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Abstract—Distributed storage systems are the key infrastruc-
tures for hosting the user data of large-scale Online Social
Networks (OSNs). The amount of inter-server communication
is an important scalability indicator for these systems. Data
partitioning and replication are two inter-related issues affecting
the inter-server traffic caused by user-initiated read and write
operations. This paper investigates the problem of minimizing the
total inter-server traffic among a cluster of OSN servers through
joint partitioning and replication optimization. We propose a
Traffic-Optimized Partitioning and Replication (TOPR) method
based on an analysis of how replica allocation affects the inter-
server communication. Lightweight algorithms are developed to
adjust partitioning and replication dynamically according to data
read and write rates. Evaluations with real Facebook and Twitter
social graphs show that TOPR significantly reduces the inter-
server communication compared with state-of-the-art methods.

I. INTRODUCTION

Online social networks (OSNs) are popular websites

through which huge amounts of people communicate and share

information. The most famous OSNs today include Facebook,

QQ, Weibo, Google+, Twitter, Renren, LinkedIn, and Flickr.

According to Nielsen’s latest report [1], people spent 20% of

their PC time and 30% of their mobile time on OSNs. No

other category of websites is comparable with OSNs in terms

of time consumption.

The data maintained by OSNs increase rapidly with their

user base. To cope with explosive data growth, a natural

solution is to partition the data among a group of servers [2].

Apache Cassandra [3], which combines Amazon Dynamo’s

consistent hashing scheme [4] and Google BigTable’s data

model [5], is a distributed data storage system most widely

used to support large-scale OSNs such as Facebook and

Twitter. However, Cassandra is far from efficient for OSNs

due to their highly correlated data access patterns. An OSN

user normally accesses not only her own data but also the data

of other closely connected users. In Facebook, for instance, a

user often views the status, figures, and videos updated by her

friends. This property is known as social locality. Cassandra

performs random data partitioning and replication that are

blind to social locality. As a result, it leads to high inter-server

traffic caused by user operations in OSNs [6], [7], [8], [9],

[10].

Inter-server communication is an important scalability in-

dicator for distributed data storage. Data partitioning and

replication are two inter-related issues affecting the amount of

inter-server communication. An intuitive approach to preserve

social locality in OSN storage is to replicate each user’s data

on the servers hosting her connected friends. Several methods

such as SPAR [6] and S-CLONE [8] have been proposed to

maximize the social locality of replication. While creating a

replica can reduce the inter-server traffic for reading data,

it also introduces new inter-server traffic for synchronization

when the data is updated. Since OSN data are constantly

created and edited by users, the write-incurred traffic cannot

be neglected compared to the read-incurred traffic, particularly

when a high degree of replication is needed. Aggressively

striving for maximum social locality in replication does not

necessarily optimize the total inter-server traffic. A recent SD3

mechanism [9] proposes to create replicas only when they

save more read-incurred traffic than the write-incurred traffic

produced. Nevertheless, it assumes fixed data partitions. To the

best of our knowledge, little work has studied minimizing the

total read-incurred and write-incurred traffic among a cluster

of OSN servers through joint partitioning and replication

optimization.

In this paper, we propose a Traffic-Optimized Partitioning

and Replication (TOPR) method that performs social-aware

partitioning and adaptive replication of OSN data in an inte-

grated manner. Based on an analysis of how replica allocation

affects the inter-server communication, we develop algorithms

to adjust the replicas dynamically according to data read and

write rates. Evaluations with the Facebook and Twitter social

graphs demonstrate that TOPR can save the inter-server traffic

significantly compared with various state-of-the-art methods.

The rest of this paper is organized as follows. Section II

reviews the related work. Section III constructs a model of

the inter-server traffic and formally defines the optimization

problem. Section IV elaborates the design of our TOPR

method. Section V presents the experimental setup and results.

Finally, Section VI concludes the paper.

II. RELATED WORK

Pujol et al. [6] proposed a middleware called SPAR to

scale OSNs with a cluster of servers. SPAR aims to mini-

mize the number of replicas required for connected users to

always have their data co-located on the same servers while

maintaining load balance across servers. The perfect social
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locality of SPAR’s replication eliminates the need for servers

to acquire data from one another upon read requests. Similarly,

S-CLONE method developed by Tran et al. [8] seeks to

maximize the social locality given a fixed number of replicas

to set up. However, replicating data at the servers that rarely

read it could introduce more write-incurred traffic than the

read-incurred traffic saved. Thus, SPAR and S-CLONE are

not able to minimize the total inter-server traffic.

Jiao et al. [7], [10] studied OSN data placement across

multiple geo-distributed clouds (datacenters) for optimizing

a range of different objectives. Our work differs from these

studies in that we consider data partitioning and replication

among a cluster of servers within one cloud (datacenter). In

the case of multiple clouds, due to elastic cloud resources,

there is practically no limit on the amount of user data that

can be hosted by a cloud. However, in the case of a server

cluster, each server has a physical capacity limit. To guarantee

the service performance, the servers should be prevented from

becoming overloaded. Furthermore, the above studies either

conduct replication for perfect social locality [7] or create

a fixed number of replicas for each user [10]. As discussed

above, neither strategy is able to minimize the inter-server

traffic. Our proposed TOPR method complements the multi-

cloud techniques and they can be combined to maximize the

efficiency of OSN services.

