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Abstract—Much existing work of multi-feature learning relies
on the agreement among different feature types to improve the
clustering or classification performance. However, as different
feature types could have different data characteristics, such a
forced agreement among different feature types may not bring
a satisfactory result. We propose a novel transductive learning
approach that considers multiple feature types simultaneously
to improve the classification performance. Instead of forcing
different feature types to agree with each other, we perform
spectral clustering in different feature types separately. Each
data sample is then described by a co-occurrence of feature
patterns among different feature types, and we apply these
feature co-occurrence representations to perform transductive
learning, such that data samples of similar feature co-occurrence
pattern will share the same label. As the spectral clustering
results in different feature types and the formed co-occurrence
patterns influence each other under the transductive learning
formulation, an iterative optimization approach is proposed to
decouple these factors. Different from co-training that need to
iteratively update individual feature type, our method allows
all feature types to collaborate simultaneously. It can naturally
handle multiple feature types together and is less sensitive to
noisy feature types. The experimental results on synthetic, object
and action recognition datasets all validate the advantages of our
method compared to state-of-the-arts.

Index Terms—multi-feature fusion; feature co-occurrence pat-
tern; spectral clustering; transductive learning;

I. INTRODUCTION

In many pattern classification problems, the target data,
e.g., an image, can be naturally represented using different
types (modalities) of features, e.g., color, shape, and texture
features. Instead of using a single feature modality, a suitable
integration of multiple complementary features can result in
a better clustering or classification result. Much previous
work has studied how to leverage multiple feature types to
improve the classification performance, such as co-training [1],
[2], canonical correlation analysis [3], and multiple kernel
learning [4], [5], [6]. Despite previous successes, most exist-
ing multi-feature learning approaches rely on the agreement
among different feature types to improve the performance:
the decision of a data sample is preferred to be consistent
across different feature types. However, as different feature
types may have different data characteristics and distributions,
a forced agreement among different feature types may not
bring a satisfactory result.

To handle the different data characteristics among multiple
feature types, we propose to respect the data distribution and
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allow different feature types to have its own clustering results.
This can faithfully reflect the data characteristics in different
feature types, e.g., color feature space can be categorized into
a number of typical colors, while texture feature space catego-
rized into a different number of texture patterns. To integrate
the clustering results from different feature types, we represent
each data sample by a co-occurrence of feature patterns, e.g.,
a composition of typical color and texture patterns. Unlike
much previous work on co-occurrence pattern discovery [7] in
spatial domain, e.g., [8], [9] and [10], we aim to capture co-
occurrence patterns across multiple feature modalities. Such a
treatment has two advantages. First, instead of forcing different
feature types to agree with each other, we compose multiple
feature types to reveal the compositional pattern across dif-
ferent feature types, thus it can naturally combine multiple
features. Comparing with a direct concatenation of multiple
types of features, the feature co-occurrence patterns encode the
latent compositional structure among multiple feature types,
thus have a better representation power. Moreover, as it allows
different clustering results in different feature types, the feature
co-occurrence patterns can be more flexible. Second, relying
on the new feature co-occurrence representations of the data
samples, we can measure the similarity between data samples
of multiple features, such that data samples of similar feature
co-occurrence pattern will share the same label. Our new
feature co-occurrence representation does not need to optimize
individual feature type iteratively like in co-training, thus is
less sensitive to noisy feature types.

We study the collaborative multi-feature fusion in a trans-
ductive learning framework, where the labeled data samples
can transfer the labels to the unlabeled data. To enable
transductive spectral learning, we formulate a new objec-
tive function with three objectives, namely the good quality
of spectral clustering in individual feature types, the label
smoothness of data samples in terms of their feature co-
occurrence representations, and the fitness to the labels pro-
vided by the training data. The optimization of this objective
function is complicated as the spectral clustering results in
different feature types and the formed co-occurrence patterns
influence each other under the transductive learning formula-
tion. We thus propose an iterative optimization approach that
can decouple these factors. During the iterations, the clustering
results of individual feature types and the smoothness of the
labeling of data samples will help each other, leading to
a better transductive learning. To evaluate our method, we
conduct experiments on a synthetic dataset, as well as object
and action recognition datasets. The comparison with related
methods such as [11],[12] and [13] show promising results
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that our proposed method can well handle the different data
characteristics of multiple feature types and is robust to noisy
feature types.

We explain our proposed transduction spectral learning
using multi-feature fusion in Fig. 1. There are four data
classes represented by two feature modalities, i.e., texture
and color. The texture modality forms two texture patterns,
chessboard and brick; while the color modality forms two
color patterns, green and blue. All data samples belong to
one of the four compositional patterns: green brick (Hexagon),
blue chessboard (Triangle), green chessboard (Square), and
blue brick (Circle). Clearly, the four data classes cannot be
distinguished in either the texture or the color feature space
alone. For example, the two classes Square and Triangle share
the same texture attribute, but different in color, while the
Hexagon and Square classes share the same color but different
in texture. However, each class can be easily distinguished
by a co-occurrence of the texture and color pattern, e.g., the
Hexagon class composes “brick” texture and “green” color. As
a result, the unlabeled data samples of the same co-occurrence
feature pattern can be labeled as the same class as the labeled
data sample.

II. RELATED WORK

We review and compare our work to previous work on
multi-feature learning and graph based trasductive learning.

