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In image and video data, visual pattern refers to re-occurring composition of visual
primitives. Such visual patterns extract the essence of the image and video data that
convey rich information. However, unlike frequent patterns in transaction data,
there are considerable visual content variations and complex spatial structures
among visual primitives, which make effective exploration of visual patterns a
challenging task. Many methods have been proposed to address the problem
of visual pattern discovery during the past decade. In this article, we provide
a review of the major progress in visual pattern discovery. We categorize the
existing methods into two groups: bottom-up pattern discovery and top-down
pattern modeling. The bottom-up pattern discovery method starts with unordered
visual primitives followed by merging the primitives until larger visual patterns
are found. In contrast, the top-down method starts with the modeling of visual
primitive compositions and then infers the pattern discovery result. A summary of
related applications is also presented. At the end we identify the open issues for
future research. © 2013 John Wiley & Sons, Ltd.
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INTRODUCTION

Similar to frequent patterns in transaction data,
visual patterns are compositions of visual

primitives that appear frequently in image and video
data.1,2 The visual primitives that construct visual
patterns can be very diverse, e.g., local image patches,
semantic visual parts, or visual objects. As shown in
Figure 1, the visual pattern in image or video data can
be a texton that captures the repetitiveness of image
texture,6 e.g., the ‘double-G’ pattern in a Gucci bag;
an abstract object model that describes its composition
of visual parts,7 e.g., a face pattern composed of two
eyes, a nose, and a mouth; a scene layout pattern that
captures the key objects which compose the scene,8

e.g., a bedroom including a bed, a lamp, and so on; or
a human action that describes postures and motions
of human body, e.g., a bent-leg layover spin action
showing by upturning the torso and bending the free
leg. Such visual patterns are ubiquitous in images and
videos. Just like the perception of repeated structures
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is well-nigh fundamental to the understanding the
world around us,9 the recognition of visual patterns is
essential to the understanding of image and video
data. In practice, visual patterns can be used to
model images and videos, which have extensive
applications in image and video analysis, such as image
search, object categorization, video summarization,
and human action recognition. It therefore offers an
interesting, practical, but challenging task to mine
visual patterns from images and videos.

Although frequent pattern mining has been well
studied in data mining community,10 the existing
frequent pattern mining methods cannot be applied
to image and video data directly. This is because
the visual content variations and complex spatial
structures among visual data make the problem of
visual pattern discovery more challenging. Therefore,
before mining visual patterns, it is required to extract
stable visual primitives from image or video data. To
obtain visual primitives, many local feature detectors
have been proposed.11 Segmentation methods, e.g.,
normalized cuts,12 can be used to collect primitive
regions. Object detection methods, e.g., deformable
part models,13 provide object primitives appearing
in image or video data. Once we have visual
primitives, we can encode their appearance using
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FIGURE 1 | Diverse visual patterns: (a) the repetitive ‘double-G’ textures generate the texton patterns in a Gucci bag; (b) two eyes, a nose, and a
mouth sketch a face pattern. Source: Images are from Caltech 101 dataset (Ref 3); (c) a bed, a lamp and so on usually make up a bedroom. Source:
Images are from MIT Indoor dataset (Ref 4); (d) upturning of the torso and bending of the free leg together show the bent-leg layover spin action
(Ref 5).
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FIGURE 2 | Preprocessing of image and video data.

feature descriptors.14 Instead of describing visual
primitives using raw features, we can also use
clustering method, e.g., k-means, to further quantize
feature descriptors into discrete visual words. After
that, each visual primitive can be identified by the
corresponding visual word. Then an image can be
described by a ‘bag-of-visual-words’. We summarize
the preprocessing of image or video data in Figure 2.

In the past decade, there have been increasing
efforts to address visual pattern discovery in the liter-
ature. The aim of this article is to review recent work
and provide an overview of this topic. We categorize
the visual pattern discovery methods into two groups:
bottom-up and top-down methods. The bottom-up
pattern discovery methods start with visual primitives
and then merge these primitives until the larger
visual patterns are found. The basic idea is shown in
Figure 3(a). First, each image is decomposed into a
number of visual primitives. Then, the visual primi-
tives are quantized into visual words (colored in blue)
by clustering. After that, by investigating frequent
visual word configurations in image spatial space, two
types of word co-occurrence compositions, i.e., visual
patterns {‘cross’, ‘star’} and {‘parallelogram’, ‘dia-
mond’, ‘trapezoid’} are found. Finally, we locate all
instances of both types of visual patterns. In contrast,
the top-down methods start with the modeling of
images and visual patterns and then infer the pattern
discovery result. Figure 3(b) illustrates the top-down
method by using the latent Dirichlet allocation (LDA)
to model images and visual patterns.15 The basic
idea is that images are represented as mixtures over
visual patterns, where each pattern is characterized
by a distribution over visual words. This is similar
to describing a document by mixtures of topics,

