Randomized Spatial Context for Object Search

Yuning Jiang, Junsong YualtEEE Member, Jingjing Meng and Jiebo LUtEEE Fellow,

Abstract—Searching visual objects in large image or video
datasets is a challenging problem, because it requires efignt
matching and accurate localization of query objects that den
occupy a small part of an image. Although spatial context
has been shown to help produce more reliable detection than
methods that match local features individually, how to extact
appropriate spatial context remains an open problem. Instad
of using fixed-scale spatial context, we propose a randomide
approach to deriving spatial context, in the form of spatial
random partition. The effect of spatial context is achievedby
averaging the matching scores over multiple random patches N
Our approach offers three benefits: 1) the aggregation of the Z\ e
matching scores over multiple random patches provides robst
local matching; 2) the matched objects can be directly idenfied
on the pixel-wise confidence map, which results in efficientigect
localization; 3) our algorithm lends itself to easy paralldization
and also allows a flexible trade-off between accuracy and spd . . . . .
through adjusting the number of partition times. Both theoretical Despite Pre\_"o_us _SUCC?SSES n employlng. spatial context
studies and experimental comparisons with the state-of-tart for more discriminative visual feature matching, e.g. aisu

Fig. 1: Visual object search is a more challenging problemnth
whole-image retrieval, since the target objects in the lkga can
vary greatly in location, scale, orientation and appeaanc

methods validate the advantages of our approach. phrases [41] [43] [44] or bundled features [13] [36], one
Index Terms—Object Search, Spatial Context, Random Parti- problem remains unsolved: how to select the appropriate
tion spatial context when matching local features?
In general, there are two ways to select the spatial context.
|. INTRODUCTION The first category of methods relies on image segments or re-

) _ . gions to determine the spatial context [29] [30] [42] [357]3
T HE matching of local visual features plays a critical rolg here ocal features located in the same image region or seg-
in the state-of-the-art systems for visual object searghont are bundled together and matched as a whole. Although
a_nd_ dgtectlon. The funda_mental problem is to measure h spatial context is reasonable, this approach is highly
similarity between an object (query) and a sub-region @fgpendent on the quality of image segmentation or region
an image. Sub-regions with the highest similarity SCOres afetection results, which require a time consuming pre-gssc
identified as the detection or search results. One categgyoptain and are usually unreliable.

of methods represents each image as a collection of localne second category of methods selects the spatial context

other. Thus the maiching score of the whole or subimage -, |ocal point with its: spatial nearest neighbors, namely
can bg _calculated as the summatlpn of the matching _score%_cmN group [32] [41]. However, as reported in [42], unstable
its individual features. Such a Naive-Bayes assumptian, €40, features may be detected when images are resized or
Naive-Bayes Nearest Neighbor classifier [1] [2] [23] [3%Sh gyetched, resulting in varying numbers of detected loea f

led to successes in visual object recognition, detecticoh 3fres at different scales. Hence for each local pointkiteN

search. . . _group may be totally different from that at a different scale

However, as local features are in fact not spatially ik shown in Fig. 2(a). Therefore, spatial context provided
dependent, rather than matchmg_ local featurgs mdwl;d,ualby the k-NN group is not scale invariant. Furthermore, it is
some methods propose to consider the spatial context fafict to determine an appropriate Using a large: reveals
matching. For example, a group of co-located visual @556 contextual information while running a higher risk of
tures can be bundled together and matched as a Whelgoqycing noise from the background. Moreover, if theruse
The benefits of introducing such a feature group for Vizanes to change the value éf he will need to re-calculate
sual matching have been proven to generate more reliaig gnatial threshold and re-index the feature groups ai.ov
and dlscr|_m|nat|ve re_sults than_ ”.‘atc.h'”g. individual f?as" Grid-based local feature bundling is an alternative toithe
thus leading to a higher precision in visual matching angy group for the fixed-scale spatial context [13]. An image
search [7] [12] [19] [20] [25] [28] [34] [40] [42]. is partitioned into fixed-size grids and all features witbach
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Fig. 2: Comparison between different ways to choose thdapaintext. The similarity between two spatial contextioeg are calculated
as the number of matched points (including the center painthem, denoted byn.

of the grids may be separated from their nearest neighbdfajs better retrieval performance thanks to the randomized
therefore the grids may not accurately describe spatiabsbn spatial context. Moreover, it is robust to the scale vaoizi