Multi-feature learning. In terms of multi-feature learning,
some existing work enforce the agreement among different
feature types. For example, the method in [14] minimizes the
disagreement of classifiers between two feature modalities.
Similarly, the co-training methods train two classifiers sep-
arately from different feature types and make both classifiers
agree on the labeling of the unlabeled data [1], [2]. The
way of Canonical Correlation Analysis (CCA) is to extract
shared features from multiple feature types [3], [15], [16].
Learning an ensemble kernel form different feature types is
adopted in [4], [5], [6]. More strategies include multiview
stochastic neighbor embedding [17], joint nonnegative matrix
factorization [18], consensus pattern embedding [19], metric
fusion [20], [21] and graph-based feature combination [13],
[22], [23], [24], [25], [26], [27], [28]. For further discussion,
we refer readers to the comprehensive surveys in [29]

Despite these previous advances, there is limited work
that address the disagreement problem of different feature
types in multi-feature learning. A conditional entropy crite-
rion is introduced to detect modality disagreement caused by
modality corruption or noise in [30]. However, even without
the influence of modality corruption and noise, samples in
individual feature types still need not to belong to the same
class. The recent work include context-aware clustering in [31]
and [32], hierarchical sparse coding [33], and latent subspace
Markov network in [34] that incorporates the individual feature
structures of multiple feature types for pattern clustering or
classification. Especially in [31], the authors use the co-
occurrences of feature clusters in different feature types to
represent data samples. Because of this manipulation, the
individual feature spaces from different feature types can have

Fig. 1. Label propagation of unlabeled data by the discovery of the co-
occurrence patterns among different types of clusters. See text for details and
best seen in color.

different data distributions. Although [31] can also handle
multi-feature fusion, it targets at unsupervised clustering only,
and its extension to transductive learning is non-trivial.

Graph transduction. The effectiveness of graph trans-
duction in semi-supervised classification has been proven in
previous work [35], [36]. In the setting of graph transductive
learning, data class labels can be propagated from labeled
data to unlabeled data through undirected graph [37], [38],
[39], [12] or direct graph [13], [40]. Besides single-label data,
some methods of graph transduction can also handle multi-
label data [41], [42]. Moreover, the propagation is not confined
to single graph. There are also methods proposed to deal with
multiple graphs, e.g., multiple feature graphs [13] and sample-
class graphs [43].

Among the numerous methods, the random walk approach
to transductive learning with multiple views (RWMV) in [13]
is closely related to our graph-based multi-feature transduction
approach. Meanwhile, our problem formulation is an extension
of multi-feature graph transductive learning via alternating
minimization (GTAM) in [11]. Thus both RWMV and GTAM
are compared with our method in the experiments. In addition,
we also compare graph transduction game (GTG) [12], which
is a recent work of tranductive learning.

III. PROPOSED METHOD

We study the collaborative multi-feature fusion in a trans-
ductive learning framework, where the labeled data samples
can transfer the labels to the unlabeled data. Consider a collec-
tion of partially labeled multi-class dataset X = (Xl,Xu). The
labeled inputs Xl = {xi}li=1 are associated with known labels
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Yl = {yi}li=1, where yi ∈ L = {1, 2, · · · ,M}. The unlabeled
data Xu = {xi}Ni=l+1 are with missing labels Yu = {yi}Ni=l+1,
where yi ∈ L and the task is to infer Yu. A binary matrix
Y ∈ {1, 0}N×M encodes the label information of X , where
Yij = 1 if xi has a label yi = j and Yij = 0 otherwise.
We set Yij = 0 initially for unlabeled data yi ∈ Yu. We
assume each xi ∈ X is represented as K types/modalities of
features as {f (k)

i }Kk=1, where f
(k)
i ∈ Rdk . To enable multi-

feature collaboration in label propagation, we propose our
methods in the following.

A. Spectral Embedding of Multi-feature Data

To handle the different data characteristics among multiple
feature types, we propose to respect the data distribution
and allow different feature types to have its own clustering
results. As spectral embedding can effectively capture the
data clustering structure [44], we leverage it to study the data
distribution in each feature type.

At first, each feature type {F (k)} = {f (k)
i }Ni=1 of X defines

an undirected graph Gk = (X , E ,Wk) in which the set
of vertices is X and the set of edges connecting pairs of
vertices is E = {eij}. Each edge eij is assigned a weight
w

(k)
ij = κ(xi, xj) to represent the similarity between xi and

xj . The matrix Wk = (w
(k)
ij ) ∈ RN×N denote the similarity

or kernel matrix of X in this feature type. Following spectral
clustering, we use the following function to compute the graph
similarities:

wij = exp

−dist2
(
f

(k)
i , f

(k)
j

)
2σ2

 , (1)

where dist
(
f

(k)
i , f

(k)
j

)
denotes the distance between a pair of

features; σ is the bandwidth parameter to control how fast
the similarity decreases. By summing the weights of edges
being connected to xi, we can obtain the degree of this vertex
d