where each topic has its own word distribution.
The pattern discovery is achieved by inferring the
posterior distribution of visual pattern mixture
variable given an image. In this survey, we summarize
the representative work of visual pattern discovery
in Table 1. The datasets used in the corresponding
work are also listed. Meanwhile, we organize our
discussion into three parts: bottom-up pattern mining
methods, top-down pattern mining methods, and
applications of visual pattern discovery. In section
Conclusion and Outlook, we conclude this study.

BOTTOM-UP PATTERN MINING

Classic frequent itemset mining (FIM) methods10

provide off-the-shelf bottom-up techniques for pattern
discovery from transaction data and inspire early
research on visual pattern discovery. However, the
performance of FIM-based methods heavily depends
on the quality of transaction data. Thus more general
strategies have been proposed to avoid the generation
of transactions for image/video data mining, e.g.,
frequent pattern counting by visual primitive
matching. Owing to modeling sophisticated spatial
structures among visual primitives, many graph-based
pattern mining methods have also been proposed.

Classic FIM Methods for Visual Pattern
Discovery
Apriori,85 frequent pattern growth (FP-growth)86

and clustering are among the classic methods in
FIM.10 To leverage FIM algorithms for visual pattern
discovery, one can build transaction data in local
spatial neighborhoods of visual primitives. To be

Volume 4, January/February 2014 © 2013 John Wiley & Sons, Ltd. 25



Advanced Review wires.wiley.com/widm

Visual pattern instances (two pattern types)
Latent dirichlet allocation model β

θ

M
N

wzα

Co-occurring visual words (colored red)

Images with visual words
Images Visual patterns Visual words

(a) (b)

FIGURE 3 | Bottom-up (a) and top-down (b) visual pattern discovery.

specific, a transaction can be built to represent a
spatial neighborhood of a visual primitive with a
binary vector that indicates whether a visual word is
present or not within this neighborhood. As an image
can generate a number of transactions, the classic FIM
methods can be applied to visual pattern discovery.

Hsu et al.17 have early adopted the Apriori
algorithm in order to discover viewpoint patterns that
capture invariant relationships among objects. Quack
et al.27 mine frequent spatial configurations of visual
primitive patches using the Apriori algorithm.85

Lee et al.29 also utilize the Apriori algorithm to
discover spatial association patterns from image
data. To identify closed frequent visual patterns,
Yuan et al.63,87,88 apply the FP-growth algorithm.86

Sivic and Zisserman19 use a clustering method on
transaction data to produce typical prototypes of
visual patterns.

To reduce the quantization error of visual
primitives and eliminate the ambiguities among visual
patterns, Yuan and Wu33 propose the context-aware
clustering algorithm. In their work, the disambigua-
tion of visual words and the discovery of visual
patterns are optimized by a self-supervised clustering
procedure that allows visual feature quantization
and visual pattern clustering to help each other, thus
leading to a better visual vocabulary as well as better
visual patterns. Further, Wang et al.54 extend the
context-aware clustering method by incorporating
multiple types of features. Their work provides a
uniform solution that can handle visual patterns in
both spatial and feature spaces.

Most abovementioned methods ignore the
frequencies of primitive occurrence in the local
spatial neighborhood. Kim et al.47 thus propose

the bag-to-set (B2S) approach to encode visual
word frequencies occurring in each local spatial
neighborhood into a long binary vector, which is
used for visual pattern mining. However, this method
tends to generate artificial visual patterns not present
in given datasets. An alternative approach proposed by
Fernando et al.68 exploits the frequency information
of visual words during the process of discriminative
visual pattern mining. This method effectively avoids
the generation of artificial visual patterns that may
cause performance loss. Besides, Kim et al.34 allow
replicated visual words to appear in a bag instead
of containing distinct visual words in a set and
propose a spatial item bag mining method, which
finds frequent visual patterns according to semi-affine
invariance of spatial layout among objects in image
data. Furthermore, a spatial relationship pattern-
based hierarchical clustering algorithm is developed
to cluster those similar object patterns.

