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Abstract—Local binary pattern (LBP) and its variants have
shown promising results in visual recognition applications. How-
ever, most existing approaches rely on a pre-defined structure to
extract LBP features. We argue that the optimal LBP structure
should be task-dependent and propose a new method to learn
discriminative LBP structures. We formulate it as a point
selection problem: Given a set of point candidates, the goalis to
select an optimal subset to compose the LBP structure. In view of
the problems of current feature selection algorithms, we propose
a novel Maximal Joint Mutual Information criterion. Then, t he
point selection is converted into a binary quadratic program-
ming problem and solved efficiently via the branch and bound
algorithm. The proposed LBP structures demonstrate superior
performance to the state-of-the-art approaches on classifying
both spatial patterns in scene recognition and spatial-temporal
patterns in dynamic texture recognition.

Index Terms—LBP structure optimization, maximal joint mu-
tual information, binary quadratic programming, scene recogni-
tion, dynamic texture recognition

I. I NTRODUCTION

L OCAL binary pattern and its variants have wide applica-
tions, e.g. texture classification [1]–[3], dynamic texture

(DT) recognition [4]–[6], scene recognition [7]–[9], facial
analysis [10]–[16] and human detection [17]–[19]. LBP is
popular because of its simplicity, ability to capture image
micro-structures and robustness to illumination variations.

However, it remains challenging to derive the best LBP
structure for a specific application. In the traditional pipeline,
a handcrafted LBP structure was often utilized [8]–[10], [20]–
[25]. The popular LBP structure consists of 8 nearest neigh-
bors or P neighbors in a circle [8]–[10]. Other geometries
such as line and disc were explored in Local Quantized Pattern
(LQP) [25]. The handcrafted structure may not be optimal as
it is often selected heuristically. More importantly, the LBP
structure should be task-dependent because the intrinsic image
characteristics of different applications or even image patches
may be different. In [13], a heuristic hill-climbing technique
was utilized to select the LBP structure. Lei et al. proposed
to learn discriminant image filters and optimal neighborhood
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sampling strategy in a data-driven way [16]. Some other
approaches aim to directly extract discriminative information
from LBP-histogram bins, e.g. Adaboost bin selection [22],
[23] and dictionary learning [24], [25].

In this paper, we propose a new method to learn the data-
driven LBP (DDLBP) structure. Our motivation originates
from volume-LBP [5]. The number of its histogram bins
increases exponentially, e.g.V LBPL,P,R has 23P+2 bins.
Even for a smallP = 8, it has 226 = 67, 108, 864 bins.
It is intractable to reduce the dimensionality of such high-
dimensional data. To solve this problem, we propose to find a
small structure that generates a feature vector of a manageable
size. We formulate it as a point selection problem, i.e. to select
an optimal subset to compose the LBP structure that is most
suitable for a specific application.

For feature selection, it is desirable to maximize the depen-
dency of the target class on the data distribution, known as
Max-Dependency scheme. It is difficult to directly estimate
such a dependency. Thus, approximated algorithms such as
Max Relevance and mRMR were often utilized [26]. We
find that these may not closely approximate Max-Dependency
criterion for LBP structure optimization. Thus, we propose
to approximate it using joint mutual information between a
feature pair and the classification variable. Then, a Maximal
Joint Mutual Information (MJMI) scheme is proposed to
optimize the LBP structure.

Given a feature selection criterion, greedy algorithms were
often used [7], [26], which may only find a locally optimal
solution. In this paper, we learn a globally optimal LBP
structure by casting the point selection into a binary quadratic
programming (BQP) problem [27] and solving it via the
branch and bound algorithm [28].

Our contributions are three-fold: a) We propose a new for-
mulation of LBP structure optimization by casting it as a point
selection problem. b) We find that Max-Dependency criterion
is better approximated using joint mutual information. Thus,
a MJMI scheme is proposed for LBP structure optimization.
c) Instead of greedy search, we cast the proposed MJMI
as a BQP problem and derive a globally optimal structure.
The proposed approach demonstrates superior performance on
scene recognition and DT recognition.