(k)
i =

∑N
j=1 w

(k)
ij . Let Dk ∈ RN×N be the vertex degree

matrix by placing {d(k)
i }Ni=1 on the diagonal. Then we can

write the graph Laplacian ∆k ∈ RN×N as

∆k = Dk −Wk (2)

and the normalized graph Laplacian Lk ∈ RN×N as Lk =

D
−1/2
k ∆kD

−1/2
k = IN −D

−1/2
k WkD

−1/2
k , where IN is an

identify matrix of order N .
After the above preprocessing to each feature type, we

perform spectral clustering to group the feature points of both
labeled and unlabeled data into clusters. Assume there are Mk

clusters in the kth feature type. The spectral clustering on this
feature type is to minimize the spectral embedding cost [45]:

Ωtype (Rk) = tr
(
RT
kLkRk

)
, (3)

subject to RT
kRk = IMk

, where tr(·) denotes the matrix
trace; Rk ∈ RN×Mk is the real-valued cluster indicators of
the Mk clusters [44]; IMk

is an identify matrix of order Mk.
By using the Rayleigh-Ritz theorem [46], we can obtain the
solution of Rk, which consists of the first Mk eigenvectors

corresponding to the Mk smallest eigenvalues of Lk, i.e.,
r

(k)
i , i = 1, 2, · · · ,Mk, denoting as:

Rk =
[
r

(k)
1 , r

(k)
2 , · · · , r(k)

Mk

]
∆
= eig (Lk,Mk) . (4)

By using Eq. 4, we can independently perform spectral
embedding in different feature types. In other words, we do
not have to force the clustering in different feature spaces to
agree with each other.

B. Building Feature Co-occurrence Patterns and Multi-feature
Similarity Graph

We have obtained K label indicator matrices {Rk}Kk=1

obtained from the K types of features by Eq. 4 in the
above section. To integrate them, we build a matrix Tv ∈
R

∑K
k=1Mk×N as:

Tv = [R1,R2, . . . ,RK ]
T
. (5)

The nth column of Tv is the multi-feature representation
of xn, which conveys the complementary information across
multiple types of feature clusters without forcing clustering
agreement among different feature types. Additionally, Tv

stores soft feature co-occurrence patterns since {Rk}Kk=1 are
soft cluster indicators of multiple feature types. Comparing
to hard clustering indicators used in [31], the spectral soft
relaxation can more effectively capture the feature clustering
structures of individual feature types, and tolerate noisy fea-
tures [44].

With the multi-feature representations of the samples in
X , i.e., the feature co-occurrence patterns Tv in Eq. 5, we
introduce the multi-feature similarity graph Gv = (X , E ,Wv)
based on Tv . By Laplacian embedding, the resulting soft
cluster indicators {Rk}Kk=1 can be considered to obey linear
similarities [23], so are the concatenation of them, i.e., Tv .
Therefore we define the similarity matrix Wv ∈ RN×N as a
linear kernel:

Wv = TT
v Tv =

K∑
k=1

RkR
T
k . (6)

Regarding the weighting coefficients, Wv can be considered
as an average of the linear kernels of the soft cluster indicators
in multiple feature types. Therefore it will be less sensitive to
poor individual feature types. What needs to be noted is that
although the entries of the matrix Wv are not necessary all
non-negative, Wv is semi-positive. One can also add Wv with
a rank-1 matrix whose entries are all equal to the minimum
negative entry of Wv to make sure each entry of Wv non-
negative. We will omit this manipulation in the following
statement and derivation as it does not affect the solution
(Section III-D) to the problem Eq. 9.

According to the similarity matrix, we can obtain the degree
matrix Dv ∈ RN×N by

Dv = diag (Wv1) , (7)

where 1 ∈ RN is an all one vector. We define the normalized
Laplacian as:

Lv = IN −D−1/2
v WvD

−1/2
v . (8)
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With Lv , we encode the smoothness of the multi-feature
similarity graph. It will help us to assign the same label to
data samples of similar feature co-occurrence patterns.

C. Multi-feature Fusion with Transductive Learning

After we construct the multi-feature similarity graph Gv
by the co-occurrence patterns based on the feature clusters of
multiple feature types, it is still a non-trivial task to build a
smooth connection between the feature clustering structures of
multiple feature types and the label predictions of unlabeled
data. In order to address the problem, we introduce a soft class
label matrix Rv ∈ RN×M to assist the transition. Different
from the hard class labels Y ∈ {0, 1}N×M , Rv is a relaxed
real matrix. All taken into account, we propose to minimize
the spectral clustering costs of individual feature types, the
labeling smoothness regularization of unlabeled data samples,
and the fitting penalty of hard class labels Y and soft class
labels Rv together in the following objective function:

Ω
(
{Ri}Ki=1 ,Rv,Y

)
=

K∑
i=1

Ωtype (Ri) + αΩsmooth

(
Rv, {Rj}Kj=1

)
+ βΩfit (Rv,Y)

=
K∑
i=1

tr
(
RT
i LiRi

)
+ αtr

(
RT
v LvRv

)
+ βtr

{
(Rv − SY)

T
(Rv − SY)

}
,

(9)

subject to RT
kRk = IMk

, ∀ k = 1, 2, · · · ,K; Rv ∈ RN×M ;
Y ∈ {1, 0}N×M and

∑M
j=1 Yij = 1 with balance parameters

α and β. In our objective, RT
kRk = IMk

is the requirement of
unique embedding;

∑M
j=1 Yij = 1 is to make a unique label

assignment for each vertex; and S ∈ RN×N is a normalized
term to weaken the influence of noisy labels and balance class
biases. Similar to [11], the diagonal elements of S are filled
by the class-normalized node degrees: s =

∑M
j=1

Y.j�Dv1

YT
.jDv1

,
where � denotes Hadamard product; Y.j denotes the jth
column of Y; 1 ∈ RN is an all one vector.

