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Abstract— The symmetric positive-definite (SPD) matrix, as
a connected Riemannian manifold, has become increasingly
popular for encoding image information. Most existing sparse
models are still primarily developed in the Euclidean space. They
do not consider the non-linear geometrical structure of the data
space, and thus are not directly applicable to the Riemannian
manifold. In this paper, we propose a novel sparse representation
method of SPD matrices in the data-dependent manifold kernel
space. The graph Laplacian is incorporated into the kernel space
to better reflect the underlying geometry of SPD matrices. Under
the proposed framework, we design two different positive definite
kernel functions that can be readily transformed to the
corresponding manifold kernels. The sparse representation
obtained has more discriminating power. Extensive experimental
results demonstrate good performance of manifold kernel sparse
codes in image classification, face recognition, and visual
tracking.

Index Terms— Kernel sparse coding, Riemannian manifold,
region covariance descriptor, symmetric positive definite
matrices, visual tracking, image classification, face recognition.

I. INTRODUCTION

SPARSE representation (SR) has been an important subject
in signal processing and computer vision communities

with a wide range of applications including visual
tracking [1]–[3], face recognition [4], [5], and image classifica-
tion [6], [7]. Given a set of data points X = {x1, x2, · · · , xn},
the sparse model attempts to find a dictionary D =
{d1, d2, · · · , dN }, where di is the so-called base or atom,
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such that each xi can be linearly reconstructed by a
relatively small subset of atoms from D, meanwhile keeping
the reconstruction error as small as possible. The underlying
linear process significantly depends on the assumption that
the data points and the atoms lie on a vector space R

d .
In many applications, however, data points actually belong to
known Riemannian manifolds such as the space of symmetric
positive-definite (SPD) matrices [8], [9], Stiefel and Grass-
mann manifolds [10], [11]. Most existing sparse models in
R

d fail to consider the non-linear geometrical structure of the
manifold space M, and hence are not directly applicable to
the Riemannian manifold. In this paper, we tackle the problem
of the SR in the space of d × d SPD matrices, denoted
by Sym+

d . Unlike the Euclidean space, the space of Sym+
d

lacks a global linear structure. To formulate the sparse repre-
sentation on Sym+

d , one natural and crucial question arises:
how to allow the SPD matrix to be reconstructed linearly by
the atoms on Sym+

d using an appropriate metric which can
measure the intrinsic distance between two SPD matrices?

Intuitively, a direct approach is to approximate a SPD matrix
by the linear combination of other SPD matrices. In general,
employing the linear combination of atomic matrices to rep-
resent a SPD matrix largely depends on an appropriate metric
to measure the reconstruction error, e.g., Logdet divergence
and Frobenius norm. Sivalingam et al. [12] proposed a tensor
sparse coding method, in which the Logdet divergence is used
to measure the reconstruction error. The sparse decomposi-
tion of a SPD matrix is then formulated as a MAXDET
optimization problem that can be solved by the interior-
point (IP) algorithm. Sivalingam et al. [13] further introduced
a dictionary learning method using the Logdet divergence.
However, the solutions of the above two approaches are
computationally expensive. Sra and Cherian [14] adopted the
Frobenius norm as an error metric to learn a generalized
dictionary of rank-1 atoms to sparsely represent a SPD matrix.
However, several studies [15], [16] show that the Frobenius
norm, which basically vectorizes SPD matrices and measures
the norm between two matrices, is not a good metric, since it
discards the manifold geometry.

In order to apply existing vector-based sparsity modeling
approaches, an alternative scheme is to embed manifold data
points into a vector space R

d . One commonly used vector
space is the tangent space at the mean of the data points
in M. The logarithmic and exponential maps are iteratively
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used to map the manifold data points to the tangent space,
and vice-versa. Exploiting the Log-Euclidean mapping of
SPD matrices, Zhang et al. [17] obtained the vectorized
Log-Euclidean covariance features for sparse representation.
Guo et al. [18] transformed the Riemannian manifold of SPD
matrices into a vector space R

d under the matrix logarithm
mapping. The log-covariance matrix is approximated by a
sparse linear combination of the log-covariance matrices of
training samples. Yuan et al. [19] also proposed to solve
sparse representation for human action recognition by embed-
ding manifolds into tangent spaces. Although log-Euclidean
based approaches benefit from their simplicity, the iterative
computation of the logarithmic and exponential maps results
in a high computational cost. In addition, the tangent space
preserves only the local structure of manifold data points, i.e.,
the true geometry structure is not taken into account, which
often results in sub-optimal performance.

To consider the local manifold structure of manifold data
points, many attempts have been made to implicitly map
these data into a high-dimensional Reproducing Kernel Hilbert
Space (RKHS) by using a nonlinear map associated with a
kernel function. Harandi et al. [20] tackled the problem of
both SR and dictionary learning in Sym+

d by adopting the
Stein kernel to map the SPD matrices to a RKHS. Following
this line of work [20], Zhang et al. [21] proposed an online
dictionary learning method on SPD manifolds using the Stein
kernel. Nonetheless, the Stein divergence is only an approx-
imation of the Riemannian metric as it is positive definite
only for some values of the Gaussian bandwidth parameter.
Barachant et al. [22] exploited a Riemannian-based kernel to
model the SR of SPD matrices for brain-computer interface
applications. Li et al. [23] also embedded Sym+

d into a RKHS
and developed Log-E kernels for both SR and dictionary learn-
ing of SPD matrices based on the Log-Euclidean framework.
Although Log-E kernels obtain satisfactory results in face
recognition and image classification, their modeling does not
explicitly reflect the geometrical structure of the data space.

The key issue of mapping SPD matrices into a RKHS
while preserving the geometrical structure of the data is
the construction of the kernel function. An essential crite-
rion is that the kernel function should be positive definite.
The Gaussian kernel is perhaps the most popular positive
definite kernel on the R

d . Both Jayasumana et al. [9] and
Vemulapalli et al. [24] presented the Gaussian kernel based
on the Log-Euclidean metric. In practice, however, the
nonlinear structure captured by the data-independent kernels,
e.g., Gaussian kernel, may not be consistent with the intrinsic
manifold structure.