SD3 is a selective data replication mechanism proposed

by Liu et al. [9] for distributed datacenters. The mechanism

avoids replicating the data with low read rates and high

write rates to reduce the inter-datacenter traffic. However, SD3

assumes static data partitioning across datacenters and does

not optimize it to further save the traffic. SD3 also considers

different data types separately for replication, such as wall

posts and photo comments, due to their different read and

write rates. Our proposed method is orthogonal to the data

granularity for replication. Separate consideration of different

data types can be applied together with our method.

Also relevant to our problem are graph partitioning algo-

rithms [11], [12] and community detection algorithms [13],

[14]. The former targets at minimizing the inter-partition edges

and the latter aims to find the communities in OSNs. However,

these algorithms are offline and cannot cope with the dynamics

in OSNs. They are not able to produce stable partitions or

communities even upon slight changes to OSN graphs. Chen et
al. [15] designed community detection algorithms to minimize

the inter-server communication of explicit interactions based

on the self-similar structure of interaction graphs. However,

they did not study any data replication and did not consider

the latent interactions which account for the majority of user

interactions in OSNs [16].

III. PROBLEM FORMULATION

A. System Model

We consider an OSN service comprising a cluster of servers

that store user data. Each user has one master replica of her

data stored in her master server and possibly multiple slave
replicas stored in some slave servers. A user’s read and write

requests are always sent to her master server. When a user’s

data is updated, her master server would propagate the update

to all of her slave servers for synchronization. When a user u
reads the data of another user v, if u’s master server does not

have v’s data, u’s master server would fetch the data from a

replica of v and then return the result to u. This is known as

the relay model in distributed data access [17].

We model the connections between users in an OSN by a

social graph G = (V,E), where the set of nodes V represent

users and the set of edges E represent the connections among

users (e.g., friendships on Facebook, followships on Twitter).

Without loss of generality, we assume that the social graph is

directed. The existence of an edge (u, v) does not necessarily

imply that an edge (v, u) also exists. For each directed edge

(u, v) ∈ E, v is called a neighbor of u, and u is called an

inverse neighbor of v. Let Nu denote the set of user u’s

neighbors, i.e., Nu = {v : v ∈ V, (u, v) ∈ E}. For each

user u and each server s, we define a binary variable Ms,u to

describe whether s is the master server of u. Ms,u = 1 means

that u’s master replica is stored in server s and Ms,u = 0
means otherwise. Similarly, we define another binary variable

Ss,u to describe whether there is a slave replica of user u
stored in server s.

Inter-server communication occurs when a user reads her
neighbors’ data stored in other servers or when her master
server pushes a write update to her slave servers. Denote by
ru,v and wu the rates at which user u reads a neighbor v’s
data and writes her own data,1 respectively. We assume that
the average data size returned by read operations is ψr and
the average data size of write updates is ψw. Let S be the set
of servers. Then, the total inter-server traffic for all the read
and write operations is given by

Ψ =ψr ·
∑
u∈V

∑
v∈Nu

ru,v
(
1−

∑
s∈S

Ms,u(Ms,v + Ss,v)
)

+ ψw ·
∑
u∈V

(
wu ·

∑
s∈S

Ss,u

)
,

(1)

where the first term represents the read-incurred traffic and

the second term represents the write-incurred traffic. In the

first term,
∑

s∈S Ms,u (Ms,v + Ss,v) = 1 if and only if

a replica of user v is stored in user u’s master server.

Thus, u’s read operation on v generates inter-server traf-

fic if
∑

s∈S Ms,u (Ms,v + Ss,v) = 0. In the second term,∑
s∈S Ss,u represents the total number of u’s slave replicas.

When writes are conducted on u’s data, the updates pushed to

all her slave servers give rise to inter-server traffic.

B. Problem Definition
In the above model, the master server of a user needs to

handle much more workload than the slave servers. Thus, we
use the number of users having a server as their master servers
as an indicator of the server load. Assume that each server has
a capacity limit of μ. Given a set of servers S, we are interested
in finding out the optimal data partitioning and replication that

1For simplicity, our model does not include the write updates made by a
user on her neighbors’ data. From the traffic generated perspective, such an
operation can be considered as a combination of two operations: a user reading
a neighbor’s data and the neighbor updating her own data. Our analysis and
algorithms can be easily generalized to handle cross-user writes.
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produce the minimum inter-server traffic subject to the server
capacity constraints. We formulate this problem by a zero-one
quadratic program as follows:

min Ψ

s.t.
∑
s∈S

Ms,u = 1, ∀u ∈ V, (2)

Ms,u + Ss,u ≤ 1, ∀u ∈ V, s ∈ S, (3)∑
u∈V

Ms,u ≤ μ, ∀s ∈ S, (4)

Ms,u, Ss,u ∈ {0, 1}, ∀u ∈ V, s ∈ S, (5)

where Ψ refers to the total inter-server traffic defined in Eq.

(1). Constraint (2) ensures that there exists exactly one master

replica of every user. Constraint (3) ensures that each user has

at most one replica stored in one server. Constraint (4) restricts

each server to host users up to its capacity limit. Constraint

(5) regulates the status of the master or slave replica to be

either existing or non-existing.