II. T HE PROPOSEDDATA -DRIVEN LBP

A. Overview

The block diagram is shown in Fig. 1. It consists of two
steps: DDLBP structure optimization and DDLBP feature gen-
eration. We cast the DDLBP structure optimization as a point



SUBMITTED TO IEEE SIGNAL PROCESSING LETTERS 2

selection problem. Formally, the problem is defined as: given
a set of potential candidatesx = {xi, i = 1, 2, . . . , n} and
target classification variablec, the goal is to find a subspace
Rm of m candidatesxm ⊆ x that optimally characterizesc.

Fig. 1. Block diagram of the proposed method to extract LBP features.

In many scenarios, especially for spatial-temporal LBP
(STLBP), the number of neighbors may be large, and hence
it is not feasible to enumerate the histogram using such a
large structure. Thus, we treat them as potential candidates
and aim to find an optimal subset. The potential candidates
can be natural extension of widely used handcrafted structures.
Compared with deriving a good handcrafted structure, it is
much easier to obtain a good set of potential candidates.

B. Feature Selection via Mutual Information

For feature selection, it is desirable to maximize the depen-
dency of selected features on classification variablec (Max-
Dependency) [26]. We use mutual information to characterize
the dependency. The goal is to findxm ⊆ x so that:

x∗m = argmax
xm

I(xm; c), (1)

I(xm; c) =

∫ ∫
p(xm, c) log

p(xm, c)

p(xm)p(c)
dxmdc. (2)

In general, it is difficult to reliably estimatep(xm) and
p(xm, c) due to the limited number of samples available and
the large number of joint states to be estimated. Alternatively,
Max-Relevance is utilized, which approximatesI(xm; c) as:

x∗m = argmax
xm

1

m

m∑
i=1

I(xi; c). (3)

The features selected according to Max-Relevance may
have rich redundancy, and hence Min-Redundancy criterion
was added to select mutually exclusive features:x∗m =
argminxm

1

m2

∑
xi,xj∈xm

I(xi; xj). In [26], Min-Redundancy
and Max-Relevance (mRMR) were combined:

x∗m = argmax
xm

m∑
i=1

I(xi; c)−
1

m

∑
xi,xj∈xm

I(xi; xj). (4)

Recent research [29] shows that when high-order interaction
information is negligible,I(xm; c) can be approximated by:

I(xm; c) ≈
∑

xi∈xm

I(xi; c)−
∑

xi,xj∈xm

I(xi; xj)

+
∑

xi,xj∈xm

I(xi; xj |c), (5)

where I(xi; xj |c) is conditional mutual information.1 Only
when I(xm; c) in Eqn. (5) is dominated by the first term,
Max-Relevance defined in Eqn. (3) is a good approximation of
I(xm; c). mRMR defined in Eqn. (4) differs from Eqn. (5) by
a missing term

∑
xi,xj∈xm

I(xi; xj |c) and a weighting factor
for the second term. In general, Max-Relevance and mRMR
are not a close approximation ofI(xm; c).

C. The Proposed Maximal Joint Mutual Information Scheme

Our target is to derive a close approximation ofI(xm; c).
Recall the chain rule forI(xm; c),

I(xm; c) =

m∑
i=1

I(xi; c|x1, . . . , xi−1). (6)

For i ≥ 3, I(xi; c|x1, . . . , xi−1) is high-order conditional
mutual information.I(xm; c) is decomposed intom terms
in Eqn. (6). In fact, including Eqn. (6) there arem! =
m(m− 1) · · ·× 2× 1 different ways to do the decomposition.
Averaging over thesem! decompositions, we have:

I(xm; c) =
1

m

m∑
i1=1

I(xi1 ; c) +
1

m(m− 1)

∑
i1 6=i2

I(xi1 ; c|xi2 )

+ · · ·+
1

m!

