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Abstract—Although sliding window-based approaches have been quite successful in detecting objects in images, it is not a trivial

problem to extend them to detecting events in videos. We propose to search for spatiotemporal paths for video event detection. This

new formulation can accurately detect and locate video events in cluttered and crowded scenes, and is robust to camera motions. It

can also well handle the scale, shape, and intraclass variations of the event. Compared to event detection using spatiotemporal sliding

windows, the spatiotemporal paths correspond to the event trajectories in the video space, thus can better handle events composed by

moving objects. We prove that the proposed search algorithm can achieve the global optimal solution with the lowest complexity.

Experiments are conducted on realistic video data sets with different event detection tasks, such as anomaly event detection, walking

person detection, and running detection. Our proposed method is compatible with different types of video features or object detectors

and robust to false and missed local detections. It significantly improves the overall detection and localization accuracy over the state-

of-the-art methods.

Index Terms—Event detection, action detection, multiple event detection, max-path search, dynamic programming

Ç

1 INTRODUCTION

VIDEO event analysis is a challenging problem because
video events can vary significantly, for example, from

particular human actions (e.g., running, kissing) to object-
related events (e.g., kicking ball, riding horse), or even an
abnormal event (e.g., cyclist runs into pedestrian walkway).
Traditional approaches for video event detection require
detecting and tracking objects first, for example, people [1],
then recognize what is happening around those tracked
objects. However, as tracking and detection are challenging
tasks in dynamic and crowded scenes, they may not
provide robust event detection results.

Encouraged by the success of object detection, the sliding
window approach has been introduced to video event
detection [2]. Such a sliding window-based approach does
not require to detect and track the objects, while it can locate
the whole video event by finding a spatiotemporal video
subvolume [3], [4]. To avoid the exhaustive search of the
target video subvolume, i.e., a spatiotemporal bounding
box, inspired by the branch-and-bound search in object
detection [5], [6], spatiotemporal branch-and-bound search
has been proposed to detect human actions in videos [7].
Using this approach, one needs to evaluate discriminative
scores at local patches, then the detection step is carried out
by searching for a video subvolume [7], [8] with the
maximum total score. Although subvolume search has its

own advantages for video event detection, it still confronts
two unsolved problems.

First, most of the current spatiotemporal sliding window
search methods only support detecting windows of con-
strained structure, i.e., the three-dimensional (3D) bounding
box. Unfortunately, unlike object detection where a bound-
ing box works reasonably well in many applications [6], [9],
the 3D bounding box is quite limiting for video pattern
detection. In fact, this assumption works for “static” events
(e.g., kiss or handshake), but is inapplicable for “dynamic”
events (e.g., cycling or walking). We define an event as
static if actor or object does not move when the event
occur (e.g., handshake is static while walking is dynamic).
To illustrate this, Fig. 1a shows a cycling event. The cyclist
starts at the left side of the screen and rides to the right side
of the screen. To detect this event, because of the bounding
box constraint, one can only locate the whole event using a
large video subvolume, which covers not only the cycling
event, but also a significantly large portion of the back-
grounds (Fig. 1a). In such a case, the detection score of the
video event is negatively affected by the cluttered and
dynamic backgrounds. Instead of providing a global
bounding box that covers the whole event, more often than
not it is preferable to provide an accurate spatial location of
the video event and track it in each frame. As a result, a
more accurate spatiotemporal localization is desirable to
detect the video event, as shown in Fig. 1b.

Moreover, as the video space is much larger than the
image space, it becomes very time consuming to search 3D
sliding windows. For example, given a video sequence of size
w� h� n, where w� h is the spatial size and n is its length,
the total number of 3D bounding boxes is of Oðw2h2n2Þ,
which is much larger compared to the image space of only
Oðw2h2Þ2D boxes. Although some recent methods have been
proposed to handle the large video space [8], the worst case
complexity is still ofOðw2h2nÞ. In general, it is challenging to
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search videos of high spatial resolutions. Even worse, if we

relax the bounding box constraint of the sliding windows, the

number of candidates will further increase. Thus, a more

efficient search method is required.
To address the above problems, we propose a novel

spatiotemporal localization method that relaxes the 3D
bounding box constraint and formulates the video event
detection as a spatiotemporal path discovery problem.
Figs. 1c and 1d demonstrate this relaxation. Instead of
searching for a subvolume, we search for a spatiotemporal
path that maximizes the summation score. This relaxation is
more applicable and accurate for dynamic events when the
object moves across different frames. Suppose a discrimi-
native classifier can assign a local detection score to every
2D sliding window in each frame. To fuse these local
evidences and connect them to establish a spatiotemporal
path, we build a spatiotemporal trellis that presents all of
smooth spatiotemporal paths, where a target event will
correspond to one of them. By finding the optimal path in
the trellis with the highest detection score, our formulation
is a generalization of the 3D bounding box search in [8]: We
do not reinforce the fixed spatial location of the video event,
but track the event as it moves across multiple frames.
Because the discovered path precisely contains the video
event, it minimizes the affection of the cluttered and
dynamic backgrounds.

Although the search space of our new formulation is
much larger than that of searching 3D bounding boxes,
we propose an efficient search method that can obtain the
global optimal solution with proven lowest search com-
plexity, which is only linear to the video volume size, i.e.,
OðwhnÞ. Experiments on abnormal video event detection,
walking pedestrian detection, and running detection
validate the following advantages of our new formulation
of video event detection:

1. By discovering the optimal spatiotemporal path, our
method determines the start and the end of the video
event automatically, and can precisely localize the
event in each video frame. It is robust to the false
and missed local detections and thus can effectively
handle heavy occlusions.