Visual Co-occurrence Matching
and Counting for Visual Pattern Discovery
To apply classic FIM methods, one needs to build
transactions based on the visual vocabulary of image
or video data in advance. The discovery of visual
patterns will heavily depend on the quality of transac-
tions, and further depend on the quality of the visual
vocabulary. These dependencies can be mitigated by
frequent pattern counting methods as they do not
need build transaction data. For example, Zhang and
Chen40 propose to mine visual patterns in offset space,
which is extended by Zhang et al.48,57 and Li et al.8

An offset space is generated by the relative location
difference of visual primitives between two images in
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TABLE 1 Representative Work of Visual Pattern Discovery

Authors and References Year Method Taxonomy Data source Dataset

Hong and Huang16 2000 Maximum likelihood
method

Bottom-up Image Proprietary

Hsu et al.17 2003 Viewpoint mining Bottom-up Image set Proprietary

Fergus et al.18 2003 Constellation model Top-down Image set Caltech 4, UIUC car, Corel

Sivic and Zisserman19 2004 Feature neighborhood
clustering

Bottom-up Video Groundhog Day, Fawlty Towers

Hong and Huang20 2004 Probabilistic parametric
model

Top-down Image set Proprietary

Leordeanu and
Hebert21

2005 Subgraph mining Bottom-up Image set Proprietary

Felzenszwalb and
Huttenlocher22

2005 Pictorial model Top-down Image set Proprietary

Zhu et al.6 2005 Texton learning Top-down Image, video Proprietary

Sivic et al.23 2005 Probabilistic Latent
semantic analysis (pLSA)

Top-down Image set Caltech 101, MIT
indoor/outdoor

Fei-Fei and Perona24 2005 Bayesian hierarchical model Top-down Image set Scene 13

Wang et al.25 2006 Dependent regions Top-down Image set Caltech 4, Caltech 101

Russell et al.26 2006 Latent Dirichlet allocation
(LDA)

Top-down Image set Caltech 4, MSRC v2, LabelMe

Quack et al.27 2007 Spatial association rule
mining

Bottom-up Image set ETHZ, GRAZ, TUD, CALTECH

Yuan and Wu28 2007 Spatial random partition Bottom-up Image set Proprietary

Lee et al.29 2007 Spatial association rule
mining

Bottom-up Image set, video Proprietary

Fidler and Leonardis7 2007 Hierarchical part
composition learning

Bottom-up Image set Proprietary, UIUC car

Cao and Li30 2007 Spatially coherent latent
topic model

Top-down Image set Weizmann horses, LOCUS
horses, Microsoft cow, Scene
13, Caltech 101

Liu and Chen31 2007 Spatial-temporal model Top-down Video Helicopter sequence, Car
sequence

Gilbert et al.32 2008 Compound features mining Bottom-up Video KTH

Yuan and Wu33 2008 Context-aware clustering Bottom-up Image PSU Near-Regular Texture

Kim et al.34 2008 Spatial item bag mining Bottom-up Image set Proprietary

Liu et al.35 2008 Spatial histograms Bottom-up Image set PASCAL VOC06, Caltech 4,
MSRC v2

Todorovic and
Ahuja36

2008 Tree structural subimage
matching

Top-down Image set Caltech 101, Caltech rear-view
cars, UIUC multiscale
side-view cars, Weizmann
side-view horses, TUD
side-view cows

Sivic et al.37 2008 Hierarchical latent Dirichlet
allocation(hLDA)

Top-down Image set MSRC B1

Tang and Lewis38 2008 Non-negative matrix
factorization (NMF)

Top-down Image set Washington images, LabelMe

Gao et al.39 2009 Frequent subgraph mining Bottom-up Image, image set Proprietary, Caltech 101

Zhang and Chen40 2009 Clustering in offset space Bottom-up Image set Caltech 101, MSRC v2, Graz 01
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TABLE 1 Continued

Authors and References Year Method Taxonomy Data source Dataset

Lee and Grauman41 2009 Spectral graph clustering Bottom-up Image set Caltech 101, ETHZ shape,
LabelMe

Payet and
Todorovic42

2009 Coordinate ascent
Swendsen-Wang cut

Bottom-up Image set Caltech 101, ETHZ shape,
LabelMe, Weizmann horses

Zheng et al.43 2009 Visual synset Bottom-up Image set Caltech 256

Chum et al.44 2009 Geometric min-hash Bottom-up Image set Oxford buildings 5K

Tan and Ngo45 2009 Localized matching using
Earth Mover’s Distance

Bottom-up Image set Proprietary

Endres et al.46 2009 Latent Dirichlet allocation
(LDA)