∑
I(xi1 ; c|xi2xi3 . . . xim

), (7)

where {xik
}, k = 1, 2, . . . , m is an ordered set ofxm for

the last term. We notice that all these terms are positive.
When high-order conditional mutual information is negligible,
I(xm; c) can be approximated by:

I(xm; c) ≈
1

m

m∑
i=1

I(xi; c) +
1

m(m− 1)

∑
i6=j

I(xi; c|xj)

=
1

m(m− 1)

∑
i6=j

I(xi, xj ; c), (8)

where I(xi, xj ; c) = I(xi; c) + I(xj ; c|xi) is joint mutual
information between feature pairxi, xj and c. Then, we
propose a Maximal Joint Mutual Information scheme for
LBP structure optimization. Instead of maximizing intractable
I(xm; c), the goal is to find a subsetxm ⊆ x that maximizes
its approximation

∑
i6=j I(xi, xj ; c), i.e.

x
∗
m = argmax

xm

∑
xi,xj∈xm,i6=j

I(xi, xj ; c). (9)

D. Deriving a Globally Optimal DDLBP Structure

To derive a globally optimal solution to Eqn. (9), we convert
the proposed MJMI scheme into a binary quadratic program-
ming problem. Denotea = (a1, a2, . . . , an)T , ai ∈ {0, 1} as
the indication vector forx, i.e. ai = 1 meansxi is selected
andai = 0 otherwise. Then, Eqn. (9) is equivalent to:

a
∗ = arg max

a

a
T
Ma, s.t.

n∑
i=1

ai = m. (10)

1For discrete random variablesx, y, z, conditional mutual information
I(x; y|z) = Ez{I(x; y)|z} =

∑
x,y,z

p(x, y, z) log
p(z)p(x,y,z)
p(x,z)p(y,z)

, where
Ez{.} is the expectation onz.
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M is a matrix of sizen × n, whose diagonal elements are
zero and off-diagonal elementsM(i, j) = I(xi, xj ; c). This
optimization problem can be solved efficiently via the branch
and bound algorithm [28].

We branch the feasible regionS into k smaller subregions
such thatS =

⋃k

i=1
Si. These subregions naturally form a

tree structure. More specifically, it is a branch-and-boundtree
of n levels, and each level corresponds to one binary variable
ai. We bound the objective function of the subproblem in the
node using quadratic relaxation created by relaxing the integer
constraints to interval constraints, i.e.ai ∈ [0, 1]. If a partial
solution from a subregion is less than the lower bound, it is
discarded from the search. There are three possible causes
of pruning a subtree: 1) Infeasibility, i.e. the subproblemhas
no feasible solution. 2) Optimality, i.e. an optimal solution to
the sub-problem is found. 3) Dominance, i.e. the solution to
the subproblem is no better than the current one. To reach
a feasible solution fast,Depth-first searchis employed. We
utilize the Gurobi optimizer [30] to solve this BQP problem.

The joint probability mass functionp(xi, xj , c) can be
estimated efficiently. Denotehp,q as the joint histogram for
featuresxi, xj using q-th sample ofp-th class.p(xi, xj |c) is
estimated as:

p(xi, xj |c = p)←−
1

Np

∑
q

hp,q, (11)

where Np is the number of samples for classp. Then,
p(xi, xj , c = p) = p(xi, xj |c = p)p(c = p), wherep(c =
p) = Np/N and N is the total number of samples. As we
only need to estimate the joint pmf of three variables only, in
which xi, xj are binary, the computational cost is low.

Image patches at different scales or locations may exhibit
totally different characteristics. Instead of using a unified
structure for all patches, we utilize the proposed MJMI scheme
to learn the DDLBP structures on a patch-wise basis to better
capture the characteristics of different patches. Then, PCA is
applied on the LBP histogram of each patch to reduce the
dimensionality. The features of all patches are concatenated to
form the final feature vector, which is classified by a support
vector machine with a RBF kernel [31].