More specifically, as discussed in Section III-A, the spectral
clustering objective of multiple feature types

∑K
i=1 Ωtype (Ri)

is to reveal the data distributions in multiple feature types
without forcing clustering agreement. In addition, to allow
the soft class labels Rv for X to be consistent on closely
connected vertices in the multi-feature similarity graph Gv ,
we regularize our objective with the following smoothing
function:

Ωsmooth

(
Rv, {Rj}Kj=1

)
= tr

(
RT
v LvRv

)
, (10)

where Lv is defined by Eq. 8 which is related to {Rj}Kj=1.
Furthermore, to prevent overfitting, it should allow occasional
disagreement between the soft class labels Rv and the hard
class labels Y on the dataset X . Thus, we minimize the fitting
penalty:

Ωfit (Rv,Y) = tr
{

(Rv − SY)
T

(Rv − SY)
}
. (11)

Regarding our objective of Eq. 9, it is worth noting that the
three terms of this function are correlated among each other.

Algorithm 1 COLLABORATIVE MULTI-FEATURE FUSION FOR
TRANSDUCTIVE SPECTRAL LEARNING

Input: labeled data {Xl,Yl}; unlabeled data Xu; K types of
features {F (k)}Kk=1; cluster numbers of individual feature
types {Mk}Kk=1; class number M ; parameters α and β

Output: labels on unlabeled data Yu
1: Initialization: initial label matrix Y; normalized graph

Laplacians of individual feature types L′k ← Lk, k =
1, 2 · · ·K

2: repeat
/ / Spectral embedding

3: Rk ← eig (L′k,Mk) , k = 1, 2 · · ·K (Eq. 4)
/ / Generate feature co-occurrence patterns

4: Tv = [R1,R2, . . . ,RK ]
T (Eq. 5)

/ / Build multi-feature similarity graph Laplacian
5: Wv ← TT

v Tv (Eq. 6)
6: Lv ← IN −D

−1/2
v WvD

−1/2
v (Eq. 8)

/ / Compute gradient w.r.t. class-normalized labels
7: ∇(SY)Ω← 2

[
αPLvP + β(P− IN )

2
]

SY (Eq. 15)
/ / Reset unlabeled data

8: X ′u ← Xu
/ / Gradient search for unlabeled data labeling

9: repeat
10:

(̃
i, j̃
)
← arg min

(i,j): xi∈Xu,j∈{1.2,··· ,M}
∇(SY)Ω

11: Yĩ,j̃ ← 1

12: yĩ ← j̃
13: until X ′u ← X ′u\x̃i = ∅

/ / Update soft class labels of unlabeled data
14: Rv ← PSY (Eq. 13)

/ / Regularize graph Laplacians for each feature types
15: L′k ← Lk − α

∑K
k=1 D

− 1
2

v RvR
T
v D
− 1

2
v , k = 1, 2 · · ·K

(Eq. 18)
16: until Ω is not decreasing

We thus cannot minimize Ω by minimizing the three terms
separately. Moreover, the binary integer constraint on Y also
challenges the optimization. We will in Section III-D show
how to decouple the dependencies among them and propose
our algorithm to solve this optimization function.

D. Optimization: Collaboration between Clustering and Clas-
sification

In this section we decouple the dependencies among the
terms of Eq. 9 to solve the objective function. More specif-
ically, we fix the soft feature clustering results {Rk}Kk=1 in
individual feature types to optimize Ω over the class labeling
results with soft class labels Rv and hard class labels Y
together. And similarly, we fix the class labeling results with
soft class labels Rv and hard class labels Y simultaneously to
optimize Ω over the soft feature clustering results {Rk}Kk=1

in individual feature types. In the class labeling update step,
we solve Rv by an analytical form, and then optimize Ω
over Y using a gradient based greedy search approach. In the
feature clustering update step, we optimize Ω over Rk, k =
1, 2, · · · ,K separately.
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The closed form of Rv . Since Ω is quadratic w.r.t. Rv ,
similar to [11], we are allowed to zero the partial derivative
to obtain the analytical solution of Rv w.r.t. Y and {Rk}Kk=1.
We then have:

∂Ω

∂Rv
= αLvRv + β (Rv − SY) = 0, (12)

which implies

Rv =

(
α

β
Lv + IN

)−1

SY = PSY, (13)

where P =
(
α
βLv + IN

)−1

, which is related to {Rk}Kk=1

according to Eq 8.
The soft class labels Rv make the transition smooth from

feature clustering results of multiple feature types {Rk}Kk=1 to
the prediction of hard class labels Y for the dataset X . Then
we can substitute the analytical solution of Rv in Eq. 13 to
Eq. 9, and optimize Ω over Y.

Optimize Ω over Y. Given {Rk}Kk=1, we use the gradient
based greedy search approach [11] to optimize the binary
integer optimization. It it worth noting that searching along
the gradient of hard class labels Y and class-normalized labels
SY is in fact equivalent. Therefore,

Yupdate
(
{Rk}Kk=1

)
= arg min

Y
∇YΩ = arg min

Y
∇(SY)Ω,

(14)
where the gradient of Ω over SY is:

∇(SY)Ω = 2
[
αPLvP + β(P− IN )

2
]

SY. (15)

Eq. 14 shows how to leverage the feature clustering structures
in multiple types of features {Rk}Kk=1 and the labeled data to
predict the labels of unlabeled data.