2. As both positive and negative training examples are
utilized for a discriminative training, our method is
robust to intraclass variations of the video events
and the cluttered and dynamic backgrounds.

3. Our proposed method can be easily extended to
handle scale and shape variations of the event, and
can detect multiple events simultaneously.

2 RELATED WORK

2.1 Video Event Detection

Video event detection is an important topic in computer
vision, with extensive applications in video surveillance,
content-based video search, multimedia retrieval, and so
on. The latter two have seen increasing demands due to
the exploding number of Internet videos (e.g., YouTube). At
the same time, the problem becomes more challenging
when dealing with realistic videos because of the diversity
of the video events, complex background motions, scale
changes, and occlusions, not to mention the high-dimen-
sional search space inherent to videos.

One traditional approach for event detection is to track the
actors, stabilize these figures, and then recognize them [1],
[10], [11]. Such methods highly rely on the quality of the
tracking results, hence suffer from unreliable trackers.
This limitation motivates methods that handle detection
and recognition simultaneously, normally accomplished
by spatiotemporal video volume matching, including ac-
tion-MACH [3], volumetric features [2], boosted space-time
features [12], segment-based features [13], space-time orien-
tation [4], template matching [14], [15], adaptive regression
kernels [16], and so on. To localize events, these methods
have to apply the sliding subvolume scheme, which is time
consuming. Rather than sliding subvolume, Boiman and
Irani [17] proposed ensembles of patches to detect irregula-
rities in images and videos. Hu et al. [18] used multiple-
instance learning to localize the best video subvolume. Gall
et al. [19] proposed Hough Forest for object detection,
tracking, and action recognition. Yu et al. [20], [21] combined
top-k subvolume search and random forest for action
detection. Gaidon et al. [22] introduced Actom sequence to
detect action in videos. Cao et al. [23] employed model
adaptation to do cross-data set action detection. Recently,
with the success of branch-and-bound subwindow search [6],
Yuan et al. [8] extended this method to subvolume search that
can locate video patterns effectively. However, these ap-
proaches are still constrained by the 3D subvolume. Finally,
Zhang et al. [24] relaxed the subwindow rectangle constraint
to free-shape subwindow search based on contour refine-
ment. This approach works well for object localization but is
still difficult to extend to video search due to its complexity.

2.2 Object Tracking

Our event detection problem is quite different compared to
online object tracking. More specifically, we aim at detecting
a particular class of event (e.g., running) while not tracking
or following an object/person. Initialization of the target
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Fig. 1. Detection of the cycling event a) Event localization by three-dimensional bounding box. b) More accurate spatiotemporal localization of the
event. c) Subvolume-based event detection methods search for video subvolume that maximizes the total score. Local scores are visualized as red
and blue dots. Red dots indicate high likelihood of the event while blues are of low likelihood. d) Spatiotemporal-based event detection methods find
the optimal spatiotemporal path having the highest score.



object is not required in our method, but is necessary for
online tracking. Discriminative training in our case is to
learn models for a class of event, while online tracking is to
build a model for the target object at running time.

Our approach shares some properties with offline
tracking methods [25], [26], [27], [28], [29], [30], [31], [32].
These methods had shown their effectiveness compared to
traditional tracking methods thanks to the success of object
detectors. Similar to offline tracking, our approach con-
siders joining detection outputs to maximize the discrimi-
native scores while keeping the smoothness of the
movement trajectories. In contrast, our proposed method
is not limited to object detectors, but can be also applied to
more general discriminative confidence maps of event,
action, motion, or keypoint detectors. This flexibility
makes it more general, and thus applicable to a broader
range of video event detection problems. In practice, our
proposed method has been used as a general algorithm
for efficient inference and complex learning problems for
spatiotemporal event detection problem [33] while it is hard
to adapt current offline tracking methods to solve general
inference and learning problems.

To our best knowledge, our Maximum Path algorithm is
novel to video event detection and proven to be globally
optimal with the lowest computational complexity.
Interestingly, this problem has not been discussed in
discrete algorithm literature although the Maximum Subarray
problem had been raised and solved long time ago [34].

3 PROBLEM FORMULATION

We denote a video sequence as S ¼ fI1; I2; . . . ; Ing, where Ik
is a w� h image frame. Treating the video as a spatiotem-
poral data volume, for each spatiotemporal location
v ¼ ðx; y; tÞ, we denote by WðvÞ the local window or
subvolume centered at v. Without loss of generality, we
suppose all of the windows are of a fixed scale, we further
denote by MðWðvÞÞ, or MðvÞ for short, the discriminative
score of the local window centered at v. A high positive
score of MðvÞ implies a high likelihood that the event occurs
at the local position v, while a negative score indicates a low
likelihood of the occurrence. There are many ways to obtain
the score MðvÞ using different types of features. For
example, one can use the 2D window [35], [36] to slide
over the video sequence and get the local scores of each
window. Alternatively, individual spatiotemporal interest
points (STIPs) [37], [38] can vote for the video event [8], then
the score of a local window is the summation of the interest
point scores. To handle the events with local structures,
instead of using a window-based detector, one also can
employ a volume-based detector (e.g., 64� 128� 4 volume
detector) or a volume-based filter (e.g., ActionMACH [3], or
“Action Spotting” [4]), which can handle events with short-
time structures and thus can further improves the method’s
robustness. With the assumption that events can be
detected by local detectors (e.g., subwindow or subvolume),
our method only applies to periodic events with local
structures. Long and complex structured events (e.g., a car
changing lane) may require long-time observations and
more sophisticated analysis techniques.