C. Motivation for Joint Optimization

We use a simple example to illustrate the advantage of joint

partitioning and replication optimization. Fig. 1(a) shows a

social graph with 4 nodes. Each node is marked with a write

rate and each edge is marked with a read rate. Suppose that

there are two servers available, each having a capacity limit

of μ = 2. We compare the inter-server traffic resulting from

different methods of partitioning and replication, assuming for

simplicity that all the read and write operations involve the

data size of one unit.

• RP (Fig. 1(b)) randomly partitions the social graph into

two equal size groups and stores them at the two servers

without any replication. This is a case of no optimization

at all. Since RP does not perform replication, the write

operations do not generate any inter-server communica-

tion. But a total of 255 traffic units are produced for all

the read operations.

• RP+SR (Fig. 1(c)) adds selective replication [9] onto RP

by creating replicas only if they can save the inter-server

traffic. This is a case of replication optimization without

partitioning optimization. RP+SR introduces 120 traffic

units for the write operations while reducing the traffic

caused by the read operations from 255 down to 15 units.

Thus, the total inter-server traffic of RP+SR is 135 units,

which is less than RP.

• METIS [11] (Fig. 1(d)) is a graph partitioning algo-

rithm attempting to minimize the total weight of inter-

partition edges. Since the edge weights in our social

graph represent the read rates, applying METIS to our

problem essentially minimizes the inter-server communi-

cation assuming no replication is conducted. Thus, this

is a case of partitioning optimization without replication

optimization. METIS brings down the traffic for the read

operations to 150 units and outperforms RP.

• METIS+SR (Fig. 1(e)) adds selective replication onto

METIS. This represents a case conducting both partition-

ing optimization and replication optimization, but the two
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Fig. 1. An example to motivate joint partitioning and replication optimization.

optimizations are performed separately. METIS+SR can

further reduce the total inter-server traffic to 110 units.

• SPAR [6] (Fig. 1(f)) optimizes partitioning to mini-

mize the number of replicas required for co-locating the

neighbors on the same servers. This is again a case of

partitioning optimization without replication optimization

as slave replicas are blindly created for all pairs of

neighbors. Since SPAR guarantees perfect social locality

of data storage, no inter-server communication is needed

for the read operations, but a total of 120 traffic units are

generated by the write operations.

• Unfortunately, none of the above methods achieves the

minimum inter-server traffic. The best solution is to

optimize partitioning and replication in an integrated

manner as shown in Fig. 1(g). Such joint optimization

produces the lowest possible inter-server traffic of only

70 units, which is much less than all the earlier methods.

This example shows the importance of optimizing partition-

ing and replication together. Motivated by this observation, in

next section, we develop a Traffic-Optimized Partitioning and

Replication (TOPR) method for distributed OSN data storage.

IV. DESIGN OF TOPR

The problem defined in Section III-B is NP-hard. Moreover,

OSNs are highly dynamic due to constant changes in data
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access patterns, addition of new users, and creation/deletion

of connections. Thus, rather than solving the optimization

problem defined in Section III-B statically and offline, in this

paper, we focus on online heuristic methods that continuously

adapt data partitioning and replication to the dynamics.

A. Preliminaries

We start by studying two basic issues of data partitioning

and replication: (1) the optimal allocation of slave replicas

given the master replicas; and (2) the change in the inter-server

traffic due to the movement of a master replica. They serve as

the building blocks in the design of our TOPR method.
Consider a user u. Let su denote u’s master server. For all

the other users whose master replicas are also hosted by s
u,their mutual read accesses with u do not introduce any inter-

server traffic. Consider any other server s �= su. For each
neighbor v of u that is hosted by s, v reads u’s data at the
rate of rv,u. Thus, the aggregate rate of server s reading user
u’s data is given by

Rs,u =
∑

v∈Iu∩Ms

rv,u,

where Iu = {v : v ∈ V, (v, u) ∈ E} is the set of u’s inverse
neighbors, and Ms denotes the set of master replicas hosted
by s. If there is no slave replica of u on server s, the inter-
server traffic between s and su due to read operations on u

isψr ·Rs,u. If a slave replica of u is created on server s, there
would be no read-incurred traffic between s and su, but an
amount of ψw ·wu write-incurred traffic would be introduced
between s and su for synchronizing the slave with the master.
Therefore, to minimize the inter-server traffic, a slave replica
of u should be created on server s if and only if

ψw · wu < ψr ·Rs,u.

It can be seen that the optimal allocation of slave replicas is

completely determined by the locations of master replicas, and

the optimal allocation can be constructed separately for each

user and each server. Algorithm 1 decides whether to create a

slave replica of a user u on a server s, where Ls denotes the

set of slave replicas hosted by s.

Algorithm 1: allocateSlave(u, s)
1 if ψrRs,u > ψwwu then
2 Ls ← Ls ∪ {u};
3 else
4 Ls ← Ls \ {u};

We refer to the traffic between two servers caused by read
and write operations on user u as the u-relevant traffic. Then,
the u-relevant traffic between su and s under the optimal
allocation of u’s slave replicas is

min{ψw · wu, ψr ·Rs,u}.
Therefore, the total inter-server traffic under the optimal allo-
cation of slave replicas given by

∑
u∈V

∑
s�=su

min{ψw · wu, ψr ·Rs,u}.