In this paper, we construct a data-dependent manifold
kernel function using the kernel deformation principle [25].
The SR on the space of SPD matrices can be performed
by embedding the Sym+

d into a RKHS using the proposed
manifold kernel, as shown in Fig. 1. Furthermore, the graph
Laplacian as a smooth operator of manifold data points is
incorporated into the kernel space to discover the manifold
structure. Different positive definite kernel functions on the
space of SPD matrices are introduced, which can be easily
transformed to the corresponding manifold kernels to better

Fig. 1. Data points xi on the manifold M of SPD matrices are mapped into
RKHS using the data-dependent manifold kernel function. Since the RKHS
is a linear space, φ(xi ) can be naturally represented by a linear combination
of atoms φ(di ).

characterize the underlying geometry structure of the manifold.
These schemes have several advantages: (1) Since the RKHS
is a complete vector space, the input data φ(xi ) can be
naturally approximated by using a sparse linear combination
of atoms φ(di ) from the dictionary. (2) The high-dimensional
RKHS typically yields a more discriminative representation
which is potentially better suited for visual analysis.

The remainder of this paper is organized as follows.
We discuss the preliminaries including Riemannian geometry
on SPD matrices and kernel sparse representation in Sect. II.
In Sect. III, we introduce the data-dependent manifold kernel
on SPD matrices. Then we describe the details of the manifold
kernel sparse representation on Sym+

d , including its objective
function and its implementation in Sect. IV. Experimental
results are reported and analyzed in Sect. V and the conclusion
is given in Sect. VI.

II. PRELIMINARIES

A. Riemannian Geometry on SPD Matrices

SPD matrices usually emerge in the form of covariance
features defined in Definition 1 [26]. The covariance matrix
descriptor, as a special case of SPD matrices, captures feature
correlations compactly in an object region, and therefore has
been proven to be effective for pedestrian detection [27], face
recognition [28], and texture classification [29] etc.

Definition 1: Given a region of interest R of an image, let
zi ∈ R

d , for i = 1, 2, · · · , N, be feature vectors from R, then
the covariance matrix descriptor CR ∈ Sym+

d is defined as

CR = 1

N − 1

N∑

i=1

(zi − μR)(zi − μR)�, (1)

where μR = 1
N

∑N
i=1 zi is the mean vector, and N is the

number of pixels in region R. The feature vector zi may consist
of the pixel coordinates, image gray level or color, image
gradients, edge magnitude, edge orientation, filter responses,
etc. For example, z = [

x, y, I, |Ix |, |Iy |,
√

I 2
x + I 2

y

]�
.

In Sym+
d , the SPD matrix lies on a connected Riemannian

manifold. In this case, the geodesic distance induced by the
Riemannian metric is a suitable choice for considering the
manifold structure of SPD matrices. Two widely used distance
measures in Sym+

d are the affine-invariant distance and the
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Log-Euclidean distance [26]. Typically, the former requires
eigenvalue computations, causing significant slowdowns for
larger matrices. The latter is particularly simple to use and
overcomes the computational limitations of the affine-invariant
distance.

For any matrices C1 and C2 in Sym+
d , the logarithmic

product C1 � C2 is defined as

C1 � C2 := exp
(

log(C1) + log(C2)
)
. (2)

The logarithmic multiplication � on Sym+
d is compatible with

the structure of a smooth manifold: (C1, C2) �−→ C1 �
C−1

2 ∈ C∞. Sym+
d , therefore, is given a commutative Lie

group structure G by �. The tangent space at the identity
element in G forms a Lie algebra H, a vector space. In a
Lie algebra H, the Riemannian manifold of SPD matrices
can be mapped to the Euclidean space by matrix logarithm.
Analogously, the results of the Euclidean space can be mapped
back to the Riemannian space by the matrix exponential.
Given a symmetric matrix C ∈ Sym+

d , C = U�U� is the
eigen-decomposition of SPD matrix C , where U is an ortho-
normal matrix and � = Diag

(
λ1, λ2, · · · , λn

)
is a diagonal

matrix composed of the eigenvalues. SPD matrix C has unique
matrix logarithm log(C) and matrix exponential exp(C) :
{

log(C)= U ·Diag
(

log(λ1), log(λ2), · · · , log(λd )
)·U�

exp(C)= U ·Diag
(

exp(λ1), exp(λ2), · · · , exp(λd )
)·U�

(3)

The Log-Euclidean metric on the Lie group of SPD matrices
corresponds to a Euclidean metric in the logarithmic domain.
The distance between two matrices C1 and C2 is calculated by

d(C1, C2) = ‖ log(C1) − log(C2)‖F , (4)

where ‖ · ‖F denotes the matrix Frobenius norm induced by
the Frobenius matrix inner product 〈·, ·〉.

B. Kernel Sparse Representation

Let X = [x1, x2, · · · , xn] ∈ R
d×n be a data matrix

with n d-dimensional features extracted from an image,
D = [d1, d2, · · · , dN ] ∈ R

d×N be a dictionary where each
column represents an atom, and α = [α1,α2, · · · ,αn] ∈ R

N×n

be the coding matrix. The goal of sparse representation is
to learn a dictionary and corresponding sparse codes such
that each input local feature xi can be well approximated
by the dictionary D. The general formulation of the sparse
representation is expressed as

arg min
D,α

n∑

i=1

‖xi − Dαi‖2
2 + λ‖αi‖1, (5)

where ‖xi − Dαi‖2
2 measures the approximation error, and

‖αi‖1 enforces αi to have a small number of nonzero elements.
Although the objective function in Eq. (5) is not convex in both
variables, it is convex in either D or α. The �1 minimization
problem can be solved efficiently [30].