By treating each window WðvÞ as a node, we obtain a
three-dimensional trellis to represent all WðvÞ in the video.
A 3D trellis can be seen as a 3D array with elements are
local discriminative scores MðvÞ. Fig. 2a is a concrete
example of a 3D trellis with a size of 3� 3� 3. Given a 3D
trellis GM with a size of w� h� n, p ¼ fvigiki¼i1 is a path in
GM if it satisfies 1) the path connectivity constraints:
xi � 1 � xiþ1 � xi þ 1, yi � 1 � yiþ1 � yi þ 1, tiþ1 ¼ ti þ 1
and 2) the boundary constraints: 1 � xi � w, 1 � yi � h, and
1 � ti1 � tik � n. The first constraint set shows that each
node v ¼ ðx; y; tÞ has nine incoming and nine outgoing
neighbors as showed in Fig. 2a. The second constraint set
indicates that the path can start and end at any position in
the 3D array as long as the ending point occurs later than
the starting point. Let p ¼ fvigiki¼i1 be a path in GM , to
evaluate its likelihood we compute the accumulated score
of the path p in

MðpÞ ¼
Xik
i¼i1

MðviÞ: ð1Þ

As each video event is characterized by a smooth
spatiotemporal path in the 3D trellis, to detect the video
event, the problem becomes to find the optimal path p� with
the highest accumulated score:

p� ¼ arg max
p2pathðGÞ

MðpÞ: ð2Þ

Solving the Maximum Path problem is difficult (Fig. 2b)
because of the large search space: We do not know the
start location ðxs; ys; tsÞ or the end location ðxe; ye; teÞ of the
event, as well as all of the intermediate states. The search
space of all possible paths is exponential: OðwhnknÞ, where
whn is the size of the video volume, k is the number of
incoming edges per node (the formal proof is provided in
the supplemental materials. Thus, exhaustive search is
infeasible. Although the maximum path problem can be
addressed by the traditional shortest path search algo-
rithm, for example, the Floyd-Warshall algorithm to find
the shortest paths between all pairs of vertices, the search
complexity is still quite high. The complexity of the Floyd-
Warshall algorithm is to the cube of the number of vertices
OðjV j3Þ. Thus, it becomes Oðw3h3n3Þ to solve (2), which is
very time consuming for a large video volume. Other
related work includes the Maximum Subarray problem
which was posed by Ulf Grenander in 1977 and the 1D
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Fig. 2. Maximum Path problem a) Nine incoming and nine outgoing
neighbors for a node in GM . b) The visualization of one path. Searching
for the maximum path in spatiotemporal space is difficult due to an
exponential number of possible paths with arbitrary lengths.



case was solved by Jon [34]. Although it works perfectly
for the 1D trellis [39], the problem is more complicated
with higher dimension, for example, for our 3D trellis.
Although the branch-and-bound search has proven to be
efficient in searching 2D and 3D bounding boxes [6], [8],
they cannot be applied to more flexible structures. To
propose an efficient search that can find the global
solution in (2), we first present an approach based on
dynamic programming, followed by our proposed search
method with proven lowest complexity.

4 OPTIMAL PATH DISCOVERY

4.1 Efficient Max-Path Search via Dynamic
Programming

Before addressing the Max-Path discovery problem, we first

study a simplified version of the problem. We assume that

the best path starts somewhere in the first frame and ends at

the last frame. The following dynamic programming

algorithm will find the best path.
Let Si;j;t be the maximum accumulated score of the best

path starting somewhere from the first frame and leading

to ði; j; tÞ. For short, we denote u ¼ ði; jÞ and v ¼ ðx; yÞ as

2D indices (e.g., Si;j;t ¼ Su;t). We note that these notions are

slightly different from the previous section, where v is a 3D

index. And NðuÞ is the set of neighbors of u in the previous

frame. Equation (3) gives a solution for the Max-Path

search problem:

Su;t ¼
Mu;t; t ¼ 1;
max
v2NðuÞ

fSv;t�1 þMu;tg; t > 1:

(
ð3Þ

This dynamic programming can be completed in OðwhnÞ
to compute S, another OðnÞ to trace backward to identify

the best path, and uses OðwhnÞ memory space.
However, to automatically determine the starting and

ending locations of the paths, we need to try different

combinations and perform the dynamic programming

many times. To improve this, let Su;t;s be the accumulated

scores of the best path starting from the sth frame to the end

location ðu; tÞ. S can be computed by

Su;t;s ¼
�1; s > t;
Mu;t; s ¼ t;
max
v2NðuÞ

fSv;t�1;s þMu;tg; s < t:

8><
>: ð4Þ

Different from the previous dynamic programming in

computing the matrix S, this new algorithm stores all

possible solutions from all starting frames. When S is

computed, the algorithm traces back for the best solution

with all possible starting and ending points. This extension

makes the complexity of the extended-algorithm Oðwhn2Þ to

construct S and another OðnÞ to search the best path, and

needs Oðwhn2Þ memory. Taking advantage of the trellis

structure, the search complexity now is reduced to linear to

the volume size times the length of the video. Based on this

result, we will show how to further improve the search to

reach the lowest complexity in the next section.

4.2 Our Proposed Max-Path Discovery

We now propose a new algorithm with message propaga-
tion mechanism for the Max-Path discovery problem, with
the complexity of only OðwhnÞ. The algorithm consists of
two steps: message forwarding and path back-tracing. Algo-
rithm 1 shows the message forwarding process. Following
the notations, let Mðx; y; tÞ be the output predictions of the
video. The message propagation starts at t ¼ 1, then
propagates the information from the current frame to the
next. Each node needs to store a message value Sðx; y; tÞ,
which is the maximum accumulated score of the best
possible path up to ðx; y; tÞ. P ðx; y; tÞ is the previous node
that leads to ðx; y; tÞ in the best possible path. These values
can be computed by collecting information from each
node’s neighbors and its local value Mðx; y; tÞ. When the
message reaches a node, the algorithm looks for the best
value S of its neighbors from the previous frame. If this
value is positive, then the path continues to grow from
existing best path and stores the accumulated score and the
previous position. Otherwise, the algorithm starts a new
path from the current position. Fig. 3 illustrates a concrete
example of the algorithm.