We now examine the impact of moving a master replica
on the inter-server traffic, assuming that the above optimal

allocation of slave replicas is implemented both before and
after the movement. Suppose that the master replica of a
user u is moved from server su to another server s. The
movement could affect the u-relevant traffic between su and
s as well as the traffic relevant to u’s neighbors involving
su and s. Specifically, according to the above analysis, prior
to the movement, the u-relevant traffic between su and s is
min{ψw ·wu, ψr ·Rs,u}. After moving u’s master replica to s,
the u-relevant traffic becomes min{ψw ·wu, ψr ·Rsu,u}. Thus,
the reduction in the u-relevant traffic is given by

min{ψw · wu, ψr ·Rs,u} −min{ψw · wu, ψr ·Rsu,u}.

For each neighbor v of u, if sv �= su, before moving u’s
master replica, the v-relevant traffic between su and v’s master
server sv is

Ψsu,v = min{ψw · wv, ψr ·Rsu,v}.
After moving u’s master replica away from su, the v-relevant
traffic between su and sv becomes

Ψ′
su,v = min{ψw · wv, ψr · (Rsu,v − ru,v)}.

Similarly, if sv �= s, before moving u’s master replica, the
v-relevant traffic between s and sv is

Ψs,v = min{ψw · wv, ψr ·Rs,v}.
After moving u’s master replica to s, the v-relevant traffic
between s and sv becomes

Ψ′
s,v = min{ψw · wv, ψr · (Rs,v + ru,v)}.

Thus, the reduction in the v-relevant traffic is given by
⎧⎨
⎩

Ψs,v −Ψ′
s,v if sv = su,

Ψsu,v −Ψ′
su,v if sv = s,

Ψs,v −Ψ′
s,v +Ψsu,v −Ψ′

su,v otherwise.

Based on the above analysis, Algorithm 2 calculates the

total traffic reduction by moving the master replica of a user

u to another server s. The time complexity of Algorithm 2 is

given by O(|Nu|), where |Nu| is the number of u’s neighbors.

Algorithm 2: calMoveMaster(u, s)

1 δ ← min{ψw · wu, ψr ·Rs,u} −min{ψw · wu, ψr ·Rsu,u};
2 for each v ∈ Nu do
3 if sv �= s then
4 δ ← δ +min{ψw · wv, ψr ·Rs,v}

−min{ψw · wv, ψr · (Rs,v + ru,v)};

5 if sv �= su then
6 δ ← δ +min{ψw · wv, ψr ·Rsu,v}

−min{ψw · wv, ψr · (Rsu,v − ru,v)};

7 return δ;

B. TOPR Overview

To optimize the inter-server traffic, we propose a TOPR

method that dynamically estimates the read and write rates

of the users, and adjusts the allocation of master and slave

replicas when these rates change. Algorithm 3 shows the

pseudo code of the main algorithm. For each pair of neigh-

bors u and v, we maintain the expected time interval tu,v
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Algorithm 3: TOPR

1 while True do
2 if a read operation is performed then
3 (u, v)← the two users relevant to the read

operation (u reads v’s data);
4 τ ← the time duration since the last read

operation of u on v;
5 tu,v ← α · τ + (1− α) · tu,v;
6 Rsu,v ← Rsu,v − ru,v + 1/tu,v;
7 ru,v ← 1/tu,v;
8 if ru,v/last ru,v �∈ [1/θr, θr] then
9 last ru,v ← ru,v;

10 checkRead(u, v);

11 else if a write operation is performed then
12 u← the user performing the write operation;
13 τ ← the time duration since the last write

operation of u;
14 tu ← α · τ + (1− α) · tu;
15 wu ← 1/tu;
16 if wu/last wu �∈ [1/θw, θw] then
17 last wu ← wu;
18 checkWrite(u);

between two successive read operations of u on v. Specifically,

whenever u performs a read operation on v, we record the

time interval τ since her last read operation on v and update

the estimate of tu,v using an Exponentially Weighted Moving

Average (EWMA) [18] (line 5). The read rate of u on v is

then computed as ru,v = 1/tu,v (line 7), and the aggregate

read rate of server su on v is updated accordingly (line 6). A

naive implementation of TOPR is to check for possible replica

adjustments that can potentially reduce the inter-server traffic

at every read operation. However, this strategy could introduce

high computational overheads due to the large volume of user

operations. It is intuitive that a slight change in the read rate

of a user on a neighbor usually does not deserve any replica

adjustment. Thus, to reduce computational overheads, we use

a threshold θr (θr ≥ 1.0) to guard the checking for possible

replica adjustments. Possible replica adjustments are checked

and carried out only if the read rate ru,v has changed relatively

by more than a factor of θr since the last check (lines 8–

10). When θr is set to 1.0, the algorithm degenerates to the

baseline case that checks for possible adjustments at every

read operation. The impact of the guard threshold on the inter-

server traffic and computational overheads shall be evaluated

in our experiments (Section V-C).

Similarly, for each user u, we maintain the expected time

interval tu between two successive write operations of u by

the EWMA (line 14). The write rate of user u is estimated as

wu = 1/tu (line 15). Possible replica adjustments are checked

when wu has changed relatively by more than a factor of θw
,

where θw ≥ 1.0 is a guard threshold (lines 16–18).