Top-down Range image Proprietary

Kim et al.47 2010 Frequent item bag mining Bottom-up Image set Caltech 101

Zhang and Chen48 2010 Voting in offset space Bottom-up Image set Pascal VOC05, Graz 01, Graz
02, Caltech 4

Heath et al.49 2010 Affine cosegmentation Bottom-up Image set Proprietary

Liu and Yan50 2010 Subgraph mining Bottom-up Image set Columbia near duplicate
images, IST faces

Bagon et al.51 2010 Ensemble matching Bottom-up Image set ETHZ shapes

Cho et al.52 2010 Multilayer match-growing Bottom-up Image set ETHZ shapes, Proprietary

Liu et al.53 2010 Hierarchical visual model Top-down Video Proprietary, TRECVID

Wang et al.54 2011 Multicontext-aware
clustering

Bottom-up Image, image set Proprietary, MSRC v2

Zhao et al.55 2011 Cohesive sub-graph mining Bottom-up Video Proprietary

Wang et al.56 2011 Emerging pattern mining Bottom-up Video KTH, YouTube, Proprietary

Zhang et al.57 2011 Voting in offset space Bottom-up Image set Oxford buildings 5K, Flicker 1M

Zhang et al.58 2011 Descriptive visual phrases Bottom-up Image set Proprietary, Corel 5k, Caltech
101, Caltech 256

Zhang et al.59 2011 Contextual visual
vocabulary

Bottom-up Image set Proprietary

Sun and Hamme60 2011 Graph regularized NMF Top-down Image set Caltech 256

Philbin et al.61 2011 Geometric Latent Dirichlet
allocation (gLDA)

Top-down Image set Oxford buildings 5K, Statue of
Liberty 37K, Rome 1K

Sadeghi and
Farhadi62

2011 Max margin structure
learning

Top-down Image set UIUC Phrase

Yuan and Wu63 2012 Self-supervised subspace
learning

Bottom-up Image set Caltech 101

Yuan et al.64 2012 Multilayer candidate
pruning

Bottom-up Image set, video Proprietary

Wang et al.65 2012 Actionlet ensemble mining Bottom-up Video MSR Action3D, MSR Daily
Activity3D

Lee and Grauman66 2012 Object-graphs Bottom-up Image set MSRC v0, MSRC v2, Corel,
PASCAL VOC08, Gould 2009

Li et al.8 2012 Voting in offset space Bottom-up Image set UIUC phrase, PASCAL VOC07,
SUN 09, MIT indoor

Faktor and Irani67 2012 Clustering by composition Bottom-up Image set Caltech 101, ETHZ shape,
Pascal VOC 2010,
Ballet-Yoga

Fernando et al.68 2012 Frequent local histogram
mining

Bottom-up Image set GRAZ 01, Oxford flower 17,
Scene 15, PASCAL VOC07
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TABLE 1 Continued

Authors and References Year Method Taxonomy Data source Dataset

Singh et al.69 2012 Discriminative doublets Bottom-up Image set MIT indoor 67

Jiang et al.70 2012 Randomized visual phrases Bottom-up Image set Groundhog Day, Belgalogo,
Proprietary

Hao et al.71 2012 3D visual phrases Bottom-up Image set Proprietary, Oxford buildings 5K

Chu and Tsai72 2012 Frequent subgraph mining Bottom-up Image set Proprietary, Oxford Paris

Zhu et al.73 2012 Saliency-guided multiple
class learning

Bottom-up Image set SIVAL, iCoseg, 3D object category

Cong et al.74 2012 Sparse dictionary selection Bottom-up Video Kodak Home Video

Zhang and Tao75 2012 Slow feature analysis Bottom-up Video KTH, Weizmann, CASIA
Interaction, UT Interaction

Niu et al.76 2012 Context aware topic model Top-down Image set Scene 15, LabelMe, UIUC sports

Andreetto et al.77 2012 Affinity-based LDA model
(A-LDA)

Top-down Image set Egrets 100, MSRC v1, MSRC v2,
Scene 8, LabelMe

Cong et al.78 2013 Sparse reconstruction cost Bottom-up Video UMN, UCSD, Subway

Rubinstein et al.79 2013 Reliable matching and
saliency detection

Bottom-up Image set MSRC, iCoseg, Proprietary

Song et al.80 2013 Hierarchical sequence
summarization

Bottom-up Video Arm Gesture, Canal 9, NATOPS

Wang et al.81 2013 Spatiotemporal part sets
mining

Bottom-up Video UCF sport, Keck gesture,
MSR-Action3D

Li et al.82 2013 Mid-level visual concept
learning

Bottom-up Image set PASCAL VOC07, Scene 15, MIT
indoor, UIUC sports, Inria
horse

Myeong and Lee83 2013 High-order semantic
relation transfer

Bottom-up Image set LableMe 19-class, LabelMe
outdoor, Polo

Zhao et al.84 2013 LDA with word
co-occurrence prior

Top-down Video Proprietary

For papers that have both conference and journal versions, only journal versions are listed.

