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Abstract—Despite recent advances in joint processing of im-
ages, sometimes it may not be as effective as single image
processing for object discovery problems. In this paper while
aiming for common object detection, we attempt to address
this problem by proposing a novel QCCE: Quality Constrained
Co-saliency Estimation method. The approach here is to itera-
tively update the saliency maps through co-saliency estimation
depending upon quality scores, which indicate the degree of
separation of foreground and background likelihoods (the easier
the separation, the higher the quality of saliency map). In this
way, joint processing is automatically constrained by the quality
of saliency maps. Moreover, the proposed method can be applied
to both unsupervised and supervised scenarios, unlike other
methods which are particularly designed for one scenario only.
Experimental results demonstrate superior performance of the
proposed method compared to the state-of-the-art methods.

Index Terms—quality, co-saliency, co-localization, bounding-
box, propagation, object detection.

I. INTRODUCTION

Object detection has many applications since it facilitates
efficient utilization of computational resources exclusively on
the region of interest. Saliency is a common cue used in object
detection, but it has only obtained limited success when images
have cluttered background. Recent progress in joint processing
of images like co-segmentation [1][2][3], co-localization [4],
knowledge transfer [5][6][7] has been quite effective in this
regard because of the ability to exploit commonness which
cannot be done in single image processing.

Despite previous progress, there still exist some major
problems for the existing joint processing algorithms. 1) As
shown in [1][2], joint processing of images might not perform
better than single-image processing for some datasets. This
raises up the question: to process jointly or not. 2) Most of
the existing high-performance joint processing algorithms are
usually complicated due to the way of co-labelling the pixels
[2] or co-selection of boxes [4] in a set of images, and also
require to tune parameters for effective co-segmentation or co-
localization, which becomes much more difficult when dataset
becomes increasingly diverse.

There are two types of common object detection: 1) Super-
vised [6][7], where the task is to populate entire dataset with
the help of some available bounding boxes; 2) Unsupervised
[4], where the task is to populate entire dataset without any

partial labels. In this paper, we handle both types in one
framework. Our approach is to iteratively update saliency maps
using co-saliency estimation while measuring their quality. For
a high-quality saliency map, its foreground and background
should be easily separated. Therefore, simple images with a
clear background and foreground separation may not need the
help from joint processing. For complex images with cluttered
backgrounds, by iteratively updating the saliency maps through
co-saliency estimation, we are able to gradually improve the
saliency maps although they did not have high-quality saliency
map to begin with. Images with high-quality saliency maps can
play the leading role in the co-saliency estimation of other
images. Moreover, some images may already have ground-
truth bounding boxes. In such cases, the bounding boxes can
replace respective saliency maps as the high-quality saliency
maps to help generate better co-saliency maps. Since saliency
maps are updated iteratively through co-saliency estimation
constrained by their quality scores, we call it QCCE: Quality
Constrained Co-saliency Estimation. The advantage of such an
approach is twofold: (1) It can work effectively for big image
dataset and can benefit from high-quality saliency maps; (2) It
can automatically choose either the original saliency map or
the jointly processed saliency map.

Assuming a Gaussian distribution for foreground and back-
ground likelihoods in the saliency map, we make use of
the overlap between the two distributions to calculate quality
scores. We employ co-saliency estimation [3] along with our
quality scores to update the saliency maps. The foreground
likelihood of the high-quality saliency map is used as a rough
common object segment to define bounding boxes eventually.

Prior to our work, both co-localization [4] problem and
bounding box propagation problem [6][7] have been studied on
challenging datasets such as ImageNet. While [4] suffers from
low accuracy and [6][7] essentially depend upon bounding
box availability. In contrast, the proposed method can not only
address both problems, but also outperform the existing works.

II. PROPOSED METHOD

Our goal is to define bounding boxes around the common
objects in a set of similar images. High-quality saliency maps
are obtained while measuring the quality of saliency maps
that are iteratively updated via co-saliency estimation. These
high-quality saliency maps are then used to eventually define
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Fig. 1. Quality of saliency map is measured using overlap of estimated
distribution of the two classes: Foreground and Background

bounding boxes. In this section, we provide details of quality
scores, co-saliency estimation and defining bounding boxes.

A. Notation
Let I = {I1, I2, · · · , Im} be the image set containing

m images and Di be the pixel domain of Ii. Let set of
saliency maps be denoted as S = {S1, S2, · · · , Sm} and
set of their corresponding quality scores be denoted as
Q = {Q1, Q2, · · · , Qm}. For images already having bounding
boxes, saliency maps are replaced by respective bounding
boxes and their quality scores are set as 1.