We believe that an ideal spatial context selection for dbjegnd partial occlusions of the objects. Second, our spatial
search task should satisfy the following requirements:t1) riandom partition-based patch voting scheme indirectlyesol
can support robust object matching despite scale varmtiothe object localization problem, as the object can be seg-
rotation and partial occlusions; 2) it can support fast objemented out directly from the confidence map. This largely
localization in the cluttered backgrounds; and 3) it can educes the computational cost compared with the subimage
efficiently extracted and indexed. search methods for object localization [17] [18] [6]. Third

To address the three requirements, we propose a n@W approach allows the user to make a trade-off between
spatial context selection approach based on random partifi effectiveness and efficiency through adjusting the numiper o
images. After extracting local invariant features, we @mty Partition times on-line without re-indexing the databaties
partition the image multiple times to form a pool of overis important for a practical search system. In addition, the
lapping image patches. Each patch bundles the local featu@€sign of the algorithm makes it ready for parallelizationl a
inside it and is characterized by a histogram of visual worddus well suited for large scale applications.
Essentially, for each individual point, we generate a obite To evaluate our spatial random partition approach, we
of random image patches in varying sizes and rectangutamduct visual object search first on a movie database, and
shapes as its spatial context. Instead of matching an ohaibi then on a benchmark logo database with a million-level image
feature point, we match its randomized spatial context,ale database from Flickr as distractors. In Fig. 1, we provideeo
local features in a random image patch. Fig. 2(c) explaies thample results of visual object search. Although in somesas
randomized spatial context. For each spatial context @ach it is challenging even for human observers to find and locate
image patch), we independently calculate the similariyresc the small query objects in the cluttered scenes, our alyurit
between it and the query object as its voting weight. The finpérforms very well.
confidence score of each pixel in the image is calculatedeas th The remainder of the paper is organized as follows: Sec-
expectation of the voting weights of all patches that cantaiion Il introduces the background and related work on object
this pixel, and we record the pixel-wise confidence scorea oearch in recent years. In Section Ill, we present our random
confidence map. Finally, the matched regions can be idemtifigartition-based object search algorithm to account fortimul
on the confidence map as the detected objects. scale spatial context. In Section IV, we provide theorética

Our random partition approach provides several benefitalidation of our algorithm, and describe its parallel isypl
First of all, compared with the state-of-the-art systems fenentation. The experimental results are shown in Section V,
object search, our approach results in better matching aiotiowed by the conclusions in Section VI.



II. RELATED WORK

The developments of invariant local visual features ar Input:
fast image indexing and search algorithms have led
great successes in image search and retrieval. Given o= =
image query, the state-of-the-art image retrieval systet random'vr’arﬁﬁonl ﬁa“hma“‘hinx

[3] [4] [8] [9] [10] [38] [11] [21] [24] [45] [46] have been "
I

able to retrieve and rank similar or near-duplicate imagés-w
patch vcting‘

in million-level databases. Despite rapid progress in whol

image retrieval, visual object search, whose goal is to fir
localization

and accurately locate the target object in image collestior
remains a challenging problem. This is due to the fact th

the target objects usually appear in the cluttered backgisu
occupying a very small and unknown portion of an image, at

can differ significantly from the query because of the chang

in scale, view point and color, as well as partial occlusions  gytput:
this respect, visual object search can be viewed as two ta
combined: object matching and object localization.

For object maiching, the bag-of-visual-words (BOVW":ig. 3: lllustration of object search via spatial randomtigian (M x
scheme [5] [16] [26] [27] [31] [33] has been widely adoptedy™;, ;- — 3 3 3). The input includes a query object and an image
although there is the obvious drawback of quantizing higlaontaining the object, while the output is the segmentatibrihe
dimensional descriptors into visual words. In generaliglage object (highlighted in green).
two ways to address the quantization error incurred by BOVWost— rocessing step throuah a geometric verificatiorh sisc
scheme. One is to match individual descriptors in the feat P g step ghag '

space directly, e.g. the Naive-Bayes Nearest Neighbor (NBN ANSAC [26] or neighboring feature consistency [32]. Since

classifier proposed in [1] [2]. The method in [23] uses th%eometrlc verification methods are usually computatignall

NBNN-classifier and calculates the mutual information ecorexpenswe, they are applied only to the top images in the

between each local feature and the guery object indepdgide initial ranking list. Alternatively, efficient subimage trieval

However, the NBNN-based algorithms are all under the Naiv =SR) [17] and efficient subwindow search (ESS) [18] are

Bayes assumption that each feature point is independeant frﬁ:oposed o find the subimage with maximum similarity to

the others, therefore they can fail when the assumption.lse query. In addition, spatial random partition is prombse

violated. Besides, searching nearest neighbors in thelr&aatm [40] to discover and locate visual common objects.
space is costly both in memory and time.