the sense of scale alignment. Such offset space enables
co-occurring visual primitives to be assembled into
the near-same place, thus facilitating visual pattern
discovery. In Ref 40, the visual primitives having the
absolutely same location in the offset space compose
a high-order visual pattern. Allowing slight deforma-
tion, Hough voting is further adopted to highlight the
frequent co-occurring visual primitives in Refs 8, 48
and 57. It is worth pointing out that those studies in
Refs 40, 48 and 57 focus on mining compositional pat-
terns of image feature patches, while Ref 8 is engaged
in automatic discovery of object group patterns.

Primitive matching and counting can be used
in many other ways for common pattern discovery.
Hong and Huang16 apply template matching and
maximum likelihood criteria for common object dis-
covery. Yuan and Wu28 introduce the spatial random
partition method, which randomly partitions each
image several times to generate a pool of subregions.
Then common objects can be discovered by finding

frequent feature matches in the subregion pool. Bagon
et al.51 detect and sketch common objects from
multiple images by candidate region matching. Cho
et al.52 present a multilayer match-growing method
to discover common objects from a single or multiple
images. Zhao and Yuan89 and Yuan et al.64 propose
the multilayer candidate pruning approach for
common object discovery, where set-to-set matching
and branch-and-bound search are applied. Fidler and
Leonardis7 learn a hierarchical representation for each
object category by feature indexing and matching. Liu
and Liu90 find optimal visual word matches and dis-
cover common object patterns by a greedy randomized
adaptive search procedure. Faktor and Irani67 develop
the ‘clustering by composition’ method for common
scene pattern discovery. With the assumption that
images from the same class can generate each other by
shared regions, they discover image class patterns by
a collaborative randomized matching region search
algorithm.
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Graph-Based Mining for Visual Pattern
Discovery
Since a graph can directly model sophisticated spatial
structures among visual primitives, many approaches
have been proposed to discover visual patterns
using graph mining rather than FIM and visual
co-occurrence matching/counting. A typical case is
that Gao et al.39 use a frequent subgraph pattern
mining method to discover high-order geometric
visual patterns. They encode the spatial relationship
of each pair of visual words into a link vector. The
pairwise visual word associations can then be iden-
tified according to the spatial consistent rules. Using
frequent subgraph pattern mining on the association
graph, the high-order geometric patterns can be
obtained. Owing to the invariant representation of
the spatial relationship between each pair of visual
words, the obtained high-order patterns also exhibit
translation, scale, and rotation invariance.

Besides mining visual patterns with a fixed
order, graph mining is also used to extract com-
mon visual patterns without order constraint. For
instances, Leordeanu and Hebert21 and Liu and
Yan50 employ subgraph mining on a feature corre-
spondence graph of two images to discover common
image patterns. Recently, Zhao et al.55,5 have also
proposed a cohesive subgraph mining method to find
thematic patterns in video, where the overall mutual
information scores among the spatiotemporal visual
words are maximized. To model common object
shapes, Lee and Grauman41 perform matching on
patch-anchored edge fragments, and spectral graph
clustering is performed for common shape discovery.
Similarly, Payet and Todorovic42 build graph on all
pairs of geometric matched contours in images to
discover common object contours.

TOP-DOWN PATTERN MINING

The bottom-up pattern discovery method starts with
unordered visual primitives and then merges the
primitives until larger visual patterns are found.
In contrast, the top-down method starts with the
modeling of visual patterns and then infers the pattern
discovery result.

Inspired by the success of unsupervised topic dis-
covery in statistical natural language processing, most
of top-down methods use generative topic models for
visual pattern modeling.23,25,26,37 In this section, we
first review the classic topic model based visual pattern
discovery methods. Then we turn to the methods that
incorporate spatial and temporal constraints into topic
models.20,31,36,61,84,91 After that, we discuss subspace
projection methods for visual pattern discovery.38,60

Classic Topic Model for Visual Pattern
Discovery
The topic model, such as LDA15 and probabilistic
latent semantic analysis (pLSA),92 discovers semantic
topics from a corpus of documents. Generally, the
‘bag-of-words’ representation is used to model the
documents. Meanwhile, each word is generated from
one topic while each document is modeled as a
probability distribution of the latent topics.