Optimize Ω over Rk, ∀ k = 1, 2, · · · ,K. We propose to
update data clustering results by data class labeling results,
which have not been studied before to the best of our knowl-
edge. To this end, we fix {Ri}i 6=k, Rv and Y, and obtain
an equivalent minimization function J to minimize Ω (Eq. 9),
where1

J
(
Rk,Rv,Y, {Ri}i 6=k

)
=

K∑
i=1

tr
{

RT
i

(
Li − αD

− 1
2

v RvR
T
v D
− 1

2
v

)
Ri

}
,

(16)

subject to RT
kRk = IMk

. However, the partial derivative of
Dv w.r.t. Rk is intractable since there is a diagonalization
operation in Eq. 7. We therefore use the values of {Ri}Ki=1

at the previous iteration to estimate Dv and treat it as a
constant matrix. Then the optimization turns out to minimize
the following objective:

Ωnew
type

(
Rk,Y, {Rj}i 6=k

)
= tr

{
RT
k

(
Lk − αD

− 1
2

v RvR
T
v D
− 1

2
v

)
Rk

}
,

(17)

subject to RT
kRk = IMk

. It becomes a spectral clustering with
a regularized graph Laplacian:

Lnew
k = Lk − α

K∑
k=1

D
− 1

2
v RvR

T
v D
− 1

2
v . (18)

1The detailed derivation is shown in Appendix.

By using the Rayleigh-Ritz theorem [46], we can update Rk

as the first Mk eigenvectors corresponding to the Mk smallest
eigenvalues of Lnew

k :

Rupdate
k

(
Rk,Y, {Rj}j 6=k

)
= eig (Lnew

k ,Mk) . (19)

Eq. 19 shows how to tune the feature clustering result of
each feature type Rk,∀k = 1, 2, · · · ,K by learning from the
known data class labels and the feature clustering results of the
other feature types. It is worth noting that, at the beginning,
our method does not require the clustering agreement among
different feature types. However, by further optimizing the
objective, individual feature types will be regularized by
known data class labels, and each individual feature type will
be influenced by other feature types. In fact, the regularized
graph Laplacian (Eq. 18) in each feature type has become
a multi-feature Laplacian representation. Such multi-feature
Laplacian representations should gradually agree with each
other.

We also notice that the adjustment of Rk is related to its
value in the previous iteration. This leads to a gradual change
of Rk. Strictly, because of this manipulation, it is difficult
to establish theoretical analysis on the algorithm convergence.
Nevertheless in our observation our method usually converges
in few steps. We show our complete solution in Algorithm 1.

IV. EXPERIMENTS

A. Experiment Setting

In the experiments, the regularized parameters are both set
to 1. Specifically, in our algorithm, we set α = 1, and β = 1 as
we observe they are not very sensitive. The observation on our
extension of GTAM is consistent with GTAM in [11], which
is also robust to the parameter setting. For a fair comparison,
we set C = 1 in RWMV [13], and set µ = 1 in GTAM [11].
As suggested in [13], the graph combination parameters in
RWMV is set equally, i.e., αi = 1/M, i = 1, 2, · · · ,K.
Besides, we use σ = 0.3 and Euclidean distance measure to
build graph similarities for the simulation data (Section IV-B).
In the real datasets, the bandwidth parameter σ equals to the
median of the pairwise distances. We measure dist2 (·, ·) as χ2

distance in the Oxford 17-Category Flower Dataset as provided
in [47], [48] (Section IV-D). Euclidean distance measure is
used in the UCI Handwritten Digit Dataset (Section IV-C),
Human Body Motion Dataset (Section IV-E) and UC Merced
Land Use Dataset (Section IV-F). Moreover, in each real
dataset experiment, we randomly pick labeled samples and
run 10 rounds for performance evaluation.

B. Synthetic Data

We synthesize a toy dataset with two types of features in
Fig. 2. Each type of features is described by a 2-dimensional
feature space. The dataset has four classes labeled by “1”,
“2”, “3” and “4”, respectively. The labeled data are high-
lighted using different colors. Each class has 200 samples.
Feature type #1 has two clusters: Above moon and Below
moon. Feature type #2 also has two clusters: Left moon and
Right moon.
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Synthetic toy data RWMV (acc = 48.11%) GTAM (acc = 92.81%) Ours (acc = 100%)

Fig. 2. Classification on synthetic toy data with two feature types. Different markers, i.e., “1”, “2”, “3” and “4”, indicate four different classes. Shading markers
highlight the labeled data. The first column shows the synthetic toy data. The last three columns show the classifying results of RWMV [13], GTAM [11]
and our proposed approach. Best seen in color.

It is worth noting that the feature clusters are mixed across
different classes. In feature type #1, both classes #1 and #2
share cluster A; and both classes #3 and #4 share cluster B.
In feature type #2, both classes #2 and #4 share cluster L;
and both classes #1 and #3 share cluster R. Therefore it is
infeasible to classify the data by using a single feature type.
In addition, a direct concatenation of features from multiple
feature types will diminish the differences among samples,
thus cannot distinguish all samples from different classes.
For example, by using the GTAM [11], the concatenated
features obtain 92.81% accuracy, but cannot disambiguate
among several samples. In terms of general multi-feature
fusion approaches, e.g., RWMV [13], the requirement that the
data categorization results in individual feature types should
agree with each other does not hold, e.g., the toy data. Hence
the accuracy of RWMV just reaches 48.11%.