B. Quality Score
By quality, we mean how easily two likelihoods (foreground

and background) are separable. These likelihoods are formed
by thresholding saliency map using the Otsu method. Based on
such classification, let µk1

i , µk0
i , σk1

i and σk0
i be foreground

mean, background mean, foreground standard deviation and
background standard deviation for saliency map Si at the kth

iteration (denoted as Sk
i ), respectively.

Assuming Gaussian distribution for both likelihoods, we
denote foreground and background distributions as F k1

i (z) and
F k0
i (z), respectively, where z is the saliency value ranging

between 0 and 1.
It is clear that the less the two distributions overlap with

each other, the better the saliency map is, i.e., the foreground
and background are more likely to be separable. In order to
calculate the overlap, it is needed to figure out the intersecting
point (see Fig. 1). It can be obtained by equating the two
functions, i.e. F k1

i (z) = F k0
i (z), which leads to:
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Let the solution of the above quadratic equation be z∗ and
the overlap (O) can now be computed as

Ok
i =

∫ z=z∗

z=0

F k1
i (z) +

∫ z=1

z=z∗
F k0
i (z) (2)

0.999           0.774              0.623          0.541 

0.504            0.421             0.416          0.365 

Fig. 2. Sample Images with their saliency maps and quality scores. Saliency
maps with low-quality score fail to highlight the starfish.

where Ok
i represents the overlap of two classes in Si at the

kth iteration.
Finally, quality score Qi for kth iteration (denoted as Qk

i )
is calculated as,

Qk
i =

1

1 + log10 (1 +Ok
i )

(3)

As we keep updating saliency maps through interaction with
other images, we want to choose high-quality saliency maps,
i.e. for which maximum quality score is obtained. In Fig. 2,
we show a set of images with their saliency maps and quality
scores. It can be seen that saliency maps become unfit to
highlight the starfish as quality score decreases from top-left
to bottom-right.

C. Co-saliency Estimation

The way we update saliency maps after each iteration is
through co-saliency estimation which can boost saliency of the
common object and suppress background saliency. In order
to avoid large variation across images while developing co-
saliency maps, in each iteration k we cluster the images into
sub-groups by k-means with the weighted GIST feature [2]
where saliency maps are used for weights. Let Gv be the set
of indexes (i of Ii) of images in the vth cluster.

We adopt the idea of co-saliency estimation from [3] where
the geometric mean of the saliency map of one image and
warped saliency maps of its neighbor images is taken as the
co-saliency map. However, we make a slight modification to
suit our model, i.e. we use the weighted mean function instead
of the geometric mean where weights are our quality scores.

Saliency Enhancement via Warping: Basically, saliency
enhancement takes place at pixel level amongst correspond-
ing pixels. Specifically, following [2], masked Dense SIFT
correspondence [8] is used to find corresponding pixels in
each image pair. Masks here are the label maps obtained by
thresholding the saliency maps. This ensures that pixels having
high foreground likelihood play the dominant role in guiding
the SIFT flow. The energy function for Dense SIFT flow can



now be represented as
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where Ri is dense SIFT feature descriptor for image Ii. The
likelihood function φ for saliency map gives class labels:1 (for
foreground likelihood) or 0 (for background likelihood). It can
be seen how feature difference is masked by the likelihoods of
involved pixels. B0 is a large constant which ensures large cost
if the potential corresponding pixel in another image happens
to have background likelihood. Weighted by another constant
α and likelihood, neighbourhood N i

p of pixel p is considered
for smooth flow field wij from image Ii to Ij .

Updating Saliency Maps: Given a pair of images Ii and Ij
from a subgroup Gv , we form the warped saliency map Uji

by Uji(p) = Sk
j (p′), where (p, p′) is a matched pair in the

SIFT flow alignment with relationship p′ = p+wij(p). Since
there are quite a few images in subgroup Gv , for image Ii,
we may update its saliency map by computing the weighted
mean where weights are respective quality scores, i.e.

Sk+1
i (p) =

|Sk
i (p)|Qk

i +
∑j∈Gv

j 6=i |Uk
ji(p)|Qk

j∑
j∈Gv

Qk
j

(5)

This kind of weights ensures that high-quality saliency maps
play the leading role in the development of new saliency
maps so that new saliency maps evolve towards better ones.
Moreover, we also take advantage of prior bounding boxes
available which are of high-quality right from the beginning.

D. Convergency and Bounding Box Generation
Convergency: If an image reaches its high-quality saliency

map, updating of saliency map should stop. Thus, saliency
maps of images with ground-truth bounding boxes as high-
quality saliency maps get never updated, whereas the saliency
maps of other images may get updated depending upon the
quality scores. If quality score decreases in next iteration or
difference is very small, say 0.005, we will not update the
saliency map of the image and proceed for bounding box
generation.