Algorithm 1: Message propagation algorithm.

Lemma 1. Sðx; y; tÞ resulted from Algorithm 1 is the
accumulated sum of the best path that leads to ðx; y; tÞ.

Proof. Let us define QðtÞ ¼4 “Sðx; y; tÞ as the maximum
accumulated sum of the best path leading to ðx; y; tÞ”.
We will prove that QðtÞ is true 8t 2 ½1 . . .n� by induction.
We initialize Sðx; y; 1Þ ¼Mðx; y; 1Þ; 8ðx; yÞ, hence Qð1Þ is
true. Assume that Qðk� 1Þ is true, we now show QðkÞ is
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also true. If a node u at frame k has m directly connected

neighbors, then there are mþ 1 possible paths leading to

it. These paths include m paths going through its

neighbors with an accumulated scores of Sðv; k� 1Þ þ
Mðu; kÞ; v 2 NðuÞ and another one starting by itself with

a score of Mðu; kÞ. From Algorithm 1, we have

v0 ¼ arg max
v2NðuÞ

Sðv; k� 1Þ ð5Þ

) Sðv0; k� 1Þ � Sðv; k� 1Þ; 8v 2 NðuÞ ð6Þ

) Sðv0; k� 1Þ þMðu; kÞ � Sðv; k� 1Þ
þMðu; kÞ; 8v 2 NðuÞ:

ð7Þ

And also from Algorithm 1, the If statement for
assigning values to S indicates two cases that

Sðu; kÞ ¼ Sðv0; k� 1Þ þMðu; kÞ; Sðv0; k� 1Þ > 0
Mðu; kÞ; otherwise;

�
ð8Þ

) Sðu; kÞ ¼ maxfSðv0; k� 1Þ þMðu; kÞ;Mðu; kÞg: ð9Þ

From (7) and (9), we have shown that Sðu; kÞ is always

the best accumulated sum compared to all mþ 1 paths

that can lead to u. This confirms that QðkÞ is true. tu
Lemma 1 confirms the correctness of Algorithm 1.

Algorithm 1 will result in the best path value S� and the
ending point of the best path l�. The localization of the best
path is straightforward by looking at the values stored in P

and tracing back until reaching a null node. Overall, it
takes OðwhnÞ to compute S, OðnÞ to trace back the path,
and uses OðwhnÞ memory to store S and P . The algorithm
gives exactly the same results as the dynamic program-
ming algorithm but reduces both computational and
storage requirement.

As the size of the trellis is w� h� n, and one cannot find

the maximum path sum without reading every element,

OðwhnÞ is the lowest complexity we can expect. Together

with Lemma 1, we thus have the following theorem.

Theorem 1. Algorithm 1 results in the global optimal solution
with a complexity of OðwhnÞ, which is the lowest complexity
of the Max-Path problem.

4.3 Further Extensions of the Algorithm

4.3.1 Handling Multiple Scales and Shapes

When the events appear across a wide range of scales, we
can extend the sliding window scheme to multiple scales.
Instead of sliding a fixed scale window, at the same location
v, one can use windows WðvÞ with different scales. As a
result, since each node is coupled with multiple windows
with different scales, the trellis GM becomes a 4D array with
a size of w� h�m� n (m is the number of scales). The
problem is now posed in 4D, but still can be solved by the
same Algorithm 1. One difference is that the trellis is
changed because each node now has neighbors not only
from its same scale but also from its two nearest scales.
More specifically, if a node has up to nine neighbors for the
single scale setting, it now may have 27 neighbors including
9 from its same scale and two other 9s from its two adjacent
scales. In general, the algorithm’s complexity and space cost
will both be increased to OðwhmnÞ.

We previously assumed that the object does not change
its shape during the event. For clarification, we first define
the object shape ratio. We define the shape ratio as the ratio
between the width and the height of the main object
performing the event. For example, for a human actor, we
normally use the ratio of 1:2, for the side car object this ratio
is 2:1, for human face object is about 1:1. With this
observation, we argue that there are events that the shape
ratio may change and cannot fix. For example, in the
dancing scenario, the actor performs a spinning action.
During the spinning event, the shape ratio can be varying
significantly. More specific, when the actor’s two arms are
parallel to the floor like a T shape, this ratio is about 1:1, but
when those two arms are both orthogonal to the ground,
this ratio is 1:2. Similarly to scales, we can extend the trellis
to another dimension of shape, or both shape and scale. As
a result, the trellis becomes 4D if using multiple shapes, and
even 5D if we use both multiple scales and shapes. The
same algorithm is still applicable; however, the complexity
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Fig. 3. A message propagation example: An example of Max-Path algorithm applied to a 3� 3� 6 video. Each node is denoted with a local
discriminative score (upper number), and the best accumulated score (lower number). In the first frame, all the best accumulated scores are
initialized by their corresponding local discriminative scores. In the third frame, B can grow further from A, which has the best accumulated score
among B’s neighbors (shaded nodes), while C needs to start a new path. The final best path is A-B-D (red nodes), and C-E-F is the second best path
(green nodes).



is increased to OðwhmlnÞ, where m and l are the number of
quantized scales and shape ratios. The simple visualization
of those extensions is showed in Fig. 4.

4.3.2 Discovery of Multiple Paths

Similar to nonmaximum suppression or branch-and-bound
[6], [8], this algorithm can also be applied repeatedly to
locate multiple instances. After obtaining p�, one can
remove it from M and restart the process to search for the
next best Max-Path.