III. E XPERIMENTAL RESULTS

The proposed approach can be used in many applications.
We show two examples: learning a set of patch-wise LBP
structures for scene recognition and a STLBP structure for
DT recognition. We use binarized pixel differences between
24 neighbors and the central pixel as potential candidates
for spatial LBP as shown in Fig. 2(a), and those between
26 neighbors and the central pixel of framet as potential
candidates for STLBP as shown in Fig. 2(b).

A. Scene Recognition on the 21-Land-Use Dataset

The 21-land-use dataset contains 21 classes of aerial or-
thoimagery, and each class has 100 images of resolution
256×256 pixels [32]. Spatial pyramid [33] is utilized, i.e. each
image is hierarchically divided into 31 patches, as shown in
Fig. 3. We follow the same setup as in [8], [32], [34]. For each

(a) (b)

Fig. 2. Potential candidates for: (a) Spatial LBP, (b) Spatial-temporal LBP.

class, the images are randomly split into five equal-sized sets.
Four of them are used for training and the held-out set is used
for testing. We use CENTRIST [8] as the baseline algorithm,
and construct the DDLBP structures using 8 neighbors, same
as CENTRIST. Fig. 3 shows some learnt DDLBP structures.
They are significantly different from each other, as the intrinsic
image characteristic of each patch is different.

Fig. 3. DDLBP structures of the 21-land-use dataset.

We compare the proposed approach with the following:
1) Direct feature selection/extraction from the LBP-histogram
bins: Adaboost bin selection [23], k-means bin clustering
for LQP [25] and PCA dimensionality reduction for CEN-
TRIST [8]. 2) Other LBP-structure-learning approaches: dis-
criminant face descriptor (DFD) [16], and discriminative
LBP structure learning using a heuristic hill-climbing tech-
nique [13]. 3) Other point selection algorithms under the pro-
posed framework: the proposed DDLBP with Max-relevance
and mRMR. 4) Other state-of-the-art solutions for scene
recognition: SPCK, SPCK+, SPCK++ [32] and BRSP [34].

The results are summarized in Table I. BRSP achieves the
best recognition rate of 77.8% in literature [34]. We improve
it to 87.2%. The proposed approach also outperforms those
directly extract features from the LBP-histogram bins using a
handcrafted structure, in which the best one is CENTRIST [8]
with a recognition rate of 85.9%. Our approach significantly
outperforms DFD [16] and discriminative LBP [13]. This is
partly because DFD [16] cannot well handle large image
variations of scene images and discriminative LBP [13] cannot
guarantee structure optimality. In summary, the proposed struc-
ture optimization consistently outperforms other approaches.
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TABLE I
COMPARISONS WITH THE STATE OF THE ARTS ON THE21-LAND -USE

DATASET FOR SCENE RECOGNITION.

Method Recognition Rate

SPCK [32] 73.1%
SPCK+ [32] 76.1%
SPCK++ [32] 77.3%
BRSP [34] 77.8%
AdaBoost bin selection [23] 82.7%
CENTRIST [8] 85.9%
LQP Disc3∗5 [25] 83.0%
DFD [16] 62.8%
Discriminative LBP [13] 73.4%
Proposed DDLBP with Max-Relevance 86.3%
Proposed DDLBP with mRMR 87.0%
Proposed DDLBP with MJMI 87.2%

B. Scene Recognition on the 8-Event Dataset

The 8-event dataset [35] is composed of eight sport classes.
Each class has 137 to 250 high-resolution images. To capture
the image micro-structures at the same scale, we resize the
image so that its minimum dimension (height or weight) is
600. The experiments are repeated 5 times. For each trial, we
randomly select 70 images per class for training and 60 for
testing, same as in [8], [34], [35]. Other setups are the same
as for the 21-land-use dataset.