Another way to mitigate the quantization error is to conside I1l. MULTI-SCALE SPATIAL CONTEXT VIA RANDOM
spatial context instead of an individual point, which isoals PARTITION
used in other image-related applications. By bundling co- Given a databas® = {Z;} of I images, our objective is
occurring visual words within a constrained spatial distanto retrieve all the images$Z,} that contain the object, and
into a visual phrase [41] [43] [44] or feature group [42] as thidentify the object's location{L,}, where £, C Z, is a
basic unit for object matching, the spatial context infotisra subimage ofZ,. An overview of our proposed algorithm is
is incorporated to enhance the discriminative power ofalisupresented in Alg. 1 and Fig. 3.
words. In [32], each local feature is combined with/itspatial
nearest neighbors to generate a feature group. And in [18], |mage Description

each image is partitioned into non-overlapping grid celsoh We first represent each image € D as a collection of local

bundle the local features into grid features. However, kenli interest points, denoted by, , 1. Follow the BoVW scheme,

the whole-image retrieval problem, our target object M&¥ach local descriptof is quantized to a visual word using a

appear at all possible scales. Therefore such feature gro\ggcabulary of words, represented as — (z,y, v), where

are not scale invariant and not capable of handling the uario(x y) is the location and: € {1 V1 is the corresponding

objects without apriori knqwledge. Also .it is not a t”‘”‘%‘ inéex of the visual word. Usin’g avstop list analogy, the most

Eronb;frgot:\/:fif:: i;h;eofggfdwc:ng'?o Séﬁinhioiﬁzviga:te fr?quent visual words that occur in almost all images are
9 t?'uscarded. All feature points are indexed by an invertedsfile

feature group because he would need to re-index the wh ) . .
database. As an earlier version of this paper, [14] propose%‘t only words that appear in the queries will be checked.

the Randomized Visual Phrases (RVPs) to consider spatial

context in varying shapes and sizes, and thereby provide8-aSpatial Random Partition

robust partial matching. We randomly partition each imagg into M x N non-
For object localization, in most previous work the relevardverlapping rectangular patches and perform such partitio

images are retrieved firstly and then the object location tisunds independently. This results in a poolMdfx N x K

determined as the bounding box of the matched regions in theage patches for each, denoted asP;, = {P;}. Note that




Algorithm 1 Spatial Random Partition for Object Search symbol similarity function

Input: . (Y R
an image database = {Z;} Bin(hq, hr) 22, min(hghip, 1)
the query object); (sometimes the negative quey_ HI(hg,hp) >, min(hY), h%)
is also given to model the backgrounds), )

Output: NHI(hg,hp) | ,min(h$),h})/3, max(h), hY)
subimages £, }, which contain the retrieved object. dot(hg, hp) S hGhY

1: Partition: VZ; € D, partition it intoM x N patches for< pohatt(hq, hp) S — N

i ) a ’ /7’ 1 5 1 Q P
times randomly, and obtain a pool of patclies= {F;} ralislial
containingM x N x K patches (Sec. I1I-B). TABLE |: Several vector distances for patch matching.

2: Matching: VP; € P;, match it against the query object

@ (or both@+- and@-), and assign it & weight propor- oo expectation is estimated using the sufi§etnstead

tion to its similarity to the query obje Sec. llI-C). :
3 Voting: VP, € Pz-ydistribu?.e o vojtin%%w(eight to ez)ach of the complete collectiof;. Now our problem becomes how
pixel it contains, and a pixel-wise confidence map o define the similarity score(P) for each patchP. And as
’ mentioned in [23], the input types of a practical searchesyst

generated for each imagg (Sec. II-C). e . )
4: Localization: VZ; € D, segment out the dominant re-COUId be 1) only positive quer§)., i.e., the target which user

gion £; from its confidence map as the object Iocatio?égam.s to search;_2) bOth positive quepy. and nggatlve query
(Sec. 1lI-D) _, i.e., the noise which user wants to avoid. Considering

these two kinds of cases, here we provide two ways to address
the patch matching problem, respectively.