4.3.3 Moving Speed Adaptation

The algorithm is also adaptable to the event moving speed.
Instead of using 3� 3 local neighbors, one can use a larger
neighborhood region (e.g., 5� 5 local neighbors) to
accommodate fast motions of the event, or 1� 1 for static
events (e.g., hand-waving). Edges of neighbors can be
weighted by a Gaussian mask to control the smoothness of
the spacial movement.

5 APPLICATION 1: ANOMALY EVENT DETECTION

5.1 Data Sets

We use the UCSD abnormal event detection data set [40] for
evaluation. The data set consists of two sections of two
different scenarios. We use the videos in Section 2 that
consists of 16 training and 12 test sequences. Each sequence
has about 180 frames. The training videos capture only
normal motions of walking crowd, while the testing ones
have abnormal motions such as bikers, skaters, and small
carts. Only eight of 12 testing sequences are provided with
pixel-level binary mask ground truth. As our target is to
discover and localize the abnormal events, only sequences
with pixel-level ground truth are evaluated.

5.2 Training

We first extract features at locations with notable motions in
the training data set because abnormal events cannot
happen without movement. The features we used are
histogram of oriented gradients (HOG) [35] and histogram
of oriented flows (HOF) [41] with 16� 16 patches. Feature
quantization is then applied by k-means clustering. These
cluster centers are used as codewords.

5.3 Testing

On testing, at any location with motions, we compute
features and the distance to its nearest codeword. These
distances are then used as prediction values for the local
pixels. The far distance implies the high likelihood of being
abnormal. The pixels with no motion are assigned zero

distances. To introduce negative values, we subtract these
distances by a threshold. This distance map is now a
3D array of positive and negative scores that can be passed
to the subvolume search [8] for event localization. For our
approach, we assume that the abnormal events will occur
across m different scales (e.g., d1 . . . dm). We use Integral
Image [9] to compute the sum scores of different local
windows of different scales (e.g., squares with di-long
sides) at each frame. This process will result in a 4D
discriminative score map, which is then input to our Max-
Path algorithm for discovering abnormal events. The Max-
Path algorithm used in this experiment goes with multiple
scale extension and the local neighbors of 5� 5. The spacial
step is 1 pixel.

5.4 Results

For evaluations, we build ground truth by drawing
bounding boxes around the provided masks of abnormal
events. We use PASCAL metric (e.g., overlap area divided
by union area of predicted and ground-truth boxes) to
evaluate the localization accuracy. At every frame, if both
prediction and ground truth are positive, then the PASCAL
metric is applied to compute the localization score. If both
of them are negative, then the score is assigned 1, otherwise
this score is 0. Table 1 shows the average accuracy of
abnormal event detection and localization. Our Max-Path
algorithm significantly outperforms subvolume search
more than 35 percent as a result of relaxing the 3D
bounding box constraint. Fig. 5 compares the results of
our Max-Path search and the subvolume search [8]. The first
two rows are from a relatively simple sequence, while the
last two rows are from another more difficult one due to the
noisy motions of the walking crowd. In both cases,
subvolume search predicts large volumes covering most
of the video. Even though with a very noisy confidence
map, our Max-Path search can localize event accurately.
This is true because the false positives appear randomly at
inconsistent spacial locations, in a long run, their accumu-
lated scores cannot compete to those of the true event paths.
On the other hand, the short-run missed or weak detections
caused by occlusions can be resolved and linked to the main
path as long as the final score can be further improved after
the drops. Finally, experimental results showed that Max-
Path search can automatically discovers the starting and
ending points of events (see Fig. 5).

6 APPLICATION 2: WALKING PERSON

LOCALIZATION

6.1 Data Sets

We use two data sets: TUD-MotionPairs [42] for training and
our NTU-UIUC YouTube Walking for testing. TUD-Motion-
Pairs is a fully annotated data set contains image pairs of
outdoor walking pedestrians for evaluating pedestrian
detection algorithms that employ motion information.
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Fig. 4. Possible extensions of Max-Path Search: a) Single scale and
single shape ratio results in a 3D trellis. b) Multiple scales with a fixed
shape ratio result in a 4D trellis. c) Multiple scales and shape ratios will
result in a 5D trellis.

TABLE 1
Abnormal Event Localization Results

Our Max-Path algorithm significantly improves the localization accuracy
compared to subvolume search [8] thanks to the constraint relaxation.



These image pairs include 1,092 positive pairs, 192 negative
pairs, and 26 additional negative pairs for further boot-
strapping training. NTU-UIUC YouTube Walking data set
contains two long video sequences (800-900 frames per
sequence) and 25 short video sequences (100-150 frames per
sequence) downloaded from YouTube making a total of
4,083 annotated bounding boxes. These videos are real-
world sequences including outdoor walking and indoor
fashion shows of catwalk models performance. The
sequences are very challenging due to their low quality
with compression artifacts, appearing in crowded scenes,
many partial and full occlusions, significant scale changes,
different lighting conditions, noisy background motions,
camera shaking motions (Fig. 6).

6.2 Training a Walker Detector

We use a global representation of pedestrian by HOG [35],
IMHd2 [36] which is a variation of HOF [41], and simple
self-similarity [36]. These features are then trained on a
linear support vector machine (SVM) with one more
additional bootstrapping round on hard negative set of
TUD-MotionPairs.

