each

1. EXPERIMENTAL RESULTS
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TABLE |

COMPARISONS WITH THE STATE OF THE ARTS ON THR21-LAND-USE in [4], [36]. For each trial, 50 sequences are randomly setec
DATASET FOR SCENE RECOGNITION from each class for training, and the other 50 for testinge Th
experiments are repeated 5 times and the average perfoemanc
Method Recognition Rate is reported in Table Ill.
SPCK [32] 73.1% We use the binarized pixel differences between 26 neighbors
gggﬁﬁ?z] ;%gﬁ) and the central pixel of Frame as potential candidates, as
BRSP [34] a0 shown in Fig. 2(b). The DDLBP structures learnt using the
AdaBoost bin selection [23] 82.7% proposed MJMI scheme are the same over 5 trialsnios
CENTRIST [8] 85.9% 4,6,8,10,12, 14, which shows that our approach can find the
'5,?; ][3125’]65 (28] 23'_30//‘; underlying spatial-temporal structures for dynamic testu
Discriminative LBP [13] 73.4% In literature, the best recognition rate reported on the
E:gpgzgg BBIESE m:ﬂ m;xl\-ﬂge'evance 85;663‘/% DynTex++ dataset is 89.9% achieved by dynamic fractal
ngosed DDLEP with MIMI 87.2'%" analysis [36]. The proposed DDLBP built using 14 neigh-

bors significantly boosts the performance by 5.9%. We also
implement and test LBP-TOP [5] on this dataset, in which
the large spatial-temporal LBP structure is broken intolkma
B. Scene Recognition on the 8-Event Dataset handcrafted ones. Compared with LBP-TOP, the proposed
The 8-event dataset [35] is composed of eight sport classepproach improves the recognition rate by 2.6%. The hill-
Each class has 137 to 250 high-resolution images. To captalignbing technique [13] is utilized to select a spatial-feoral
the image micro-structures at the same scale, we resize kP structure of 14 neighbors. As the built structure is éarg
image so that its minimum dimension (height or weight) i€l4 out of 26), many selected neighbors are the same as in
600. The experiments are repeated 5 times. For each trial, the proposed approach. Even so, the proposed DDLBP with
randomly select 70 images per class for training and 60 fdJIMI scheme still outperforms it by 1.4%.
testing, same as in [8], [34], [35]. Other setups are the same

TABLE Il
as fOf the ij-land-use dataset' . . COMPARISONS WITH THE STATE OF THE ARTS ON THIDYNTEX++
The experimental results are summarized in Table 1l. Com- DATASET.
pared with the published best recognition rate of 79.6%
achieved by RSP + Boosting [34], the proposed approach sig¥ethod Recognition Rate
nificantly boosts it to 84.0%. Our approach also outperforms _pecasos [4] 63.7%
direct bin selection/extraction approaches, among whidh A Dynamic fractal analysis [36] 89.9%
. . . - 0,
aboost bin selection [23] performs best but achieves a recogPP TOP Bl - (13 v
nition rate of 80.2% only. The proposed approach also demorpyoposed DDLBP with Max-Relevance 94.8%
strates a large performance gain over other structur@itggar Proposed DDLBP with mRMR 95.4%
. . . . i 0,
approaches, e.g. DFD [16] and discriminative LBP [13]. _Proposed DDLBP with MIMI 95.8%
TABLE II
COMPARISONS WITH THE STATE OF THE ARTS ON THB-EVENT DATASET
FOR SCENE RECOGNITION 1V. CONCLUS|ON
Method Recognition Rate _In _thl_s paper, we propose a new method of derlvm_g the
o o 5] discriminative LBP structures by casting the structurei-opt
Scene/Object Model + SIFT [35 73.4% ; ; ; ; f ot ;
RSP + Optimal Selection [34] 77.9% mization as a point selection problem. Existing algorlt_hms
RSP + Boosting [34] 79.6% such as Max-Relevance and mMRMR may not well approximate
AdaBoost bin selection [23] 80-02% Max-Dependency criterion. Thus, a MJMI scheme is proposed
EQEEELS;*[?]%] 7788'930//; to better approximate Max-Dependency criterion. We then
DFD [16] 5 75.7% convert the proposed MJMI scheme into a binary quadratic
Discriminative LBP [13] 66.5% programming problem and achieve a globally optimal sotutio
Proposed DDLBP with Max-Relevance 83.5% ; ;
Proposed DDLBP with mRMR 53 5% via the_ branch and bound gl_gonthm. The propg;ed approach
Proposed DDLBP with MIMI 84.0% is applied on scene recognition and DT recognition. For both

tasks, it significantly outperforms the published best ltssu
On the 21-land-use dataset, it boosts the recognition rate
from 77.8% to 87.2%. On the 8-event dataset, it improves
C. DT Recognition on the DynTex++ Dataset the recognition rate from 79.6% to 84.0%. On the DynTex++

The recognition of dynamic texture involves the analysis Gf2t@set, it increases the recognition rate from 89.9% t8%5.

both spatial appearance of static texture patterns andaehp
variations in appearance. The DynTex++ dataset [4] cansist
of 36 classes. Each class contains 100 sequences of(size [l Z. Li, G. Liu, Y. Yang, and J. You, “Scale-and rotationvariant local

o STLBP is | d d binary pattern using scale-adaptive texton and subuniuweised circular
50 x _50- ne structure Is learnt and used to extract shift,” IEEE Transactions on Image Processingl. 21, no. 4, pp. 2130-
the histogram from each sequence. We use the same setup as140, 2012.
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