1) Normal Patch Matching: First let us consider the case
that only positive queryy ;. is available, which is represented
) . . _ as the word-frequency histogram,, as well. In this case
rounds may overlap. Since in thie, partition, each pixel we can adopt any vector distance listed in Tab. | as the

. . (k) -
¢ falls in a unique patcht; ™, in total there arek” patches aiching kernel, and match each patch against the query just
containing the pixet after K rounds of partitions, denoted i« 4 whole image. Here we use the normalized histogram

as. intersectionNV H1(-) as an example:

for a given partitionk € {1,2,..., K} the M x N patches
are non-overlapping, while the patches from differentipart

Qf =(PMy={P |te P}, k=1..K () | K | K
st)==S s(P"=—S"NHI(h w, hqg,). (3)

Then each patchP is composed of a set of visual words, K kz::l ! K kZ::l Fe B
?/eg_oted as’ :|{#|1ﬂ < ]?h} and |sd_furtft1r:ar cha(rjafcterlzed as fe}n addition, some other vector distances can be choseraihste
-dimensional histogramy recording the word requency ot o¢ v rr7(.y, resulting in reduced computational cost, as shown

P : . . . in Tab. I. The comparison between all these distances will be
Given each pixek € Z;, we consider the collection of all discussed in later experiments
possible patches containing denoted by_ﬂt = {3}. Then 2) Discriminative Patch Matching: Then we consider the
lafte.r K rognds of partmgns, we esienUaIIy(k?aIrpple the Colfase in which both positive queri€s. and negative queries
e;:ﬂopKUmes and obtayn afsuhbsﬂt ;{I_Dt h}k=1 C 2. Q_ are given. This case is similar to the discriminative
The sizes and aspect ratios of the patches in the silfsetre iy matching [13], and we calculate the pixel-wise mutual
random since these patches result frAnindependent random information scoreM/ I(Q).,, P) as the similarity score(P) as
partitions. Therefore, for the pixel, its spatial context at follows:

different scales has been taken into consideration by rimaich

the random patch s& X against the query object. To simplify s(P) = MI(Q4,P) = log p(P1@+)
the problem, we assume the probability that each patch will p(P)
be sampled in thée:;;, partition is the same, which means — log p(P|Qy)
p(PM) = @r = # IS a constant. p(Q+)p(P1Q+) +p(P|lQ-)p(Q-)
! 1
= log . 4)
p(PlQ-)
C. Patch Matching and \oting P(Q+) + 5proP(Q-)

Given a pixelt, its confidence score(t) is calculated as We estimate the likelihooch(P|Q) in Eqn. 4 using the
the expectation of similarity scores of its spatial contéet, Normalized histogram intersection:

the patchP;, and the query objead,, denoted as: heNh
p(P|Q) = NHI(hp,hg) = IhPUhQI c,1. (5
s(t) = E(s(P) = > p(P)s(P) . pote . _
PeQ, Note that according to Eqn. 4, we need to estimate the prior

1 X probability p(Q ) or p(Q_), which is a constant for all pixels
~ Z p(Pt(k))s(Pt(k)) = Zs(Pt(k)), (2) and patches. In the paper we assume the prior of positive
P e QK k=1 and negative class are equal, as in [23] [39]. However this



assumption leads to a bias in results since in fact the nega™ ¥
class is much larger than the positive class. We will addre
the bias when localizing the object.

D. Object Localization

After assigning each pixel € Z, a confidence score, we
obtain a pixel-wise confidence map for each imdgeObject
localization then becomes an easy task since we just neec
identify the dominant regiot; from Z; as the object location:

L; = {t|s(t) > thres, vt € T,}. (6)

In an ideal case if the confidence map is generated

discriminative patch matching,hres = 0 should be used
as the threshold, which indicates that the mutual inforomati ¥
score between a pixel and the query is zero. However, d

to the invalid assumption made in Eqn. 4 (i.2(@+) equals
to p(@-)), the threshold has a bias from 0. Therefore we s
the thresholdthres adaptively, which is in proportion to the
average confidence score of the whole imdge

thres; = m Z s(t), @)

tel;

®

No Detected Object

. . . Fig. 4: Examples for voting and localization. The query ldgdhe
where|Z;| is the number of the non-zero pixelsTh anda is same as in Fig. 3. Thé,; column shows the original images. The

the parameter. Then all the pixels whose confidences aremhigh, , column shows the confidence maps after 200 random partitions
than the threshold will be directly segmented out and finalljhe 3.4 column shows the segmentation results with the coefficient
compose the detected regions. The score of a detected iggich = 5-0. By comparing the last two rows with the first two rows,
calculated as the sum of all the scores of the pixels it coafai Ve ¢an see that our algorithm is robust to the noisy pointshen t