Recently, Nguyen et al. [31], [32] suggested that each
atom of the dictionary has a sparse representation over the
feature space φ(X ), which leads to a simple and flexible

dictionary representation. Gao et al. [33] proposed a kernel
version of sparse representation in the RKHS mapped by
an implicit function φ. Mercer kernels are usually employed
to carry out the mapping implicitly. The Mercer kernel
is a function K(·, ·) which can generate a kernel matrix
Ki j = K(xi , x j ) = 〈φ(xi ), φ(x j )〉 using pairwise inner
products between mapped samples for all the input data points.
The data points X and dictionary D are transformed to the
corresponding feature space:

X = {x1, x2, · · · , xn} φ−→ {φ(x1), φ(x2), · · · , φ(xn)}
D = {d1, d2, · · · , dN } φ−→ {φ(d1), φ(d2), · · · , φ(dN )}. (6)

Then we substitute the mapped features and dictionary to the
kernelized formulation of sparse representation:

arg min
D,α

n∑

i=1

‖φ(xi ) − φ(D)αi‖2
2 + λ‖αi ‖1. (7)

While the kernel sparse representation has been exten-
sively developed, most algorithms [33]–[35] are still primarily
developed for data points lying on the vector space. In this
work, we focus on the sparse representation of SPD matrices,
Sym+

d . Motivated by the nonlinear generalization performance
of kernel methods for sparse representation [20], [23], [33],
we embed Sym+

d into the RKHS using the data-dependent
manifold kernel, which better reflects the underlying geometry
of the data.

III. DATA-DEPENDENT MANIFOLD KERNEL ON Sym+
d

A. Kernel Deformation

The choice of the kernel function is an essential issue of
mapping SPD matrices into the RKHS while preserving the
geometrical structure of the data. In this work, we adopt a
kernel deformation principle [25] to learn a data-dependent
kernel function. The goal of kernel deformation is to derive a
data-dependent kernel by incorporating the estimated geometry
prior of the underlying marginal distribution from the input
matrix X = [x1, x2, · · · , xn] ∈ R

d×n . Since the resulting
kernel considers the data distribution, it may achieve better
performance than the original input kernel.

Let H denote the original RKHS reproduced by the kernel
function K(xi , x j ) = 〈K(xi , ·),K(·, x j )

〉
H. K(xi , x j ) can be

built using the Riesz representation theorem for the decision
function f (x), i.e., f (x) = 〈

f,K(x, ·)〉H. To take the geometry
prior of the data distribution as a similarity measure in the
deformed kernel, we define a linear space V with a positive
semidefinite inner product, and let S : H −→ V be a bounded
linear operator. The deformed RKHS H̃ can be defined by the
modified inner product [25]

〈 f, g〉H̃ = 〈 f, g〉H + 〈S f, Sg〉V .

Given samples X = [x1, x2, · · · , xn], let S : H −→ R
n

be the decision map S( f ) = (
f (x1), · · · , f (xn)

)
. Denote

f = (
f (x1), · · · , f (xn)

)
, g = (

g(x1), · · · , g(xn)
)
, and

f , g ∈ V , we have

〈S f, Sg〉V = 〈 f , g〉 = f �M g, (8)
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where M is a symmetric positive semi-definite matrix that
captures the geometry relationship between all the data points.
Thus we have the following relationship between the two
Hilbert spaces H and H̃:

〈 f, g〉H̃ = 〈 f, g〉H + f �M g. (9)

Eq. (9) combines the original ambient smoothness with an
intrinsic smoothness measure defined in the deformation term
f �M g. With the modified data-dependent inner product, we
can define a deformed kernel function K̃(xi , x j ) associated
with H̃ as follows.

Definition 2 [25]: Let H denote the original RKHS repro-
duced by the kernel function K(xi , x j ), and H̃ denote the
deformed RKHS. Given the relationship between the two
Hilbert spaces, i.e., 〈 f, g〉H̃ = 〈 f, g〉H+ f �M g, the deformed
kernel function K̃(xi , x j ) associated with H̃ is defined as

K̃(xi , x j ) = K(xi , x j ) − μk�
xi

(I + M K )−1 Mkx j . (10)

Here, I is an identity matrix. K = [K(xi , x j )
]

n×n is the
original kernel matrix in H. kxi and kx j denote the column

vectors kxi = [K(xi , x1), · · · ,K(xi , xn)
]� ∈ R

n×1 and kx j =[K(x j , x1), · · · ,K(x j , xn)
]� ∈ R

n×1, respectively. μ ≥ 0 is
the kernel deformation parameter controlling the smoothness
of the functions.

B. Data-Dependent Kernel With Graph Laplacian

From Eq. (10), preserving the geometrical structure of the
data largely depends on M . The spectral graph theory [36]
indicates that the geometrical structure can be approximated
by the graph Laplacian associated with the data points. Con-
sidering a graph with n vertices where each vertex corresponds
to a data point xi ∈ Sym+

d , we define the edge weight matrix
W ∈ R

n×n as

Wij =
{

1, i f xi ∈ Nε(x j ) or x j ∈ Nε(xi )
0, otherwi se,

(11)

where Nε(x j ) represents the set of ε nearest neighbors of x j ,
which can be effectively computed by Log-Euclidean distance
defined in Eq. (4). In our experiments, the neighborhood size
is empirically set to 5.

Let L = D − W , where D is a diagonal matrix whose
elements are column (or row) sums of W , Dii = ∑

j Wi j . L
is called graph Laplacian. By setting M = L, we obtain the
following manifold adaptive kernel:

K̃(xi , x j ) = K(xi , x j ) − μk�
xi

(I + L K )−1 Lkx j . (12)

When μ = 1, we are able to better understand the kernel
deformation. In this case, Eq. (12) can be rewritten as

K̃ = K − K �(I + L K )−1L K
= K

[
(I + L K )−1(I + L K ) − (I + L K )−1 L K

]

= K (I + L K )−1

= K (K −1 K + L K )−1

= K
(
(K −1 + L)K

)−1

= (K −1 + L)−1. (13)

Here K̃ = [K̃(xi , x j )
]

n×n is the kernel matrix computed by
the new kernel function K̃(·, ·). The new kernel matrix K̃

can be regarded as the “reciprocal mean” of matrix K −1

and L [37]. Since Eq. (11) reflects the relationships between
data points, each element of W can be used to effectively
evaluate how a data point xi resembles another data point x j .
In this case, the graph Laplacian L measures the variation
of the decision function f along the graph built from all
samples. In other words, the geometry prior of the data points
is included by L. Based on Eq. (13), K̃ is likely to be governed
by L when strong geometrical relationships exist between all
the data points. That is, K̃ is significantly deformed by the
geometrical relationships. In contrast, for the extreme case
in which there are no relationships between the data points,
the adjacency matrix W will reduce to an identity matrix.
Therefore, L will be a zero matrix, and Eq. (13) is equivalent
to the original (undeformed) kernel.