Sivic et al.23 use the topic model to discover and
locate objects in images. They use the bag-of-words
model to represent each image and consider the local
co-occurring regions by the ‘‘doublets’’ pairs of visual
words. This model treats each image as a histogram
of visual words. After obtaining all documents, the
pLSA model is used to discover the object topics.
This method can discover the object categories and
localize the object instances in the image. Following
this idea, Russell et al.26 discover the visual object
categories based on the LDA and pLSA model. To
group visual words spatially, they first segment the
images multiple times and then discover object topics
from a pool of segments. The discovered topics are
closely related to the ground-truth object classes.
To discover the hierarchical structure for the visual
patterns, Sivic et al.37 investigate the hierarchical LDA
(hLDA) model. Based on the multiple segmentation
framework,26 this method can automatically discover
the object hierarchies from image collections.

Besides using the segmentation of each single
image as Ref 26, Andreetto et al.77 combine a LDA
model and a hybrid parametric–nonparametric model
for categorical object discovery and segmentation.
This method segments multiple images simultaneously
while the segments in different images benefit from
each other. By sharing the shape and appearance infor-
mation of each segment, it can improve the object dis-
covery and segmentation performance simultaneously.

Topic Model with Spatial and Temporal
Constraints for Visual Pattern Discovery
Besides the frequency of visual features captured by
‘bag-of-words’ representation, the spatial and tempo-
ral contexts are also important cues for visual pattern
modeling. To better encode spatial structures among
visual words, Wang and Grimson91 propose a spatial
LDA (sLDA) model. The word-document assignment
is no longer a fixed prior, but varies depending on a
generative procedure, in which visual words will be
assigned into the same document if they are close in
image space. Philbin et al.61 introduce the geometric
LDA (gLDA) model for object discovery from a
corpus of images. As an extension of LDA, gLDA
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considers the affine homographic geometric relation
in the generative process. The gLDA model has better
performance than the standard LDA model in the
application of particular object discovery. Besides
encoding the two-dimensional spatial structures in the
image, Endres et al.46 apply LDA model to discover
objects in 3D range data directly.

Liu and Chen31 extend topic models from still
images to videos with a temporal model integrated.
The topic model is used for appearance modeling
while the probabilistic data association (PDA) filter
is used for motion modeling. By tightly integrating
the spatial and temporal models, they show promising
video object discovery results. To engage human in the
loop for video object discovery, Liu et al.53 employ the
topic model in a semi-supervised learning framework.
By taking weakly supervised information from human,
their model can be tailored to users’ interests for
targeted object discovery.

Recently, Zhao et al.84 notice that important
co-occurrence information among local features is
ignored in the LDA model. To tackle this issue, they
propose to incorporate a Gaussian Markov word
co-occurrence prior into the general LDA model, such
that bottom-up induction and top-down deduction
can help each other for efficient topic video object
discovery.

Besides introducing spatial constraints into
pLSA/LDA models, there are also methods that
explicitly use graph or tree to model the spatial struc-
ture of visual patterns, e.g., Refs 36 and 20. Unlike
pLSA/LDA based methods, Hong and Huang20

model the visual pattern as a mixture of probabilistic
parametric attributed relational graphs while each
image is represented by an attributed relational
graph in image (spatial) space. They also propose an
expectation-maximization (EM) algorithm to learn
the parameters of visual pattern model. In addition,
Todorovic and Ahuja’s36 method is also different
from pLSA/LDA-based methods, which models the
spatial layout of primitive regions in a tree structure
to learn common object category.

Subspace Projection for Visual Pattern
Discovery
Apart from the statistical viewpoint to mine visual
patterns, e.g., pLSA and LDA based model, there
are also subspace projection methods to approximate
the semantic structure of visual patterns. A typical
approach is to perform non-negative matrix factor-
ization (NMF). For the detailed discussion about the
equivalence between pLSA and NMF, refer Refs 93
and 94. In terms of visual pattern discovery using

NMF, Tang and Lewis’s38 work is a good practice.
They show that the results of NMF are comparable
with that of LDA on the same dataset. It is also worth
mentioning that Sun and Hamme60 incorporate NMF
to model recurring visual patterns and spectral clus-
tering to cluster visual primitives into visual patterns.