C. Detailed Design

Algorithm 4 describes how to check and perform replica

adjustments upon read operations. When a user u conducts a

Algorithm 4: checkRead(u, v)

1 if su �= sv then
2 δ2 ← −∞;
3 δ3 ← −∞;
4 if |Msv |+ 1 ≤ μ then
5 δ2 ← calMoveMaster(u, sv);

6 if |Msu |+ 1 ≤ μ then
7 δ3 ← calMoveMaster(v, su);

8 if δ2 ≥ δ3 and δ2 > 0 then
9 moveMaster(u, sv);

10 else if δ3 ≥ δ2 and δ3 > 0 then
11 moveMaster(v, su);
12 else
13 allocateSlave(v, su);

Algorithm 5: moveMaster(u, s)

1 Msu ←Msu \ {u};
2 Ms ←Ms ∪ {u};
3 allocateSlave(u, su);
4 Ls ← Ls \ {u};
5 for each v ∈ Nu do
6 Rsu,v ← Rsu,v − ru,v;
7 Rs,v ← Rs,v + ru,v;
8 if sv �= su then
9 allocateSlave(v, su);

10 if sv �= s then
11 allocateSlave(v, s);

12 su ← s;

read operation on another user v, if their master servers are the

same, no further action is required since u reading v does not

involve any inter-server communication (line 1). Otherwise,

we consider the following three possible adjustments: (1) keep

the master replicas of u and v unchanged; (2) move the master

replica of u to v’s master server sv; and (3) move the master

replica of v to u’s master server su. Note that, in case (1), it

may still be possible to adjust v’s slave replicas to reduce the

inter-server traffic due to the change in the estimate of the read

rate ru,v . We make use of Algorithm 2 to calculate the traffic

reductions of cases (2) and (3) with respect to case (1) (lines

4–7). Recall that the number of master replicas allocated to

each server cannot exceed the capacity limit of μ. So, cases

(2) and (3) are checked only if the respective servers sv and

su have spare capacity to host more master replicas (lines 4

and 6). Finally, the algorithm chooses the adjustment leading

to the lowest inter-server traffic and executes the adjustment

(lines 8–13).

Algorithm 5 performs the relevant updates when the master

replica of a user u is moved to a server s. First, the sets of

master replicas hosted by the existing master server su and

the new master server s are updated (lines 1–2). Then, the

optimal allocation of u’s slave replica at su after the movement

is calculated using Algorithm 1 (line 3). Since s has become

the new master server of u, u’s slave replica at s (if any) is

removed (line 4). Due to the change of u’s master replica, for
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Algorithm 6: checkWrite(u)

1 δ2 ← −∞;
2 δ3 ← −∞;
3 for each s ∈ S \ {su} do
4 if |Ms|+ 1 ≤ μ then
5 δ ← calMoveMaster(u, s);
6 if δ > δ2 then
7 δ2 ← δ;
8 s∗ ← s;

9 if |Msu |+ 1 ≤ μ then
10 for each v ∈ Iu \Msu do
11 δ ← calMoveMaster(v, su);
12 if δ > δ3 then
13 δ3 ← δ;
14 v∗ ← v;

15 if δ2 ≥ δ3 and δ2 > 0 then
16 moveMaster(u, s∗);
17 else if δ3 ≥ δ2 and δ3 > 0 then
18 moveMaster(v∗, su);

19 for each s ∈ S \ {su} do
20 allocateSlave(u, s);

each neighbor v of u, the aggregate read rates of su and s on

v should be updated (lines 6–7), and the optimal allocation of

v’s slave replicas at su and s is re-computed as well (lines

8–11).

Algorithm 6 describes how to check and perform replica

adjustments upon write operations. When a user u conducts a

write operation on her data, we consider the following three

possible adjustments: (1) keep the master replicas of u and

her neighbors unchanged; (2) move the master replica of u
to the master server of one of u’s inverse neighbors; and (3)

move the master replica of one of u’s inverse neighbors to

u’s master server su. Again, in case (1), it may be possible to

adjust u’s slave replicas to reduce the inter-server traffic due

to the change in the estimate of the write rate wu. For case

(2), we use Algorithm 2 to find the best server s∗ for hosting

u’s master replica (lines 3–8). Due to the capacity limit of

servers, we consider only the servers that can accommodate

more master replicas (line 4). For case (3), we attempt to

select the best inverse neighbor v∗ of u that would reduce the

inter-server traffic most if its master replica is moved to server

su (lines 9–14). To account for the capacity limit, case (3) is

checked only if server su has not been filled to its capacity

(line 9–14). Finally, the algorithm chooses the adjustment that

would result in the lowest inter-server traffic and executes the

adjustment (lines 15–20).

D. Other Events

In OSNs, there are several types of events that change the

topology of the social graph, including adding and removing

nodes (users) and edges (connections). These events are more

straightforward to handle than read and write operations. When

a new user is created, it does not have any neighbor yet. For

the purpose of load balancing, we simply allocate the master

replica of the new user to the server hosting the minimum

number of master replicas. When an existing user u is deleted,

we remove all of u’s replicas, including the master and the

slaves. Meanwhile, at u’s master server, the slave replicas of

u’s neighbors are adjusted according to Algorithm 1 to account

for the removal of the edges incident on u. When a new edge

is added from user u to user v, the read rate ru,v is initialized

to be 0 since there is no read operation yet. As a result, the

new edge would not affect the allocation of slave replicas and

no further action is required. When an existing edge from

u to v is removed, if their master servers are not the same,

v’s slave replica at u’s master server is adjusted according to

Algorithm 1.