6.3 Walking Localization Algorithms

We slide the trained detector over the test sequence at
multiple scales. The sliding process results in a 4D output
prediction map, which will be passed to a localization
algorithm to process. This map does often contain false
positives and missed detections due to the imperfect base
detector. For quantitative evaluations, we implement two
baseline algorithms for walking localization. The first one is
to simply choose the maximum detection score at every
frame over all scales. It is actually a variant of nonmaximum
suppression, and it is more reasonable than nonmaximum

suppression provided that there is one walking person in
the sequence. We call this algorithm Greedy-Suppression.
Another baseline algorithm is the Spatiotemporal-Smooth
which is straightforwardly averaging k-consecutive boxes
that are results from the Greedy-Suppression algorithm.

Besides baseline algorithms, we also compare our
framework to an online tracking algorithm. We use the
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Fig. 5. Abnormal event detection: Demonstration of abnormal event detection. The odd rows are confidence maps; even rows are localization
results. The results of subvolume search [8] are visualized in green boxes, the results of Max-Path search are in red, and ground truth is in dashed-
black. The subvolume search covers a large portion of the video. Max-Path locates events more accurately by relaxing the constraint, and it can
automatically discover the starting and ending points of events.

Fig. 6. NTU-UIUC Walking data set: Twenty-seven realistic video
sequences downloaded from YouTube. The two upper rows are
snapshots of outdoor sequences. The last two rows are those from
indoor fashion shows. These realistic videos are low quality, captured in
crowded scenes, occlusions, complex background motions.



Incremental Learning Tracking (IL-Tracking) with the source
code provided by Ross et al. [43]. The IL-Tracking algorithm
is initialized by the ground-truth bounding box of the first
frame. We note that the IL-Tracking is not directly
comparable to the other algorithms because first it requires
initialization and second it does not use the prediction map.
For a complete evaluation, we further compare our method
to an offline tracking algorithm. We use Berclaz et al. [31]
with the source code obtained directly from the authors of
[31]. This method formulates offline tracking as a flow
optimization problem with the inputs as confident maps.
Their inputs are similar to ours in the way that they take
confident maps as inputs. However, there are two main
differences between theirs and ours. First, they take
confident maps of probabilities (e.g., in ½0; . . . ; 1�) while
our method should take discriminative scores which are
possible negatives (e.g., outputs of an SVM, mutual
information scores). Second, they just deal with single scale
that requires the inputs have to be 3D trellises. For a fair
comparison, we experiment this method using the same
trellises of discriminative scores as our Max-Path. In this
experiment, our trellises are 4D, which are obtained
from sliding a window detector at multiple scales (i.e., 10-
12 scales). We test the algorithm [31] with two different

input maps. In the first evaluation, we use a preselected
scale, which is the scale that most frequently appears in the
data set (the mean scale). In the second evaluation, we
greedily choose the scale with the maximum score at each
node. These steps will reduce our 4D trellises to 3D ones.
These trellises are then normalized to ½0; . . . ; 1� values to
make them probabilities. Finally, those 3D probability
maps are inputted into [31] to find the best paths. The
greedy-scale version degrades the accuracy of [31] about
3-4 percent; therefore, we only report their accuracy with
scale preselection evaluation.

These algorithms are then compared to our proposed
Max-Path algorithm to demonstrate the effectiveness and
robustness of our algorithm. In this experiment, we use
the Max-Path algorithm with the multiple scales extension.
The node’s neighbors are its nine-connected neighbors. The
used spacial stepsize is 4 pixels, both temporal and scale
stepsize are 1.

6.4 Results

We evaluate the localization accuracy at every frame
by PASCAL metric, and report the average accuracy in
Table 2. We also visualize the behaviors of different
algorithms on two long outdoor walking sequences in
Figs. 7 and 13. Our Max-Path algorithm improves
10-27 percent from the baselines and tracking algorithms.
The IL-Tracking algorithm works only a short time at the
beginning, then loses the tracks when occlusions occur. It
works better on some other higher quality sequences but
still loses the tracks when partial occlusions are presented
(see Fig. 13). The greedy-suppression algorithm suffers
from false positives and missed detections. The spatiotem-
poral smooth cannot make any difference from greedy-
suppression if not making it worse, due to highly noisy
false detections. The offline tracking (magenta curve)
misses some early frames due to the small size of the
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TABLE 2
Walking Localization Accuracy

Our Max-Path algorithm improves 10-27 percent of accuracy compared
to the other algorithms. *The incremental learning tracking algorithm [43]
is not directly comparable.

Fig. 7. Walking localization: The plots of localization scores from different algorithms on an outdoor walking sequence with visualized snapshots. IL-
Tracking [43] works only at the beginning, then loses the tracks when occlusions occur. Offline tracking [31] misses early and last frames due to
scale changing of the pedestrian. Greedy-Suppression and Spatiotemporal-Smooth perform poorly due to false positives and missed detections.
Max-Path significantly improves the other algorithms with global optimized solution. The data points are dropped by ratio 1:7 for better representation
(best viewed in color).



pedestrian. We note that its localization score also drops in
the last 80 frames due to the larger size of the walker when
she approaches closer to the camera. On the other frames
where the preselected scale is about the true scale, the
offline tracking locates walker with similar accuracy as our
Max-Path (red curve). In overall data set evaluation, Max-
Path improves 10.35 percent from [31] thanks to its
efficient optimization over multiple scales. In summary,
Max-Path algorithm provides significant improvements
over the other methods thanks to its global optimal
solution over all spatiotemporal and scale spaces.

6.5 Detecting of Multiple Walking Pedestrians

We collect two sequences from YouTube which consist of
672 frames for evaluating this extension. These realistic
sequences are the television news of the event that
President Barack Obama walking to the White House on
his inauguration day, which contains many walking people.
We apply the detector in Section 6.2 with our proposed
algorithm repeatedly to find the top k ¼ 5 paths. Results are
shown in Fig. 8. It is worth noting that unlike multiple
object tracking, we do not identify different people due to
the lack of appearance modeling. Instead, we only discover
the top 5 best paths in the video.