C. Kernels for SPD Matrices

Since SPD matrices do not lie on the Euclidean space,
an arithmetic subtraction would not measure the distance
between two SPD matrices. Consequently, traditional kernels
(e.g., Gaussian kernel, polynomial kernel, and linear kernel)
cannot be directly transformed to manifold adaptive kernels.
To address this issue, we adopt a more accurate geodesic
distance on the manifold to define kernels on Sym+

d . Neverthe-
less, not all geodesic distances yield positive definite kernels.
In this paper, we state two positive definite kernels on Sym+

d
through the true geodesic distance, as illustrated in Theorem 1
and Theorem 2.

Before the statement of Theorem 1 and Theorem 2, we
introduce the definition of the positive definite kernel [38].

Definition 3: Let X be a nonempty set. A function K(·, ·):
X × X −→ R is called a positive definite kernel if and only
if K(·, ·) is symmetric and for all n ∈ N, {x1, x2, · · · , xn} ⊆
X gives rise to a positive definite Gram matrix, i.e., for all
Z = {z1, z2, · · · , zn} ∈ R

n, we have
n∑

i, j=1

zi z j Ki, j ≥ 0, where Ki, j := K(xi , x j ).

Theorem 1: Let KG : Sym+
d × Sym+

d → R : KG(xi , x j ) =
exp

(−γ ‖ log(xi )− log(x j )‖2
F

)
. KG defines a positive definite

kernel for all γ ∈ R.
Proof: We use K G = [KG (xi , x j )

]
n×n to denote the

kernel matrix. Based on Definition 3, KG is positive definite if
and only if Z� K G Z ≥ 0, ∀Z ∈ R

n . Note that KG (xi , xi ) = 1,
i.e., K G

i, j = 1 for i = j . Thus, expanding Z� K G Z yields

Z� K G Z =
n∑

i=1

n∑

j=1

zi K G
i, j z j

=
n∑

i=1

∑

j=i

zi z j K G
i, j +

n∑

i=1

∑

j �=i

zi z j K G
i, j

=
( n∑

i=1

zi

)2 −
n∑

i=1

∑

j �=i

zi z j +
n∑

i=1

∑

j �=i

zi z j K G
i, j

=
( n∑

i=1

zi

)2 +
n∑

i=1

∑

j �=i

zi z j (K G
i, j − 1). (14)
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Since K G
i, j ∈ (0, 1], for ∀zi , z j , min

(
zi z j (K G

i, j − 1)
) =

−zi z j holds. We get

min
(
Z� K G Z

) =
( n∑

i=1

zi

)2 −
n∑

i=1

∑

j �=i

zi z j

=
n∑

i=1

(zi )
2 ≥ 0.

Theorem 2: Let KL : Sym+
d × Sym+

d → R : KL(xi , x j ) =
tr

(
log(xi ) log(x j )

)
, where tr is the matrix trace operation.

KL defines a positive definite kernel.
Proof: Using the notation log(x1) = A = [ai j ]d×d ,

log(x2) = B = [bi j ]d×d , we denote C = AB = [ci j ]d×d =(∑d
k=1 aikbkj

)
d×d . Since B is a symmetric matrix, we get

tr
(

log(xi ) log(x j )
) = tr(C) =

d∑

i=1

cii =
d∑

i=1

d∑

j=1

ai j b j i

=
d∑

i=1

d∑

j=1

ai j bi j =
〈

log(xi ), log(x j )
〉
.

Therefore, tr
(

log(xi ) log(x j )
)

is an inner product. The
induced norm can be used to define the distance which is
equal to the geodesic distance. Furthermore, to show that the
kernel KL is positive definite, based on Definition 3, we need
to prove that Z� K L Z ≥ 0 for ∀z ∈ R

n , i.e.,

Z� K L Z =
n∑

i=1

n∑

j=1

zi K Lz j

=
n∑

i=1

n∑

j=1

zi tr
[

log(xi ) · log(x j )
]
z j

= tr

[( n∑

i=1

zi log(xi )

)2]

=
∥∥∥∥

n∑

i=1

zi log(xi )

∥∥∥∥
2

F

≥ 0.

Based on Theorem 1 and Theorem 2, positive definite
kernels KG and KL can be directly transformed to mani-
fold kernels K̃G and K̃L on the Riemannian manifold of
SPD matrices, respectively,
{
K̃G (xi , x j ) = KG(xi , x j ) − μ

(
kG

xi

)�
(I + L K G)−1 LkG

x j

K̃L (xi , x j ) = KL(xi , x j ) − μ
(
kL

xi

)�
(I + L K L)−1 LkL

x j
.

(15)

In the remaining part of this article, notation K̃, instead of
K̃G and K̃L , is used to present the manifold kernel specified
in Eq. (12) for brevity.

IV. MANIFOLD KERNEL SPARSE

REPRESENTATION ON Sym+
d

In the space of Sym+
d , we do not use the linear combination

of atoms x̂i = ∑N
j=1 αi j d j to represent the data xi ,

since the approximation x̂i corresponding to xi may not be
on the Riemannian manifold. In this section, we perform the
SR of SPD matrices by embedding Riemannian manifold into
RKHS using the manifold kernels introduced in Sect. III.