E. Discussions

The time complexity of TOPR is mainly determined by

that of the routines checkRead() and checkWrite().
For checkRead() (Algorithm 4), calculating the potential

traffic reductions of cases (2) and (3) by Algorithm 2 takes

O(|Nu|) and O(|Nv|) time respectively, where |Nu| and

|Nv| are the numbers of u and v’s neighbors. The selected

adjustment moves at most one master replica. So, Algorithm

5 takes O(max{|Nu|, |Nv|}) time to perform the adjust-

ment. Thus, the total time complexity of checkRead() is

O(|Nu|)+O(|Nv|)+O(max{|Nu|, |Nv|}) = O(|Nu|+|Nv|).
For checkWrite() (Algorithm 6), using Algorithm 2 to de-

termine the best server to host u in case (2) takes O(|Nu|×|S|)
time, where |S| is the number of servers. Selecting the best

inverse neighbor of u to move in case (3) by Algorithm 2 takes

O(
∑

v∈Iu
|Nv|) time, where O(

∑
v∈Iu

|Nv|) is the number of

users sharing an inverse neighbor with u in the social graph.

The selected adjustment again moves at most one master

replica. Thus, performing the adjustment using Algorithm 5

takes O(max{|Nu|,maxv∈Iu
{|Nv|}}) time. Therefore, the

total time complexity of checkWrite() is O(|Nu| × |S| +∑
v∈Iu

|Nv|). As can be seen, both checkRead() and

checkWrite() are lightweight as they involve only the

nodes in the immediate neighborhood of u and v.

V. PERFORMANCE EVALUATION

A. Experimental Setup

Two OSN social graphs are selected from [19] to evaluate

our algorithms: a Facebook social graph consisting of 4, 039
nodes and 88, 234 edges, and a Twitter social graph comprised

of 81, 306 nodes and 1, 768, 149 edges. The Facebook graph

is undirected and the Twitter graph is directed.

OSN providers seldom publish the data of user activi-

ties either for commercial competition or privacy protection

purposes. Today, most OSN providers also deploy various

mechanisms to defend against crawlers [20]. Thus, it is dif-

ficult to get the traces of interactions between OSN users.

Two earlier studies [16], [21] used clickstreams to analyze

how users interact in OSNs and observed that 92% of user

activities on OSNs are profile browsing, which implies that

the majority of user interactions are latent interactions. Jiang

et al. [22] performed a detailed measurement and constructed
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latent interaction graphs. Similar to other work [10], we use

the features reported by these empirical studies to generate

user interactions for our simulations.

Specifically, the sets of read rates and write rates for all

users are first generated from the power-law distribution with

an exponent of 3.5 [22]. Following the statistics reported in

[16], the ratio between the total read rate and total write rate

is set at 0.92/0.08. Then, each user is assigned a read rate and

a write rate from the above sets. In this process, we control

the Spearman’s rank correlation coefficient [23] between the

read/write rate of each user and her social degree (the number

of her neighbors in the social graph), which is set to 0.7 [22].

The write rate assigned to each user represents the rate at

which the user updates her data. The read rate assigned to

each user represents the aggregate rate at which she reads all of

her neighbors. After that, the aggregate read rate is distributed

among the neighbors following the preferential model in [24].

That is, the read rate on each neighbor is set proportional to

its social degree. After the distribution, the mean read rates on

edges are 0.48 per unit time for Facebook and 0.79 for Twitter,

and the mean write rates of users are 1.93 for Facebook

and 1.66 for Twitter. Finally, we use the Poisson process to

generate the sequence of read and write operations for each

user according to the assigned rates. We assume an empty

social graph at the beginning. The first operation relevant to

each user is treated as an event of creating a new user (i.e.,

adding a node to the social graph). Similarly, the first read

operation involving a pair of neighbors is treated as an event

of establishing a connection (i.e., adding an edge to the social

graph).

The main performance metric used in our evaluation is

the total inter-server traffic among a given set of servers.

Each read operation is assumed to return a normalized data

size of ψr = 1. The data size ψw of each write operation

is varied to reflect different ratios between read and write

traffic. By default, ψw is set to 1. We assume that there

are 64 servers available, and all the servers have the same

capacity limit. Thus, the minimum requirement of the server

capacity is � 4039
64 � = 64 for the Facebook social graph and

� 81306
64 � = 1271 for the Twitter social graph. The server

capacity limit is set by multiplying the minimum requirement

by a factor f (f ≥ 1) which represents the over-provisioning

level of server resources. The larger the factor f , the more

flexible the data partitioning among servers. The default value

of f is set at 1.0, i.e., the capacity limit is equal to the

minimum requirement.

We compare our proposed TOPR method with the methods

described in Section III-C.

Random Partitioning: As mentioned earlier, random parti-

tioning is the de facto default distributed storage mechanism

for most popular OSNs. We implement the basic method of

random partitioning without replication (RP), in which no

slave replica is created for any user.