In contrast, by utilizing the feature co-occurrence patterns
among multiple feature types, our approach can learn a
favourable clustering, and the accuracy is 100%. Specifically,
class #1 exhibits the co-occurrence of cluster A in feature type
#1 and cluster R in feature type #2; class #2 exhibits the co-
occurrence of cluster A in feature type #1 and cluster L in
feature type #2; class #3 exhibits the co-occurrence of cluster
B in feature type #1 and cluster R in feature type #2; and class
#4 exhibits the co-occurrence of cluster B in feature type #1
and cluster L in feature type #2.

C. UCI Handwritten Digit Dataset

To evaluate how multiple feature types influence hand-
written digit recognition, we test the multi-feature digit
dataset [49] from the UCI Machine Learning Repository [50].
It consists of features of handwritten numerals (‘0’–‘9’) ex-
tracted from a collection of Dutch utility maps. There are 200
samples in each class. So the data set has a total of 2,000
samples. These digits are represented by six types of features:

(1) 76-dimensional Fourier coefficients of the character shapes
(fou); (2) 64-dimensional Karhunen-Loeve coefficients (kar);
(3) 240-dimensional pixel averages in 2×3 windows (pix); (4)
216-dimensional profile correlations (fac); (5) 47-dimensional
Zernike moments (zer); and (6) 6-dimensional morphological
features (mor). All features can concatenate to generate the
649-dimensional features. As the source image dataset is not
available [50], we show the sampled images by the 240-
dimensional pixel features in Fig. 3.

In this experiment, the first 50 samples from each digit
class are labeled for transductive learning. The classification
results on the remaining 1500 unlabeled samples are used for
evaluation. For each class, we randomly pick labeled data from
the 50 labeled candidates and vary the size from 2 to 20. The
accuracy comparison results are shown in Fig. 4, including
our approach, GTAM [11] (on the best single feature type, the
worst single feature type and the concatenations of all feature
types) and RWMV [13] (on all feature types).

The various performances of individual feature types show
there is a substantial disagreement among feature types in
this dataset. The concatenation of all the six feature types
performs better than the worst single feature but worse than the

Fig. 3. Visualization of some sampled images of UCI Handwritten Digits.
Each row shows 30 images from the same class of digits.
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Fig. 4. Performance comparison on UCI handwritten digits.

#cluster per
feature type Accuracy #cluster per

feature type Accuracy

5 0.870± 0.012 50 0.970± 0.001
10 0.925± 0.002 100 0.966± 0.013
20 0.958± 0.001 200 0.936± 0.035

TABLE I
PERFORMANCE OF OUR APPROACH ON UCI HANDWRITTEN DIGITS UNDER

DIFFERENT CLUSTER NUMBERS PER FEATURE TYPE. THE SIZE OF
LABELED DATA IS 20.

best single feature when using GTAM. This also shows that
feature concatenation can be easily affected by the bad feature
types, thus not the best choice for multi-feature transductive
learning. By a linear combination of similarity matrices of the
six feature types [13], the performance of RWMV can be close
to that of GTAM on the best single feature type, but is still
affected by the poor feature types. The best performance is
achieved by our approach, which benefits from learning the
feature co-occurrence patterns. In Fig. 4, we show the results
of our approach with 100 clusters per feature type. On the
one hand, we do not force individual feature types to have
the same clustering structure, thus the feature co-occurrence
patterns faithfully reflect the data distribution characteristics.
On the other hand, as discussed in Section III-C, the feature
co-occurrence patterns are less sensitive to poor feature types
when performing graph transduction. Therefore, our approach
achieves a noticeable performance improvement by combining
all the individual feature types, despite some poor feature types
and the disagreement among different feature types.

We also study the impact of the cluster number in each
feature type. The performance comparison is shown in Table I,
in which the number of clusters per feature type varies from
5 to 200, with the size of labeled samples per class equal
to 20. With the increase of cluster number per feature type,
the accuracy increases first then decreases. This is because
either under-clustering or over-clustering will discourage the
investigation of data distributions in multiple feature types.
Despite that, there still exists a large number of effective
over-clustering which can produce informative feature clusters,

boosting the performance of graph transduction. For example,
when the cluster number per feature type is between 10 to
200, the labeling accuracies of unlabeled data all reach more
than 90%.

D. Oxford Flower Dataset

Our approach can also combine different visual features for
object recognition. The Oxford Flower Dataset is used for
experiment, which is composed of 17 flower categories, in-
cluding Buttercup, Coltsfoot, Daffodil, Daisy, Dandelion, Frit-
illary, Iris, Pansy, Sunflower, Windflower, Snowdrop, LilyValley,
Bluebell, Crocus, Tigerlily, Tulip, Cowslip. Each category is
with 80 images. We show 5 representative flowers for each
class in Fig. 5. In the experiment, we use seven pairwise
distance matrices provided by the dataset. These matrices are
precomputed respectively from seven types of image appear-
ance features [47], [48]. Using these pairwise distances, we
compute the similarities between pairs of features according
to Eq. 1.