A. Sparse Coding

Employing the manifold kernels specified in Eq. (15)
induced by the feature mapping function φ: Rd → RF , the
data points X on Sym+

d are transformed to the corresponding
feature space {φ(x1), φ(x2), · · · , φ(xn)}. The kernel similarity
between xi and x j is defined by K̃(xi , x j ) = φ(xi )

�φ(x j ).
The dictionary D in the feature space is denoted by
{φ(d1), φ(d2), · · · , φ(dN )}. The similarity between dictionary
atoms and the original data points can also be computed
using the kernel function as φ(di )

�φ(x j ) = K̃(di , x j ).
Similarly, the similarity among dictionary atoms is
φ(di )

�φ(d j ) = K̃(di , d j ). For the Riemannian data
points x on Sym+

d , we solve a sparse vector α ∈ R
N×n

such that φ(x) admits the sparse representation α over the
dictionary φ(D). The kernelized sparse coding is given by

min
α

‖φ(X ) − φ(D)α‖2
F + λ‖α‖1. (16)

For each manifold point xi , Eq. (16) can be expanded as
∥∥∥φ(xi ) − φ(D)αi

∥∥∥
2

F
+ λ‖αi ‖1

=
∥∥∥∥φ(xi ) −

N∑

j=1

φ(d j )α j,i

∥∥∥∥
2

F
+ λ‖αi‖1

= K̃(xi , xi ) − 2
N∑

j=1

α j,iK̃(xi , d j )

+
N∑

j=1

N∑

t=1

α j,iαt,i K̃(di , d j ) + λ‖αi‖1

= φ(xi )
�φ(xi ) − 2α�

i φ(D)�φ(xi )

+α�
i φ(D)�φ(D)αi + λ‖αi‖1

= ˜Kxi xi − 2α�
i

˜KDxi + α�
i

˜KDDαi + λ‖αi‖1. (17)

Here, ˜KDD is a N × N matrix. It contains the kernel similar-
ities between all the dictionary atoms, i.e., K̃(dt , d j ), where
t = 1, 2, · · · , N and j = 1, 2, · · · , N . ˜KDxi ∈ R

N×1 consists
of K̃(xi , d j ), j = 1, 2, · · · , N . αi ∈ R

N×1 corresponds to
the sparse code of xi . The objective function in Eq. (17) is
similar to the sparse coding problem except for the definitions

of ˜KDD and ˜KDxi which can be calculated by the manifold
kernel functions in Eq. (15).

To derive an efficient solution to kernel sparse coding, we
introduce the following theorem.

Theorem 3: In the RKHS H̃, consider the least-square
problem

min
αi

∥∥∥∥φ(xi ) −
N∑

j=1

φ(d j )α j,i

∥∥∥∥
2

F

≡ min
αi

˜Kxi xi − 2α�
i

˜KDxi + α�
i

˜KDDαi . (18)

Let U�U� be the singular value decomposition (SVD) of the
the symmetric positive definite matrix ˜KDD. Then the problem
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defined in Eq. (18) is equivalent to the least-square problem
in R

N

min
αi

‖� − 	αi‖2
2,

where 	 = (U
1/2)�, � = (	�)−1
˜KDxi .

1

Proof: The symmetric positive definite matrix ˜KDD is
rewritten as ˜KDD = U�U� through singular value decom-
position (SVD). U is an an orthonormal matrix and � is a
diagonal matrix. More specifically,

˜KDD = U
U� = U
1/2(
1/2)�U�.

For simplicity, let 	 = (U
1/2)�, then

˜KDD = 	�	.

Since 	�(	�)−1 = I , ˜KDxi can be given by

˜KDxi = 	�(	�)−1
˜KDxi .

Similarly, let � = (	�)−1
˜KDxi , then

˜KDxi = 	��.

Since the optimization of αi is independent on �, we add
��� into Eq. (18) and omit constant ˜Kxi xi with no impact
on minimizing Eq. (18). Thus, we get

min
αi

��� − 2α�
i 	�� + α�

i 	�	αi ≡ min
αi

‖� − 	αi‖2.

Based on the Theorem 3, minimizing Eq. (17) is equivalent
to solving

min
αi

‖� − 	αi‖2 + λ‖αi‖1. (19)

Eq. (19) is a standard Lasso problem [39], which can be solved
efficiently with the SPAMS package [30]. Since we solve
Eq. (19) by fixing the dictionary D, both ˜KD D and (	�)−1 are
computed only once. In our experiments, we set λ = 0.01.

B. Dictionary Learning

When the kernel sparse codes for the given manifold data
points X are computed, the dictionary can be updated such
that the reconstruction error for each xi is minimized. The
dictionary-learning problem, therefore, can be formulated as

min
αi ,D

n∑

i=1

∥∥∥∥φ(xi ) −
N∑

j=1

φ(d j )α j,i

∥∥∥∥
2

F
+ λ‖αi‖1. (20)

Writing the first term of the objective in Eq. (20) as a function
of D for dictionary update, we have

f (D) =
n∑

i=1

[
1 − 2

N∑

j=1

α j,iK̃(xi , d j )

+
N∑

j=1

N∑

l=1

α j,iαl,i K̃(dl , d j )

]
, (21)

1According to the Definition 3, KG ( resp. KL ) is positive definite if and
only if Z� K G Z ≥ 0 (resp. Z� K L Z ≥ 0 ), for ∀Z ∈ R

n . Therefore, (	�)−1

is a pseudo inverse.

where α j,i denotes the i -th element in the coefficient vector α j .
After initializing the dictionary D1, we solve the optimization
by repeating two steps (i.e., sparse coding and dictionary
update). To update dictionary atoms {d j }N

j=1, we compute the
partial derivative of Eq. (21) with respect to d j :

∂ f (D)

∂d j

=
n∑

i=1

[
− 2α j,i

∂K̃(xi , d j )

∂d j
+

N∑

l=1

α j,iαl,i
∂K̃(dl , d j )

∂d j

]
.

(22)

We take K̃G as an example to perform the dictionary
learning (K̃L can be carried out by a similar scheme).
We set Eq. (22) to 0 using the definition of manifold adaptive
kernel functions K̃G(xi , x j ) in Eq. (15) as follows:

−4γ d−1
j

n∑

i=1

[
− α j,i

(
KG(

xi , d j
)(

log(d j ) − log(xi )
)
+ μ

·
n∑

s=1

�sKG (xs, d j )
(

log(d j )−log(xs)
))

+
N∑

l=1

α j,iαl,i

(
KG(

dl , d j
)(

log(d j ) − log(dl)
)

− μ ·
n∑

s=1

sKG (xs, d j )

×
(

log(d j ) − log(xs)
))]

= 0, (23)

where
{

� = (
kG

xi

)�
(I + L K G)−1L

 = (
kG

dl

)�
(I + L K G)−1 L .