METIS: METIS [11] conducts graph partitioning to opti-

mize the inter-server communication assuming no replication.

Since METIS is an offline algorithm, it cannot dynamically

adapt data partitioning on the fly. In our experiments, we count

the numbers of reads and writes in the operation sequence and

pre-compute the METIS partitioning using these statistics. The

operation sequence is then simulated to measure the inter-

server traffic. In this way, our evaluation gives METIS an
unfair advantage of having a priori knowledge on the data

access pattern.

Selective Replication: We apply the selective replication

scheme of SD3 [9] to the data partitions created by the random

partitioning and METIS methods. Specifically, slave replicas

are created only if they can reduce the total inter-server traffic.

The replication decisions are dynamically made using real-

time EWMA estimates of read and write rates. The resultant

methods are referred to as random partitioning with selective
replication (RP+SR) and METIS with selective replication
(METIS+SR).

SPAR: SPAR [6] performs replication with perfect social

locality. That is, for each user, a slave replica is stored in

the master server of each of her neighbors. SPAR carefully

plans data partitioning to minimize the total number of replicas

created.

Among the above methods, RP+SR, METIS+SR and TOPR

need dynamic estimations of data read and write rates for

adjusting replications on the fly. By default, the factor α for

EWMA estimations in these methods is set at 0.5. The default

guard thresholds θr and θw for checking possible replica

adjustments in our proposed TOPR method are set at 1.0.

B. Comparison of Different Methods

Fig. 2 shows the instantaneous inter-server traffic per unit

time produced by different methods under the default param-

eter settings. The first 10 time units is a warm-up period for

most users to join the OSN. After that, among the methods

tested, RP produces the highest inter-server traffic as there is

no optimization at all. METIS reduces the inter-server traffic

significantly compared to RP even though it does not conduct

replication either. By creating slave replicas that save more

read-incurred traffic than the write-incurred traffic introduced,

selective replication considerably cuts the inter-server traffic

for different partitioning methods. As shown in Fig. 2, RP+SR

and METIS+SR outperform RP and METIS respectively.

However, in these two methods, selective replication is carried

out separately from partitioning. Our proposed TOPR method

optimizes partitioning and replication in an integrated manner,

and performs the best among all the methods tested. As

seen from Fig. 2, on average, TOPR reduces reduces the

inter-server traffic by 75.3% (Facebook) and 87.7% (Twitter)

over RP+SR and by 35.5% (Facebook) and 83.9% (Twitter)

over METIS+SR. This demonstrates the effectiveness of joint

partitioning and replication optimization. The SPAR method,

which considers the structure of the social graph in the par-

titioning and conducts replication with perfect social locality,

performs between RP+SR and METIS+SR. This implies that

aggressively maximizing the social locality of replication is

not very effective for reducing the inter-server traffic.
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Fig. 2. Inter-server traffic
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Fig. 3. Number of slave replicas
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Fig. 4. Impact of EWMA estimation

TABLE I
AMORTIZED NUMBER OF REPLICA MOVEMENTS PER USER OPERATION.

RP+SR METIS+SR TOPR
Facebook 0.081175 0.027212 0.017224

Twitter 0.054469 0.038767 0.006626

The methods that dynamically adjust replications would

produce overheads on the inter-server traffic by moving mas-

ter/slave replicas based on real-time data access patterns.

Table I compares the amortized number of replica movements

per read/write operation for RP+SR, METIS+SR and TOPR.

As can be seen, the overheads are minor compared to the traffic

generated by processing user-initiated read/write operations. In

particular, the proposed TOPR method has much lower traffic

overheads than RP+SR and METIS+SR. Thus, integrated op-

timization of partitioning and replication also helps to reduce

the traffic overheads.

Fig. 3 compares the total number of slave replicas created by

different methods over time. It can be seen that TOPR results

in much fewer slave replicas than all the other methods except

RP and METIS (which do not perform replication at all). This

implies that besides reducing the inter-server traffic, TOPR

also significantly decreases the storage cost of replication.

Since SPAR maintains perfect social locality of data storage,

it creates the highest number of slave replicas.

C. Sensitivity of TOPR to Algorithm Parameters

Fig. 4 explores the effect of the EWMA function for

estimating the read and write rates. Only the methods with

selective replication (RP+SR, METIS+SR and TOPR) make

use of the estimated read and write rates to dynamically adjust

data replications. We evaluate their performance using three

different α values (0.2, 0.5 and 0.8) in the EWMA function.

As shown in Fig. 4, the performance variation of each method

is within 20% over different α values. This implies that these

methods are not very sensitive to α. The relative performance

of these methods keeps similar for different α values.

Next, we study the impact of TOPR’s guard thresholds

θr and θw. Fig. 5 shows the proportions of read and write

operations at which checks are performed when θr and θw are

varied from 1.0 to 2.0. It can be seen that even small guard

thresholds can reduce the number of checks significantly. For

example, θr = θw = 1.2 reduces the number of checks by

more than 20% compared to that of θr = θw = 1.0. Larger

thresholds of θr = θw = 2.0 can cut the number of checks by

over 75%. Thus, the guard thresholds are useful for reducing

the computational overheads of TOPR. Fig. 6 shows the inter-

server traffic of TOPR for different thresholds θr and θw. As

can be seen, the threshold values do not affect the inter-server

traffic much. Larger thresholds just make it slightly slower for

replica allocation in TOPR to converge.