SUMMARY OF BOTTOM-UP
AND TOP-DOWN METHODS

Bottom-up methods proceed from the local layout
of visual primitives to recognize general visual
patterns in image and video data. Such methods
emphasize on assembling visual primitives into visual
patterns. There are several advantages of bottom-
up methods. First of all, bottom-up methods can be
widely applied for their data-driven nature. Second,
bottom-up methods can easily incorporate varieties
of contexts such as spatial co-occurrence of multiple
visual primitives and geometric relationship between
pairs of visual primitives. Third, bottom-up methods
are easy to implement. However, bottom-up methods
mainly investigate local spatial cues of visual patterns
while lack global modeling of visual patterns.

In contrast, top-down methods work the other
way around, which treat images or videos as mixture
patterns over visual primitives in a global perspective.
Such methods focus on modeling and inferring the
composition of visual patterns. There are several
advantages of top-down methods. First of all, the
top-down methods can deal with variations of visual
patterns by using probability reasoning for their mod-
eling of visual data. Second, the top-down methods
can discover multiple visual patterns simultaneously
as the generative model is naturally designed for
modeling multiple patterns. Third, the top-down
methods can also incorporate the spatial and geom-
etry information of visual patterns. However, it is
not trivial to handle model parameter learning and
posterior probability inference for top-down methods.

Choosing between bottom-up and top-down
approaches is application – dependent. Generally,
when we observe a number of specific spatial com-
positions of visual primitives and expect from them
to infer common visual patterns, bottom-up methods
will be appropriate; while when we are required
to model pattern mixture and reason posterior
distribution of visual pattern mixture over visual
primitives, top-down methods should be preferable.

APPLICATIONS

Visual patterns capture the spatial layout of visual
primitives, e.g., local features, segments, objects.
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Such meaningful patterns can contribute to many
applications, such as image search,43,45,49,57,59,70,72

object categorization,25,35,58,63,66,73,79,82 scene
recognition,8,24,30,62,69,71,76,83 and video
analysis.19,32,53,55,56,64,65,75,80,81

Image Search
Visual patterns offer information-rich visual phrase
retrieval compared to image retrieval using bag-of-
visual-word representation. Several approaches have
been proposed, including visual synset,43 geome-
try preserving visual phrases,57 contextual visual
vocabulary,59 and randomized visual phrases.70 In
Ref 43, a higher-level visual representation derived
from visual word patterns, visual synset, is proposed
by Zheng et al. to improve the performance of image
retrieval. In addition to exploring visual word co-
occurrences, the visual phrases proposed by Zhang
et al.57 also capture the geometric relationships among
visual words, thus present a better retrieval perfor-
mance than traditional bag-of-visual-words model. To
better retrieve near-duplicate images, a spatial contex-
tual visual vocabulary method considering local fea-
ture group is proposed by Zhang et al.59 Combining
with spatial random partition,28 randomized visual
phrases are constructed by Jiang et al.70 for more
discriminative matching in visual object search meth-
ods. Besides constructing visual phrase descriptors for
image retrieval, there are also pattern matching based
methods45,49,72 and min-hashing scheme.44 Tan and
Ngo45 utilize localized matching for query-by-pattern
image search. Heath et al.49 perform image search by
connectivity among visual patterns in images. Chu and
Tsai72 perform product image search by motif pattern
matching. Chum et al.44 propose geometric min-
hashing index for object discovery and image retrieval.

Object Categorization
Visual patterns are also beneficial to object
categorization. In Ref 63, Yuan and Wu leverage the
discovered visual phrase lexicon obtained by FIM and
subspace learning to effectively reduce the ambiguity
between foreground and background objects. In the
work by Zhang et al.,58 the frequent occurring visual
word pairs are used to construct the descriptive
visual phrases for an effective representation of
certain visual objects. Owing to the consideration
of co-occurrences of image patches, the method
proposed by Wang et al.25 shows high competitive
object categorization ability. In Ref 35, Liu et al.
integrate feature selection and higher-order spatial
feature extraction together for an efficient object
categorization. The method proposed by Lee and

Grauman66 leverages object co-occurrence patterns
for visual object categorization. Zhu et al.73 use
saliency-guided multiple class learning to discover
object patterns and perform object categorization.
Rubinstein et al.79 separate the common category
of objects from noisy image collections by reliable
matching and saliency detection. The mid-level visual
concepts are exploited by Li et al.82 to harvest visual
patterns from images and help enhance the object
classification performance.