(24)

Here, � ∈ R
1×n and  ∈ R

1×n . During updating, each
dictionary atom is updated independently. At time t + 1, d j

is updated using the results of time t . d(t)
j represents the j -th

atom in the t-th iteration. Eq. (23) can be rewritten as

−4
n∑

i=1

[
− α j,i

(
KG(

xi , d(t)
j

)(
log(d j )

(t+1) − log(xi )
)

− μ ·
n∑

s=1

�sKG (xs, d(t)
j )

×
(

log(d j )
(t+1) − log(xs)

))
+

N∑

l=1

α j,iαl,i

×
(
KG(

dl , d(t)
j

)(
log(d j )

(t+1) − log(dl)
)

− μ

·
n∑

s=1

sKG (xs, d(t)
j )

(
log(d j )

(t+1) − log(xs)
))]

= 0. (25)

By solving Eq. (25), we obtain the iterative formulation in
Eq. (27), as shown at bottom of the next page. diag[·] denotes
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Algorithm 1 Dictionary Learning on Sym+(n) Using Kernel
Trick

a diagonal matrix using the element as its diagonal. 1n and 1N
are n-dimensional and N-dimensional 1s column vectors,
respectively. α j ∈ R

1×n is a row vector containing the set
of coefficients of data points corresponding to the dictionary
atom d j . Note that K G = [KG(xi , x j )

]
n×n is replaced with K

in Eq. (27) for simplicity. Kernel matrix K (t)
d j ,D ∈ R

1×N con-

tains the kernel similarity elements KG
(
d(t)

j , dk
)

between each
atom d j and the entire dictionary D, where k = 1, 2, · · · , N .
Similarly, kernel matrix K (t)

d j ,X ∈ R
1×n contains the kernel

similarity elements KG
(
d(t)

j , xi
)

between each atom d j and
all data points. Algorithm 1 gives the details for dictionary
learning.

V. EXPERIMENTS

In this section, we evaluate the proposed manifold kernel
sparse representation using three applications: visual tracking,
face recognition and image classification. Our visual tracking
experiments are implemented in MATLAB2012b on an Intel
Core2 2.5 GHz processor with 4GB RAM, and the image
classification and face recognition experiments are run in
MATLAB2012b on an Intel(R) Xeon(R) 2.93 GHz processor
with 24GB RAM.

A. Visual Tracking
Motivated by recent advances of sparse coding for visual

tracking [3], [40]–[42], we employ the sparse coding of SPD
matrices as the object representation. Tracking is then carried
out within a Bayesian inference framework, in which the bin-
ratio similarity function [43] of sparse histograms between
the candidate and the template are used to construct the
observation model.

1) Experimental Setup: To take the local appearance infor-
mation of patches into consideration, we resize the object
image to 32 × 32 pixels and extract 36 overlapped 12 × 12
sliding windows (or local patches) within the object region
with four pixels as the step length. Following [27], the
covariance descriptors are computed from the feature vector[
x, y, I, |Ix |, |Iy|,

√
(Ix )2 + (Iy)2, |Ix x |, |Iyy |

]�
. The covari-

ance matrix for each image patch, therefore, is an 8 × 8 SPD
matrix. With the overlapped patches extracted from the object
region in the first frame, k-means clustering is performed in
the Log-Euclidean framework [26] to obtain the dictionary D
with 72 atoms. The sparse coefficient vectors of patches are
normalized and concatenated to form a histogram representa-
tion by [α1,α2, · · · ,α36]�. The parameters γ and μ are set
to 1 and 0.01, respectively. Due to space limitations, we only

provide the corresponding tracking results of the K̃G kernel
sparse coding of SDP matrices in this paper. The performance

of the K̃L kernel is comparable to the K̃G in the visual
tracking scenario.

We compare our tracker with the state-of-the-art sparsity-
based tracking algorithms including L1 [44], APGL1 [45],
LSK [42], MTT [2], LSST [41], SCM [40], and MLSAM [3].
We run our method on eight challenging video sequences
which suffer from heavy occlusions, illumination changes,
pose variations, motion blur, scale variations and complex
backgrounds.

2) Quantitative Comparisons: One widely used evaluation
method to measure tracking results is the center location error.
It is based on the relative position errors (in pixels) between the
central locations of the tracked object and those of the ground
truth. From Table I, we can see that our algorithm achieves
the lowest tracking error in almost all the sequences. However,
when the tracker loses the object for several frames, the
output location can be random and therefore the average center
location errors may not evaluate the tracking performance
correctly. In this paper, precision plot is also adopted to
measure the overall tracking performance. This shows the
percentage of frames whose estimated locations are within

log(d j )
(t+1)

=
log(D)diag

[
K (t)

d j ,D
]
αα�

j −log(X )diag
[

K (t)
d j ,X

]
α�

j +μ log(X )diag
[

K (t)
d j ,X

]
��1�

n α�
j −μ log(X )diag

[
K (t)

d j ,X
]
�1�

Nαα�
j

K (t)
d j ,Dαα�

j − K (t)
d j ,Xα�

j + μK (t)
d j ,X��1�

n α�
j − μK (t)

d j ,X�1�
Nαα�

j

=
log(D)diag

[
K (t)

d j ,D
]
αα�

j − log(X )diag
[

K (t)
d j ,X

](
α�

j − μ��1�
n α�

j + μ�1�
Nαα�

j

)

K (t)
d j ,Dαα�

j − K (t)
d j ,Xα�

j + μK (t)
d j ,X��1�

n α�
j − μK (t)

d j ,X�1�
Nαα�

j

(27)
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Fig. 2. Precision plot for 8 representative sequences using ˜KG kernel. The performance score of each tracker is shown in the legend (best viewed on
high-resolution display).

Fig. 3. Success rate curve for 8 representative sequences using˜KG kernel. The performance score of each tracker is shown in the legend (best viewed on
high-resolution display).

TABLE I

CENTER LOCATION ERROR (CLE)(IN PIXELS). BOLD FONT INDICATES

THE BEST PERFORMANCE AND italic FONT INDICATES

THE SECOND BEST PERFORMANCE

the given threshold (e.g., 20 pixels). More accurate trackers
have higher precision at lower thresholds. We provide the
precision plot results of eight trackers over eight representative
sequences, as shown in Fig. 2. We see that the proposed tracker
achieves the most robust and accurate tracking performance in
most video sequences.