Bounding Box Generation: Since rough segmentation
itself can help developing bounding box, we consider fore-
ground and background likelihoods themselves as common
foreground segment and background segment respectively. We
get a number of potential sparsely located group of white pix-
els as objects or connected components using bwconncomp()
function of MATLAB which we denote as c. In order to
avoid noisy insignificant objects, we develop an object saliency
density metric for each of these objects assuming that real
objects would have high foreground saliency density and low
background saliency density (here background is rest of the
pixel domain). Therefore saliency density metric is defined as:

ImageNet 

Internet 

Fig. 3. Sample Results from ImageNet and Internet datasets

V (c) =

∑
p∈c Si(p)

|c|
−
∑

p∈c̄ Si(p)

|c̄|
(6)

where c̄ is the set of the rest of the pixels and |c| is the number
of pixels in object c. Objects with high saliency density metric
are likely to be the real objects. For an image, only those
object(s) which are ≥ 50 percentile according to this object
saliency density metric V or is the only object in the image
are considered for developing bounding boxes. The bounding
box is then drawn using topmost, bottommost, leftmost and
rightmost boundary pixels of the qualified objects.

III. EXPERIMENTAL RESULTS
As per our claim that the proposed method can work

better in both unsupervised and supervised scenarios, we
use same large scale experimental set up as [4] and [7]
for co-localization and bounding box propagation problems,
respectively. Following [4], we use CorLoc evaluation metric,
i.e., percentage of images that satisfy the condition IOU
(intersection over union) defined as area(BBgt∩BBpr)

area((BBgt∪BBpr) >
0.5 where BBgt and BBpr are ground-truth and proposed
bounding boxes maps, respectively. To distinguish between
supervised results and unsupervised results, suffixes (S) and
(U) are used, respectively. We use the saliency maps of [9] and
[10] in co-localization and bounding box propagation setups,



TABLE I
CORLOC COMPARISON ON IMAGENET AND INTERNET IMAGES DATASET

IN CO-LOCALIZATION SETUP

ImageNet Internet
Baseline using [9](U) 52.9 65.6

[2](U) - 75.2
[4](U) 53.2 76.6

Proposed Method(U) 64.3 82.8

TABLE II
COMPARISON ON IMAGENET IN BBP SETUP

CorLoc
Baseline using [10](U) 64.9

[6](S) 58.5
[7](S) 66.5

[7]∗(S) 68.3
Proposed Method(S) 70.9
Proposed Method(U) 68.6

respectively. We use bounding boxes generated from these
initial saliency maps as baselines.

Co-localization Setup: As per the setup in [4], there are 1
million images for which bounding boxes are available on the
ImageNet spread over 3627 classes. In addition to ImageNet,
for Internet [2] dataset which is actually segmentation dataset,
a tight bounding box is developed across each foreground
segment and is used as ground truth. We compare our results
in Table I for both datasets. It can be seen that we obtain
superior results with margin of 11% and 6% improvements on
these datasets, respectively. Moreover, our results are obtained
without any parameter tuning whereas both [4] and [2] have
tuned their parameters on Internet dataset.

Bounding Box Propagation Setup: We would like to
acknowledge [7] for providing the list of test and training
images upon request. In this setup, 32k images are considered
for testing purposes, and the saliency maps of the training
images of the classes, to which these test images belong,
are replaced with bounding boxes. The problem that we are
trying to address is similar to “Self” case in [7] where only
images within the same class are used for training. In Table
II, we compare our results on these 32k test images with two
previous attempts in [6][7] to populate ImagNet with bounding
boxes in such a supervised manner. [7]∗ refers to their results
using state-of-the-art features and object proposals. Our results
are 4% better than state-of-the-art [7]∗(S). Considering the
proposed method does not essentially need bounding boxes,
we report our unsupervised results (Proposed Method(U)) of
these 32k test images as well where we do not use any initial
bounding boxes and still obtain comparable results to [7]∗(S).

Fig. 3 shows sample results obtained on ImageNet and
Internet datasets. In addition, we show our results along with
ground-truth for visual comparison in Fig. 4. It can be seen
that proposed method is able to accurately provide bounding
boxes for both simple and complex images because we are
able to effectively constrain the joint processing of images.

IV. CONCLUSION AND FUTURE WORK

We have proposed a QCCE method for common object
detection. In the process, we try to address the critical issue

Fig. 4. Sample Visual Comparison between Ground Truth (Green) and Our
Results (Red)

of whether to process jointly or not with the help of constraint
on the quality of saliency maps. QCCE can act in both
supervised and unsupervised ways and obtains superior results
in both scenarios. Moreover, it can be well extended to co-
segmentation problem. Future work includes incorporating
more considerations in the development of quality scores.
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