The experimental results are summarized in Table II. Com-
pared with the published best recognition rate of 79.6%
achieved by RSP + Boosting [34], the proposed approach sig-
nificantly boosts it to 84.0%. Our approach also outperforms
direct bin selection/extraction approaches, among which Ad-
aboost bin selection [23] performs best but achieves a recog-
nition rate of 80.2% only. The proposed approach also demon-
strates a large performance gain over other structure-learning
approaches, e.g. DFD [16] and discriminative LBP [13].

TABLE II
COMPARISONS WITH THE STATE OF THE ARTS ON THE8-EVENT DATASET

FOR SCENE RECOGNITION.

Method Recognition Rate

Scene/Object Model + SIFT [35] 73.4%
RSP + Optimal Selection [34] 77.9%
RSP + Boosting [34] 79.6%
AdaBoost bin selection [23] 80.2%
CENTRIST [8] 78.3%
LQP Disc3∗5 [25] 78.9%
DFD [16] 75.7%
Discriminative LBP [13] 66.5%
Proposed DDLBP with Max-Relevance 83.5%
Proposed DDLBP with mRMR 83.5%
Proposed DDLBP with MJMI 84.0%

C. DT Recognition on the DynTex++ Dataset

The recognition of dynamic texture involves the analysis of
both spatial appearance of static texture patterns and temporal
variations in appearance. The DynTex++ dataset [4] consists
of 36 classes. Each class contains 100 sequences of size50×
50 × 50. One STLBP structure is learnt and used to extract
the histogram from each sequence. We use the same setup as

in [4], [36]. For each trial, 50 sequences are randomly selected
from each class for training, and the other 50 for testing. The
experiments are repeated 5 times and the average performance
is reported in Table III.

We use the binarized pixel differences between 26 neighbors
and the central pixel of Framet as potential candidates, as
shown in Fig. 2(b). The DDLBP structures learnt using the
proposed MJMI scheme are the same over 5 trials form =
4, 6, 8, 10, 12, 14, which shows that our approach can find the
underlying spatial-temporal structures for dynamic texture.

In literature, the best recognition rate reported on the
DynTex++ dataset is 89.9% achieved by dynamic fractal
analysis [36]. The proposed DDLBP built using 14 neigh-
bors significantly boosts the performance by 5.9%. We also
implement and test LBP-TOP [5] on this dataset, in which
the large spatial-temporal LBP structure is broken into small
handcrafted ones. Compared with LBP-TOP, the proposed
approach improves the recognition rate by 2.6%. The hill-
climbing technique [13] is utilized to select a spatial-temporal
LBP structure of 14 neighbors. As the built structure is large
(14 out of 26), many selected neighbors are the same as in
the proposed approach. Even so, the proposed DDLBP with
MJMI scheme still outperforms it by 1.4%.

TABLE III
COMPARISONS WITH THE STATE OF THE ARTS ON THEDYNTEX++

DATASET.

Method Recognition Rate

DL-PEGASOS [4] 63.7%
Dynamic fractal analysis [36] 89.9%
LBP-TOP [5] 93.2%
Discriminative LBP [13] 94.4%
Proposed DDLBP with Max-Relevance 94.8%
Proposed DDLBP with mRMR 95.4%
Proposed DDLBP with MJMI 95.8%

IV. CONCLUSION

In this paper, we propose a new method of deriving the
discriminative LBP structures by casting the structure opti-
mization as a point selection problem. Existing algorithms
such as Max-Relevance and mRMR may not well approximate
Max-Dependency criterion. Thus, a MJMI scheme is proposed
to better approximate Max-Dependency criterion. We then
convert the proposed MJMI scheme into a binary quadratic
programming problem and achieve a globally optimal solution
via the branch and bound algorithm. The proposed approach
is applied on scene recognition and DT recognition. For both
tasks, it significantly outperforms the published best results.
On the 21-land-use dataset, it boosts the recognition rate
from 77.8% to 87.2%. On the 8-event dataset, it improves
the recognition rate from 79.6% to 84.0%. On the DynTex++
dataset, it increases the recognition rate from 89.9% to 95.8%.
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