7 APPLICATION 3: RUNNING DETECTION AND

LOCALIZATION

7.1 Data Sets

In this experiment, we use the KTH data set [44] for training
and NTU Running data set for testing. KTH is a good data
set for human action recognition which is widely used in
the computer vision community. The data set consists of six
types of actions. However, we only use walking and
running sequences for training. We also exclude the
sequences from Section 2 of KTH because this section
contains videos captured with zooming-in and -out motions
that are not suitable to our application. NTU Running data
set consists of 15 positive sequences and 22 negative
sequences captured at public and crowded scenes. The
total number of frames is 8,096. Each positive video has
exactly one running event while negative ones have no
running motion. This data set is difficult because of the
crowded scenes with many people which cause many
partial and full occlusions. The positive videos are
manually annotated with bounding boxes around the actors

for each frame where the running events present. Some
examples of the running data set are presented in Fig. 9.

7.2 Discriminative Scores

We use the interest point action representation in [8],
which will be briefly described as follows. We first extract
the STIPs [38] and compute the features HOG [35] and
HOF [41] at these local interest points for both training and
testing sequences. Assuming the class priors are equal, the
local discriminative score of each interest point is then
estimated by

scþðdÞ ¼MIðcþ; dÞ ¼ log
2

1þ P ðdjc�Þ
P ðdjcþÞ

: ð10Þ

Then, the likelihood ratio is estimated as

P ðd j c�Þ
P ðd j cþÞ � exp�

1
2�2ðkd�dc�NNk

2�kd�dcþ
NN
k2Þ : ð11Þ

In (11), dc�NN and dcþNN are nearest neighbors of d in negative
and positive point set, respectively, and 1

2�2 is adaptively
estimated as suggested in [8] because it is more discrimi-
native than a fixed bandwidth. We refer the reader to [8] for
more detailed information about pointwise mutual infor-
mation and adaptive bandwidth search. It is worth noting
that the approximation notation is used because we use
locality sensitive hashing (LSH) [45] to perform an
approximate �-nearest neighbors (�-NN) search with a
confident probability of p. In this experiment, we use � ¼
3 and p ¼ 0:9 for all settings.

7.3 Detection and Localization Algorithms

On testing, given a sequence Q ¼ fdig, once the pointwise
mutual information for each STIP di 2 Q is computed, Q
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Fig. 8. Pedestrian detection in videos: The sequences are challenging due to complex camera and background motions.

Fig. 9. NTU Running data set: The sequences are challenging due to
complex background motions. The upper row images are from negative
sequences, while the lower ones are from positive sequences.



becomes a sparse volume V with discriminative scores that
are either positive or negative. The discriminative sparse
volume V is then passed to algorithms such as subvolume
search [8] and our Max-Path search [46] for detecting and
localizing the running events. The subvolume search code
provided by the authors is used to evaluate and compare to
our Max-Path. In this experiment, we use Max-Path with
multiple scale extension and a local neighborhood of 5� 5.
The spatial stepsize is 3 pixels. There is one difference in
this experiment compared to the abnormal event detection.
When building the trellis, at each local voxel, we compute
the summations of multiple scale squares using Integral

Image [9] in our abnormal detection experiment. However,
in this experiment, because the running actors appear to be
rectangle shapes rather than squares, we instead use
multiple scale rectangles with ratio of width to height of
1:2. We also evaluate the offline tracking algorithm [31]
using the same trellis as our Max-Path. The trellis of mutual
information scores is first normalized to make it probabil-
ities, then passed to [31] to detect and localize running.

7.4 Evaluations and Results

7.4.1 Evaluation Metrics

We evaluate the running localization by three different
metrics: temporal localization accuracy, frame-based loca-
lization accuracy, and path-based localization accuracy.
The temporal localization score is computed as the length
(measured in frames) of the intersection divided by the
union of detection and the ground truth. The frame-based
metric is similar to the one used in two previous
experiments, while the path-based metric is more difficult
and more precisely measure the correctness of localization.
Without loss of generality, we assume that the testing
sequence has a length of n with the ground-truth path
P ¼ fbigni¼1. Here, we denote the annotated ground truth
as a path P consists of n boxes bi. It is worth noting that if
the path starts and ends somewhere in the middle of the
sequence then the first and the last boxes may be empty
(e.g., a zero vector in IR4). We also denote P̂ ¼ fb̂igni¼1 as
an output predicted path. Frame-based accuracy is
evaluated by

FAðP; P̂ Þ ¼ 1

n

Xn
i¼1

BAðbi; b̂iÞ; ð12Þ

where BAðb; b̂Þ, the box accuracy between the ground-truth
box b and the predicted box b̂, is computed by

BAðb; b̂Þ ¼
1; if b ¼ 0 and b̂ ¼ 0;
b\b̂
b[b̂; otherwise:

(
ð13Þ

The path-based accuracy is basically the overlapped volume
of two paths divided by the union volume of those two
paths, which is approximated by

PAðP; P̂ Þ ¼
Pn

i¼1 bi \ b̂iPn
i¼1 bi [ b̂i

: ð14Þ

We note that the path-based metric is more difficult and
more precise for evaluating the localization. This score will
approach to 1 ¼ 100% when the predicted path approaches
to the ground-truth path, and will be 0 when the two paths
have no overlap. On the other hand, the frame-based metric
is easier. The accuracy may be positive even in the cases
that there is no overlap between two paths due to the
negative frames. It is also worth noting that temporal
localization is less challenging compared to the other two
metrics because only temporal information is evaluated
while ignoring the spatial information.