We label the first 30 samples per class and use them for
transductive learning. The classification performance on the
remaining 850 unlabeled samples is used for evaluation. We
compare our approach with GTAM [11] (on the best single
feature type, the worst single feature type) and RWMV [13]

Fig. 5. Sample images from Oxford 17-Category Flower Dataset. Five
images are shown for each category. Each category contains instances of pose
variations, scale changes, illumination variations, large intra-class variations
and self-occlusion.
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Fig. 6. Performance comparison on Oxford 17-category flowers.
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(a) GTAM: best single feature type (b) GTAM: worst single feature type

(c) RWMV: all feature types (d) Ours: all feature types, 17 clusters per feature type (e) Ours: all feature types, 100 clusters per feature type

Fig. 7. Confusion matrix comparison on Oxford 17-category flowers.

(on all feature types) w.r.t. mean value and standard deviation
of classification accuracies in Fig. 6. For each class, we
randomly pick labeled data from the 30 labeled candidates
and vary the size from 2 to 20. In Fig. 7, we show the
confusion matrices of compared methods when there are 20
labeled data samples for each class. Because we do not have
the original features, we do not compare the results of feature
concatenation.

As shown in Fig. 6, the individual types of features all show
poor performances. Moreover, the best and worst single feature
types confuse in different flower classes (Fig. 7 (a),(b)), result-
ing in a large performance gap. Therefore there are serious
disagreements among different feature types. In this case, the
effectiveness of the linear combination of similarity matrices
is limited to reduce the classification confusion caused by
different feature types. By comparing Fig. 7 (c) and Fig. 7
(a),(b), we can see that the confusion matrix generated by
RWMV is only a slight smooth over different feature types.
Hence RWMV only brings a little gain compared with the
best single feature type (Fig. 6). In contrast, the confusion
matrices in Fig. 7 (d) and (e) show that our approach can
adequately alleviate classification confusion either using 17
clusters or 100 clusters per feature type. The performances
consequently show significant improvements over GTAM on
individual types of features and RWMV on all feature types.
As mentioned in Section IV-C, because of better exploring the
feature clustering structures of individual feature types, our
method using 100 clusters per feature type performs better

than that of using 17 clusters per feature type.

E. Human Body Motion Dataset

In video data, appearance and motion features comple-
ment each other for body motion description and recognition.
Therefore, in this section, we combine such two feature
types for video recognition. We experiment on the recent
Body Motion Dataset, which is included in UCF101 [51]
and contains 1910 videos in total, with 16 categories of
human body motion actions: Baby Crawling, Blowing Candles,
Body Weight Squats, Handstand Pushups, Handstand Walking,
Jumping Jack, Lunges, Pull Ups, Push Ups, Rock Climbing
Indoor, Rope Climbing, Swing, Tai Chi, Trampoline Jumping,

Fig. 8. Sample videos from Human Body Motion Dataset. One sample from
each category is shown above.
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# labeled
per class

GTAM
with HOG

GTAM
with MBH

GTAM
with

feature concat

RWMV
with

all feature types

Ours
16 clusters

per feature type

Ours
50 clusters

per feature type

Ours
100 clusters

per feature type
20 0.088± 0.004 0.140± 0.007 0.104± 0.007 0.078± 0.007 0.340± 0.042 0.464± 0.040 0.511± 0.026
17 0.087± 0.003 0.135± 0.008 0.101± 0.008 0.080± 0.011 0.332± 0.040 0.465± 0.032 0.509± 0.022
14 0.088± 0.004 0.133± 0.013 0.103± 0.009 0.082± 0.012 0.320± 0.029 0.439± 0.046 0.488± 0.031
11 0.090± 0.004 0.135± 0.013 0.107± 0.007 0.097± 0.024 0.301± 0.039 0.416± 0.050 0.474± 0.025
8 0.089± 0.008 0.132± 0.014 0.102± 0.012 0.101± 0.030 0.261± 0.036 0.381± 0.039 0.424± 0.028
5 0.081± 0.012 0.118± 0.019 0.099± 0.019 0.089± 0.037 0.234± 0.034 0.353± 0.026 0.395± 0.037
2 0.081± 0.012 0.132± 0.029 0.103± 0.023 0.075± 0.019 0.197± 0.047 0.302± 0.038 0.317± 0.034

TABLE II
PERFORMANCE COMPARISON ON HUMAN BODY MOTION VIDEOS.

Walking with a Dog, Wall Pushups. For each category, one
sample action is shown in Fig. 8. Each video is represented as
dense appearance trajectories based on Histogram of Oriented
Gradients (HOG) and dense motion trajectories based on
Motion Boundary Histograms (MBH) [52].

We label the first 50 samples per class for transductive
learning. For each class, we randomly pick the labeled data
from the 50 candidates and vary the size from 2 to 20. The
classification performance on the remaining 1110 unlabeled
samples are used for evaluation. Again, we compare our
approach with GTAM [11] (on individual feature types and
feature concatenation) and RWMV [13] (on all feature types)
in Table II.