The tracking overlap rate indicates the stability of each
algorithm as it takes the size and pose of the target object

into account. It is defined by score = area(RO IT
⋂

RO IG )
area(RO IT

⋃
RO IG )

,

where RO IT is the tracking bounding box and RO IG is the
ground truth. This can be used to evaluate the success rate of
any tracking approach. Table II gives the average overlap rates.
Overall, the proposed tracker outperforms the state-of-the-art
methods.

Generally, the tracking result is considered as a success
when the score is greater than the given threshold ts . It may
not be fair or representative for tracker evaluation merely using
one specific threshold (e.g., ts = 0.5), We therefore count the
number of successful frames at the thresholds which vary from
0 to 1 and plot the success rate curve for our tracker and
the compared trackers. The area under curve (AUC) of each
success rate plot is employed to rank the tracking algorithms.
Robust trackers have higher success rates at higher thresholds.
The success rate curve of eight representative sequences
is illustrated in Fig. 3. We can see that the proposed
method achieves the best tracking performance on most video
sequences.
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Fig. 4. The tracking results of eight trackers over the representative frames of the Shaking, Skating1, Boy, Deer, Dudek, Freeman1, Sylvester and David3
sequences from top to bottom.

TABLE II

OVERLAP RATE (OR)(%). BOLD FONT INDICATES THE BEST

PERFORMANCE AND italic FONT INDICATES

THE SECOND BEST PERFORMANCE

3) Qualitative Comparisons: We report the tracking
results of eight trackers (highlighted by bounding boxes in
different colors) over the representative frames of the eight
video sequences, as shown in Fig. 4. In the “Shaking”
sequence, the target undergoes pose variation, illumination
change, and partial occlusion. The SCM, L1, and LSK track-
ers drift from the object quickly when the spotlight blinks

suddenly (e.g., frame �60). MLSAM and our trackers can
successfully track the surfer throughout the sequence with
relatively accurate bounding box sizes. MTT and APGL1
methods are able to track the object in this sequence but with
less success than our method. In the “Skating1” sequence,
the dancer continuously changes her pose on a stage with a
complex background as well as drastic illumination variations.
The L1, APGL1, LSST, MTT and LSK methods cannot track
the object correctly. The MLSAM method performs slightly
better. Our tracker loses the object at frame �359, but recovers
at frame �368. Overall, the SCM and our method outperform
the other trackers.

“Boy” and “Deer” sequences are used to evaluate whether
our method is able to tackle fast motion. In the “Boy”
sequences, a boy jumps irregularly as the object moves
quickly. It is difficult to predict the boy’s location. Most meth-
ods fail to track the object at the beginning of the sequence
(e.g., �95). In contrast, our method achieves relatively lower
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TABLE III

AVERAGE CLASSIFICATION RATE (%) ON SCENE 15 DATASET

center location errors and higher success rates than other
methods. In the “Deer” sequence, the appearance change
caused by motion blur is very drastic. APGL1, MTT, SCM, L1
and LSK trackers do not perform well in some frames
(e.g., �40, �63 ). Though LSST and MLSAM trackers are able
to keep track of the object to the end, the proposed approach
achieves both the lowest tracking error and the highest overlap
rate.

In the “Dudek”, “Freeman1” and “Sylvester” sequences,
the objects suffer from large pose and view changes. For
the “Dudek” sequence, we see that the LSK tracker loses
the target very quickly at the beginning of the sequence
(e.g., �363). The LSST, MTT, and APGL1 trackers fail when
scale change occurs (e.g., �853). In contrast, our method has
both relatively low center location error and high overlap
rate, as shown in Table I and Table II. For the “Freeman1”
sequence, although the LSST tracker obtains slightly better
results than MTT, MLSAM, LSK and L1 trackers, it loses the
object after drastic pose change (e.g., �265). In comparison,
APGL1 and our trackers track the object successfully. We note
that the SCM performs better than the other methods. For the
“Sylvester” sequence, APGL1, LSST, L1 and LSK trackers are
unable to locate the object in the whole sequence. In contrast,
MTT, SCM, MLSAM and our method track the object well
and provide tracking boxes that are much more accurate and
consistent.

In the “David3” sequence, the person suffers from partial
occlusion as well as drastic pose variations. It is difficult
to handle these two challenges. The SCM, APGL1, L1 and
MTT methods fail to track the object when the person walks
behind a tree (e.g., �84). The LSST and LSK methods lose
the object when the person changes direction (e.g., �159).
In comparison, only MLSAM and our tracker succeed
throughout this sequence.

B. Image Classification

We evaluate our method on the Scene 15 dataset [46]
and Brodatz dataset [47]. The Scene 15 dataset contains
4485 images of 15 different scenes. The number of images per
category ranges from 200 to 400. The dataset contains not only
indoor scenes, e.g., store and living-room, but also outdoor
scenes, e.g., streets and mountain. To be consistent with previ-
ous work [23], we use the same setting to extract 64 covariance
descriptors. We randomly select 100, 000 covariance matrices
from the total covariance descriptors of all images to learn the
dictionary.

In the Brodatz dataset, each class corresponds to only
one image. All 111 texture images are used to train the
dictionary. Following the previous works in [20] and [23],

Fig. 5. The effect of the parameters μ and γ on the Brodatz dataset.
(a) The relationship between the classification accuracy and the parameter μ.
(b) The relationship between the classification accuracy and the parameter γ .

we normalize each training image to 256 × 256 pixels, and
obtain non-overlapping blocks of 32 × 32 pixels. A 5 × 5
covariance descriptor is then computed from each of these
blocks using the feature vector

[
I, |Ix |, |Iy |, |Ix x |, |Iyy|

]�.
Twenty blocks from each image are randomly selected for
the dictionary learning.