7.4.2 Results

Running Localization. Similarly to [8], we also subtract a
small negative value s0 to the sparse volume before passing
it to the localization algorithms. For a fair comparison, we
search a wide range of value of s0, then compare the best
accuracies of the two algorithms. The values for searching
s0 are 18 values which are f�1; . . . ;�9� 10�4g and
f�1; . . . ;�9� 10�5g. The behavior of the accuracies versus
the parameter s0 are visualized in Fig. 10. Compared to
subvolume search [8] and Max-Path, offline tracking [31] is
less sensitive to s0 because they have a preprocessing step in
which they smooth (apply a logarithm function) the
probability map before their flow optimization algorithm.
The best accuracies of all algorithms are reported in Table 3.
Our Max-Path search significantly outperforms subvolume
search [8] and offline tracking [31] on all three different
evaluation metrics. More specifically, Max-Path improves
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Fig. 10. Parameter search: The localization accuracy of subvolume search [8], offline tracking [31], and Max-Path search with different values of s0.
a) and b) Frame-based localization accuracy for different s0 in 10�4 and 10�5 ranges, respectively. c) and d) Path-based localization accuracy for
different s0 in 10�4 and 10�5 ranges, respectively. Max-Path search outperforms the other methods by a large margin in both frame-based and path-
based metrics.

TABLE 3
Running Localization Results

Our Max-Path algorithm significantly outperforms subvolume search [8]
and offline tracking [31] in all three different evaluation metrics.



26.87 percent on temporal localization metric, 8.15 percent
on frame-based metric, and 17.89 percent on path-based
metric from subvolume search [8]. It improves 40.09 percent
on temporal localization, 24.57 percent frame-based metric,
and 12.63 percent path-based metric from offline tracking
[31]. It is worth noting that for testing the running
localization algorithms, only positive sequences are used.

Fig. 12 visualizes our Max-Path localization results
compared to subvolume search on two different sequences.
The subvolume search covers a large portion of the video
due to its hard constraint of 3D bounding box; thus, its
localization scores (visualized in blue curves) are relatively
low around 0.2-0.4. Offline tracking misses the whole
running event in the first sequence, and works better in
the second sequence. However, it still does not well detect
the starting and ending frames. Our Max-Path provides
more flexible and precise localizations as an advantage of
the constraint relaxation. Max-Path also precisely locates
the running both spatially and temporally.

Running Detection. We further test the algorithm in the
detection task. As suggested in [8], we count a prediction as
a correct detection if the path-based localization score is at
least 1=8. The precision and recall are then evaluated on
three algorithms with their best parameters s0, which is

�3� 10�5 for subvolume search, �7� 10�4 for offline
tracking, and �5� 10�5 for Max-Path. The precision is
computed as the number of correct detections divided by
total number of detections, and the recall is evaluated as the
number of correct detections divided by total number of
action instances. The precision/recall and ROC curves of
all algorithms are shown in Fig. 11. We note that the
detection curves of Subvolume search and Max-Path
search are almost similar around 0 to 25 percent of recall.
This is because the two algorithms use the same mutual
information scores of local spatiotemporal interest points
with different detection hypothesizes: subvolume and
spatiotemporal path. Subvolume detections normally cover
larger portions of video than spatiotemporal paths. In fact,
it not only covers the running action but also other
background motions. For video sequences with less noisy
background motions, the difference between the subvolume
and Max-Path is not notable. However, for videos with
crowded background motions, many more interest points’
scores from the background will be added to subvolume
detections; hence its precision significantly drops compared
to our Max-Path. This observation shows that our Max-Path
is more appropriate for “dynamic” actions than subvolume
search, especially with videos containing complex back-
ground motions.

We also report the precision at the equal rate and
the area under the ROC curve of those three algorithms.
The equal-rate precision is defined as the maximum of the
minimum of precision and recall over the curve points
(e.g., maxpi2curvefminfprecisionpi ; recallpigg, where pi is a
point on the curve). Subvolume search reaches equal rate
at precision and recall at 40 percent, offline tracking is at
60 percent, while Max-Path reaches the equal rate at
precision is 82.35 percent. The area under ROC curve of
subvolume search is 0.32, that of offline tracking is 0.52,
and our Max-Path is 0.81.
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Fig. 11. Running detection results. Precision/recall and ROC curves of
subvolume search [8], offline tracking [31], and Max-Path search. The
numbers beside the legend items are the precision at the equal rate (left)
and the area under ROC curves (right).

Fig. 12. Running localization: Demonstration of running event localization. The results of subvolume search [8] are visualized in blue boxes, offline
tracking [31] are green, Max-Path search are red, and ground truth is in dashed-black. The ground truth starting and ending frames for the first
sequence are 18 and 91, those of the second sequence are 14 and 81.



8 CONCLUSIONS

We have proposed a novel approach for detecting complex
and dynamic events. The relaxation from video subvolume
to spatiotemporal path makes the method more flexible and,
hence, well addressed to complex events that could not be
precisely covered by subvolume. The global optimal solu-
tion of our Max-Path algorithm improves the smoothness of
the event, thus eliminating the false positives and alleviates
missed or weak detections due to occlusions and the image
low quality. In addition, Max-Path’s lowest complexity
makes it efficient to search for spatiotemporal paths in a
large 5D space of spatiotemporal, scale, and shape. Finally,
our experiments on three different types of events, using
different features, with both local and global object
representations proved that our proposed method is general
and flexible enough to be applied to a wide class of events.

In conclusion, this paper contributes to the computer
vision literature a novel approach for video event detection
and localization with significant improvements over the
state-of-the-art methods. It will strongly benefit a class of
problems in video event detection and localization, espe-
cially for the complex and dynamic events. In practice,
thanks to its low complexity, Max-Path search has been
used as an efficient method for fast inference and complex
structured learning problem [33] or applied to improve the
speed performance [47].
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