Comparing the first two columns of Table II, we can see
that motion features perform better than appearance features
in human body motion classification. The 3rd and 4th columns
show that the approaches of GTAM on feature concatenation
and RWMV that uses all feature types usually perform better
than GTAM on the poorer feature type, but still cannot
compete against GTAM on the better feature type. Therefore
they are not suitable to handle appearance and motion feature
fusion. In contrast, our approach using 16 clusters per feature
type (as shown in the 5th column) improves GTAM on
the best single feature type. To further investigate clustering
structures of individual feature types sufficiently, we over-
cluster individual types of features and obtain 50 or 100
clusters per feature type. The results are shown in the last
two columns of Table II. This process brings a significantly
improved performance in all labeled data sizes, which further
verifies the effectiveness of our approach in fusing appearance
and motion features.

Fig. 9. Sample images from UC Merced 21-Category Land Use Dataset. Five
samples from each category are shown above.

F. UC Merced Land Use Dataset
To further evaluate our method, we conduct scene recogni-

tion experiment on UC Merced Land Use Dataset [53] and
compare one more recent method [12] except for GTAM
and RWMV. This dataset contains 21 classes of aerial or-
thoimagery: agricultural, airplane, baseball diamond, beach,
buildings, chaparral, dense residential, forest, freeway, golf
course, harbor, intersection, medium density residential, mo-
bile home park, overpass, parking lot, river, runway, sparse
residential, storage tanks, and tennis courts. Each class has
100 images with resolution 256 × 256. We show 5 sample
images for each class in Fig. 9. For each image, we extract
SIFT features over the 16 × 16 patches with spacing of
6 pixels. By applying the locality-constrained linear coding
(LLC) [54] on all SIFT features extracted from this dataset,
and running spatial pyramid max pooling on images with
1 × 1, 2 × 2, and 4 × 4 sub-regions, we generate 3 scales
of image representations with dimensionalities of 1 × 1024,
2 × 2 × 1024, and 4 × 4 × 1024 as three feature types. The
image representations with different scales result in different
types of features.

We select the first 40 samples per class as the labeled data
pool and vary the number (from 2 to 20) of labeled samples
from the pool. The classification performance on the remaining
1260 unlabeled samples is reported for evaluation. Besides
GTAM [11] and RWMV [13], we also compare with graph
transduction game (GTG) [12] in Table III. For GTAM or
GTG, we separately perform it on each single feature type
or feature concatenation, and report the best performance it
obtains. For RWMV and our method, we report the results
of muti-feature fusion. As can be seen from the 1st to the
4th columns, GTG generally outperforms GTAM, RWMV,
and performs better than our method with 21 clusters per
feature type. However, by appropriately increasing the number
of clusters per feature type, the classification performance of
our method can be considerably enhanced as shown in the last
two columns of Table III. The results further justify the benefit
of our method and the effectiveness of collaboration between
clustering and classification. Overall, the performance gain
depends on the spectral clustering results of using individual
features, as well as the complementary among the multiple
features.

V. CONCLUSION

The different data characteristics and distributions among
multiple feature types challenge many existing multi-feature



10

# labeled
per class GTAM [11] GTG [12] RWMV [13]

Ours
21 clusters

per feature type

Ours
50 clusters

per feature type

Ours
100 clusters

per feature type
20 0.334± 0.018 0.379± 0.012 0.304± 0.010 0.357± 0.020 0.485± 0.023 0.554± 0.023
17 0.331± 0.019 0.373± 0.018 0.298± 0.016 0.337± 0.028 0.484± 0.020 0.527± 0.023
14 0.340± 0.017 0.380± 0.018 0.293± 0.017 0.325± 0.029 0.458± 0.028 0.511± 0.035
11 0.334± 0.026 0.371± 0.020 0.290± 0.017 0.315± 0.028 0.452± 0.018 0.488± 0.025
8 0.333± 0.031 0.368± 0.022 0.291± 0.026 0.293± 0.026 0.409± 0.039 0.463± 0.037
5 0.320± 0.022 0.350± 0.018 0.276± 0.021 0.274± 0.027 0.372± 0.044 0.400± 0.036
2 0.310± 0.038 0.314± 0.021 0.243± 0.034 0.270± 0.043 0.314± 0.031 0.343± 0.067

TABLE III
PERFORMANCE COMPARISON ON UC MERCED LAND USE IMAGES.

learning methods. Instead of iteratively updating individual
feature type and forcing different feature types to agree with
each other, we allow each feature type to perform data
clustering by its own and then represent each data sample by a
co-occurrence of feature patterns across different feature types.
Relying on these feature co-occurrence representations of the
data samples, we propose a transductive spectral learning
approach, such that the data samples of similar feature co-
occurrence pattern will share the same label. To transfer the
labels from the labeled data to unlabeled data under our trans-
ductive learning formulation, we develop an algorithm that can
iteratively refine the spectral clustering results of individual
feature types and the labeling results of unlabeled data. The
experiments on both synthetic and real-world image/video
datasets highlight the advantages of the proposed method to
handle multi-feature fusion in transducitve learning.

APPENDIX

Given {Ri}i6=k, Rv and Y, we show how to obtain Eq. 16
from Ωsmooth (in Eq. 9). By using the linearity and cyclicity
property of the matrix trace, we have:
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Substituting Eq. 20 into Eq. 9, and combining the constant

terms, we obtain Ω = J + C, where C = αtr
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}
+

βtr
{

(Rv − SY)
T

(Rv − SY)
}

is unchanged since Rv and
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subject to RT

kRk = IMk
.
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