1) Parameter Selection: The kernel deformation parameter
μ is an important factor in the manifold kernel sparse rep-
resentation. We experimentally test the effect of μ on the
Brodatz dataset. In the manifold kernel K̃G , KG (xi , x j ) =
exp

(−γ ‖ log(xi )−log(x j )‖2
F

)
, we fix the parameter γ = 1/d ,

where d is the dimensionality of the covariance descriptor.
We list the results based on different μ ranging from
0.001 to 1 in Fig. 5. We observe that our method obtains good
performance when μ is fixed at either 0.015 or 0.02.

In addition, when K̃G is used in the sparse representation,
kernel parameter γ is also very important and affects classi-
fication accuracy. To depict the relationship between γ and
classification accuracy, we set γ = 3n/d , where n ranges
from −3 to 2 with step size 1. The relationship between γ
and classification accuracy is shown in Fig. 5. We see that our
method achieves promising results in a wide range of γ value.
For simplicity, we set γ = 1/d in the following experiments.

2) Result Comparisons: For the Scene 15 dataset, the Bag-
of-Words image representation [46] is applied for training and
classification. Following the common experimental settings,
we randomly select 100 images per category as training
data and use the rest as test data. The reported results of
the dataset are the averages of 20 independent experiments.
Table III shows that the proposed kernels have comparable
performance with other competitive methods. Note that the

K̃G (μ = 0.015, γ = 0.03) kernel achieves the best
results. We notice that as the number of atoms grows, the
average classification rates increase, as illustrated in Table III,
but the results are very close. The underlying reason is
that our dictionary-learning method is generative without



WU et al.: MANIFOLD KERNEL SP OF SPD MATRICES AND ITS APPLICATIONS 3739

TABLE IV

COMPARISON OF CLASSIFICATION ACCURACY (%)

ON THE BRODATZ DATASET

Fig. 6. The average classification accuracy curves vs. the number of atom
matrices on the Brodatz dataset.

discriminative information, therefore, good representational
capability does not necessarily signify promising discrim-
inability.

We use the Brodatz dataset [47] to evaluate the performance
of our method on texture classification. We evaluate clas-
sification performance with the number of training samples
fixed at 20, 25, and 30 covariance matrices per class, with
the remaining samples being used for testing. The reported
performance is obtained by averaging over ten random splits of
training and test sets. The KNN classifier is employed for the
classification task (k = 3). The results are reported in Table IV.
It can be seen that our K̃L kernel (μ = 0.015) achieves
comparable performance with the Log-Euclidean method [23].
K̃G kernel (μ = 0.015, γ = 0.02) performs better than
other approaches, because the radial basis function K̃G better
reflects the geometrical structure of the manifold data than the
polynomial kernel K̃L . To further analyze our results, we plot
the average classification accuracy curves using K̃G versus
the number of atom matrices in Fig. 6. We see that as the
number of atoms increases, the improvement of our method
grows. Our method achieves the best result when the number
of atoms is equal to 95.

C. Face Recognition

In this section, we present experimental results for face
recognition on the FERET dataset [48] and the Extended
Yale B dataset [49]. The sparse representation classifier [4] is
adopted for the classification task. We use the “b” subset of the
FERET dataset for the evaluation of recognition performance.
The subset includes 1400 images from 198 subjects. In our
experiments, the images are resized to 64 × 64 pixels. The
Extended Yale B dataset contains about 2, 414 frontal face
images of 38 subjects. The face images are taken under
varying illumination conditions. We normalize face images of
size 54 × 48.

TABLE V

FACE RECOGNITION RATE (%) ON THE FERET DATASET

TABLE VI

COMPARISON OF THE AVERAGE RECOGNITION ACCURACY (%)

ON THE EXTENDED YALE B DATASET

1) Experimental Setup: To obtain the manifold kernel
sparse representation, a 43 × 43 covariance descriptor is used
to describe a face image using the feature vector

[
I (x, y), x, y, |G00(x, y)|, · · · , |G07(x, y)|, · · · ,

|G47(x, y)|]�,

where I (x, y) is the intensity value at position (x, y), and
Guv (x, y) is the response of a 2D Gabor filter along five
orientations and eight angles. For each pixel (x, y), the dimen-
sionality of the Gabor features is 40. For the FERET dataset,
images marked “ba”, “bj” and “bk” are used as training data,
and images with “bd”, “be”, “bf” and “bg” labels are test
data. We randomly split the Extended Yale B dataset into two
halves. One half containing 32 images for each person is used
as the dictionary, and the other half is used for testing. On the
Extended Yale B dataset, we conduct experiments 10 times by
randomly selecting training and testing sets, and we report the
average result.

2) Result Comparisons: Table V shows the recognition rates
on the FERET dataset compared with SRC [4], GSRC [5],
TSC [12], RSR [20], and Log-E kernel [23]. We see that
neither SRC nor TSC is able to obtain satisfactory results,
because the Riemannian manifold of Sym+

d lacks a global
linear structure which allows the SPD matrix to be generated
linearly by the atoms in D. GSRC and RSR improve the recog-
nition rates. Overall, the proposed method with K̃L achieves
comparable performance with the Log-E kernel method, and
K̃G (μ = 0.02, γ = 0.01) is slightly better than the Log-E
kernel method.

Table VI shows the recognition rates versus feature dimen-
sion by SRC and GSRC on the Extended Yale B dataset.
Since the Log-E kernel and our method acquire the covariance
descriptors which are independent of each image, it is not
necessary for these two methods to reduce the dimensionality
of the original face images. The results of both SRC and
GSRC are from [5]. Our method with K̃G (μ = 0.02,
γ = 0.015) achieves better results than the other methods,
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but the K̃L kernel is slightly worse than SRC and GSRC when
the dimension is 150.

VI. CONCLUSION

In this paper, we have presented a manifold kernel sparse
representation method for symmetric positive definite (SPD)
matrices. The sparse representation on the space of SPD
matrices can be performed by embedding the SPD matrices
into a reproducing kernel Hilbert space (RKHS) using the
data-dependent manifold kernel function. The graph Laplacian
is incorporated into the manifold kernel space to discover
the underlying geometrical structure of the manifold. Experi-
mental results of visual tracking, face recognition and image
classification show that our algorithm outperforms existing
sparse coding based approaches, and compares favorably with
state-of-the-art methods.
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