D. Impacts of Various System Parameters

Finally, we study the impacts of various system parameters.

In these experiments, we plot the average inter-server traffic

per time unit by different methods for comparison. Fig. 7

shows the impact of server capacity limit, where we vary

the over-provisioning factor f from 1.0 to 1.5. Larger server

capacities allow more users that are strongly connected in

the social graph to be allocated the same master server.

This reduces the number of slave replicas needed to main-

tain the social locality of data storage and thus the inter-
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Fig. 5. Workload of checking
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Fig. 7. Impact of server capacity

server communication. Therefore, as shown in Fig. 7, the

inter-server traffic generally decreases with increasing server

capacity for all the four methods that conduct social-aware

partitioning (SPAR, METIS, METIS+SR, and TOPR). Our

TOPR method consistently outperforms SPAR, METIS and

METIS+SR throughout the range of the over-provisioning fac-

tor tested. It can also be seen that when the over-provisioning

factor is large, the inter-server traffic of METIS+SR can be

quite close to that of TOPR. This implies that in such cases,

the METIS partitioning together with selective replication may

reasonably approximate the optimization problem defined in

Section III-B. However, it should be borne in mind that we

have assumed a priori knowledge of the data access pattern in

computing the METIS partitioning, and METIS is an offline

algorithm that is hard to use for real practice.

Fig. 8 shows the inter-server traffic of different methods for

different numbers of servers. The inter-server traffic generally

increases with the server number. This is because when the

number of servers increases, more pairs of neighbors have to

be assigned to different servers. As seen from Fig. 8, TOPR

always produces less traffic than all the other methods.

Tables II and III report the inter-server traffic of different

methods normalized by that of TOPR over a wide range of ψw

values (the data size of a write operation). Recall that the data

size ψr of a read operation is fixed at 1. When ψw = 0.01,

the read operations are much more data-intensive than write

operations. In this case, selective replication attains nearly

perfect social locality in data storage. With nearly perfect

social locality, the inter-server traffic of RP+SR, METIS+SR

and TOPR is dominated by the write-incurred traffic just

like SPAR. Note that SPAR, RP+SR and METIS+SR do not
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Fig. 8. Impact of the number of servers

differentiate the users by their write rates in the partitioning.

As a result, their inter-server traffic is 1.25 to 9.40 times higher

than our proposed TOPR method. On the other hand, RP

and METIS, which do not perform any replication, produce
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TABLE II
INTER-SERVER TRAFFIC NORMALIZED BY TOPR ON FACEBOOK.

ψw RP RP+SR SPAR METIS METIS+SR TOPR
0.01 273.20 8.52 1.25 197.16 1.84 1.00
0.1 33.11 8.51 1.52 23.90 1.89 1.00
1 5.63 4.05 2.58 4.06 1.55 1.00

10 2.33 1.95 10.69 1.68 1.16 1.00
100 1.89 1.94 86.50 1.36 1.22 1.00

TABLE III
INTER-SERVER TRAFFIC NORMALIZED BY TOPR ON TWITTER.

ψw RP RP+SR SPAR METIS METIS+SR TOPR
0.01 519.23 9.40 2.05 456.67 6.66 1.00
0.1 79.04 10.00 3.11 69.52 6.98 1.00
1 17.24 8.12 6.79 15.16 6.23 1.00

10 5.91 5.06 23.30 5.20 4.34 1.00
100 3.52 3.56 138.71 3.10 3.13 1.00

the inter-server traffic two orders of magnitude higher than

the other methods. When ψw increases, less slave replicas

are created by selective replication. Hence, the performance

gap between RP (METIS) and RP+SR (METIS+SR) demotes.

When ψw = 100, the write operations are much more data-

intensive than the read operations. In this case, selective

replication loses incentives to create slave replicas. As a

result, RP+SR and METIS+SR degenerate to RP and METIS

respectively. Their inter-server traffic is dominated by the read-

incurred traffic. Since RP+SR does not capture the actual read

rates in the partitioning, its inter-server traffic is 1.94 to 3.56
times higher than that of TOPR. METIS+SR performs better

than RP+SR, but its traffic is still substantially higher than

TOPR. SPAR produces a lot more inter-server traffic than

the other methods because it creates a large number of slave

replicas to guarantee perfect social locality of data storage.

In summary, Tables II and III show that our proposed TOPR

method consistently produces much lower inter-server traffic

than all the other methods across different intensities of read-

incurred and write-incurred traffic.

VI. CONCLUSION

Optimizing the inter-server traffic is a critical issue in the

design of distributed data storage systems for OSNs. In this

paper, we have formally defined an optimization problem

for minimizing the inter-server traffic among a cluster of

OSN servers and proposed a method called TOPR to address

the problem. TOPR carries out social-aware partitioning and

adaptive replication of user data in an integrated manner.

Lightweight algorithms are developed for adjusting partition-

ing and replication on the fly based on real-time data read and

write rates. Evaluations with the Facebook and Twitter social

graphs show that TOPR not only reduces the inter-server traffic

significantly but also saves much storage cost of replication

compared to state-of-the-art methods.
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