Scene Recognition
Scene recognition is another application of visual
patterns. The spatial co-occurrences of image patches
are used for a better scene representation by Singh
et al.69 The method proposed by Hao et al.71

constructs 3D visual phrases with particular geometric
structures for landmark recognition. Niu et al.76

leverage the spatial layout of image patches to design
a context-aware topic model for scene recognition.
Bayesian hierarchical model proposed by Fei-Fei and
Perona24 and spatially coherent latent topic model
proposed by Cao and Li30 also describe visual
patterns as a topic model for scene recognition.
The proposed visual phrase detector by Sadeghi and
Farhadi62 encodes the interaction between objects or
activities of single objects for phrasal recognition and
object detection. Li et al.8 make use of the recurring
compositions of objects across images for a better
scene categorization. Myeong and Lee83 perform label
transfer on high-order relations of objects for scene
segmentation and semantic region recognition.

Video Analysis
Video analysis also needs the effective extraction of
visual patterns. In Sivic and Zisserman’s work,19 the
spatial configurations of viewpoint invariant features
are mined for movie summarization. In Ref 5, Zhao
et al. extract key action patterns for sports video
summarization. Liu et al.,53 Zhao et al.,55 and
Yuan et al.64 discover thematic patterns to highlight
products appearing in commercial advertisements and
perform video object summarization. Cong et al.74

utilize the sparsity consistency of visual patterns to
construct a sparse representative dictionary towards
video summarization.

Besides video summarization, visual patterns can
be used for video anomaly detection. For example, by
mining the normal event patterns, one can identify
the rest as anomalies. In Ref 95, Jiang et al. discover
regular rules of normal events from spatiotemporal
context and perform video anomaly detection. Cong
et al.78,96 apply sparse reconstruction over the
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normal motion patterns to detect abnormal events in
videos.

Another typical application of visual patterns in
video analysis is to recognize human actions. Gilbert
et al.32 identify compound patterns from frequently
co-occurring dense spatiotemporal corners for action
recognition. Wang et al.56 learn discriminative
features by mining emerging patterns97 for instant
action recognition in a video. Wang et al.65 represent
a particular conjunctive pattern of joint locations as
actionlet and recognize actions by actionlet ensemble
structure mining. Zhang and Tao75 extract useful
motion patterns from videos for human action
recognition by slow feature analysis (SFA).98 Song
et al.80 perform action recognition by grouping similar
spatiotemporal patterns in a hierarchical sequence
summarization framework. Wang et al.81 recognize
human actions by mining distinctive co-occurring
spatial configurations of body parts in spatial domain
and pose movement patterns in temporal domain.

CONCLUSION AND OUTLOOK

Over the past decade, visual pattern discovery
has received increasing attention, especially by the
communities of computer vision and data mining.
In this survey, we have collected the abundant
literature of visual pattern discovery, and discussed
both bottom-up and top-down techniques as well as
their diverse applications. In the bottom-up methods,
the common strategy is to mine visual co-occurrence
compositions from local neighborhoods of visual
primitives (e.g., local image patches, segments,
objects). The top-down methods are usually built on
varieties of topic models, which are used to infer the
pattern discovery result for either image or video data.

Although tremendous progress has been made,
there are still several open issues that need to
be addressed in future work, including: (1) how
to interpret visual patterns and effectively measure
their quality; (2) how to select representative and
discriminative patterns; (3) how to suitably integrate
multiple complementary feature modalities for visual
pattern discovery; and (4) how to effectively combine
the bottom-up and top-down approaches of visual
pattern discovery.

Firstly, the interpretation and quality measure
is crucial to visual pattern discovery. Despite a few
successes in explaining visual patterns,6,67,8 we still
need deeper investigation of spatial co-occurrences,
geometric associations, and visual appearance of
individual primitives, in order to better understand
and utilize visual patterns.

Secondly, mining representative and discrimina-
tive patterns is a nontrivial problem as sometimes the
two goals contradict to each other. However, depend-
ing on application, it is interesting to develop methods
that can find such visual patterns, e.g., local frequent
histograms68 and discriminative doublets.69

Thirdly, image and video data naturally exhibit
multiple feature modalities that are complementary.
Most existing approaches discover visual patterns
using a single feature modality. However, for a
better visual pattern discovery, a suitable integration
of multiple complementary features ought to be
studied.54

Finally, bottom-up methods capture local spatial
cues of visual patterns while top-down methods model
compositions of visual patterns.60,84 How to combine
the strengths of bottom-up methods and top-down
methods for visual pattern discovery is an interesting
research topic.
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