. L background &,.; row), and can reduce the false alarm detections as
and its location is returned as a detected target, regardles ¢, (4:n rOW).
the size and shape. And by adjusting the coefficignie can h
modify the bias caused by the assumption to some extent Wposition 1. Asymptotic property:

obtain more accurate localization results. W& consider two pixelsi, j € Z, wherei € G C T islocated

Moreover, in practice we set the coefficieat > 1 10 ingde the groundtruth region while j ¢ G is located outside.
degrade the influence of the noisy points in the image back;ynase S5 and S are the total votes (or scores) for i and
ground. From Eqgn. 7 it is obvious to see that the threshold respectii/ely conjsidering K times random partitions. Both

cannot be higher than the average confidence score WREN gng K gre discrete random variables, and we have:
« < 1. In the condition, given any a confidence map there must !

be some relatively salier_r[ regiong contain?ng higher score limg oo (SK — Sf) <0 (8)

than the threshold, even if the regions are just caused by the

isolated points (see thé,, row in Fig. 4). Therefore, with The above theorem states that when we have enough rounds
the objective to filter the isolated points, we experimdptalof partitions for each image, the groundtruth reg@must

use a largery to heighten the threshold. By doing so, théeceive more votes, so that it can be easily discovered and
thresholding strategy favors the matched points to cotéocdocated. The explanation of Proposition 1 is given in the
in a local region since the co-located points will reinforcéupplementary material because of space limit.

each other and finally generate a salient enough region to be

segmented out; otherwise, if the matched points are dig&itb g pyrallel implementation

sparsely in the map, there may be no dominant region abov . . .

the same threshold (see Fig. 5). Such a property is importanepne of the most challenging problems for visual object

. ) .search is the efficiency and scalability, especially forled-
for searching small object such as a logo, because theymsii .
. . scale databases. On the other hand, nowadays the computatio
matched feature points are usually co-located in a sm(:.él1

. : . . s capability of PC has been improved significantly with the
local region, while the noisy points are usually dIStthﬂJteadvances in hardware. Thanks to the development of multi-
sparsely in the background. Thus this thresholding styat ) P

can effectively help to reduce the false alarm detections “Core CPU and programmable GPU, we can now divide one
" computation task into several independent threads anditxec

them in parallel. However, not all algorithms could be pafal

_ implemented such as some interactive algorithms, in wiieh t

A. Asymptotic property computational tasks are highly interrelated. Therefoteetver
The asymptotic property is given below as the theoreticiilcan be easily parallelized has become an important witer

justification of our algorithm. to evaluate the feasibility of an object search algorithm,

IV. ALGORITHM ANALYSIS
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Fig. 6: An overview of the parallel implementation of our adighm.
Fig. 5: The simulated experiment for voting and localizatidhe | . . .
target object is theJSTC word (denoted in blue) in the left-top hierarchy o_n GPU as _64 thread blocks with 64 threads in
image while the right-top image contains the same lettetsnoti €ach block in our experiment, hence the total number of GPU

co-located. Their voting maps after 200 rounds are showrhin tthreads isG' = 64 x 64 = 4096.
second row, from which we can see that their average confdenc
scores are almost the same. That is, the thresholds of thenaps
are also very close multiplied by the coefficient & 2, denoted ) ) V. EXPERIME'\_ITS )

by the surface in the dash). However, the right image will bet  In this section, our random partition approach is compared

retrieved since it cannot generate such dominant regiooseathe with several previous object retrieval algorithms in terofs
threshold with these sparsely distributed points. both speed and performance. We compare our approach with
three categories of methods: the first is between the fixalksc
spatial context methods, i.e., thleNN group [32] and the
although it used to be ignored in previous work. In this secti grid feature [13] (Sec. V-B); the second is the individuairpo
we briefly describe the parallel implementation of our randomatching method under the Naive-Bayes assumption, ie., th
partition algorithm. DIP algorithm [23] (Sec. V-C); the third is the state-of-the
Fig. 6 shows the parallel implementation of our algorithmart subimage search methods, i.e., ESR [17] and ESS [18]
There are two parts that can be parallelized on CPU af8ec. V-E). All these algorithms are implemented in C++ and
GPU, respectively. The first part is for the image partitiorperformed on a Dell workstation with 2.67 GHz Intel CPU
patch matching and voting. Compared with the subimagad 16 GB of RAM. The algorithms are implemented without
search methods [17] [18] which employ the iterative branclparallelization unless emphasized. Three challengirgdaes
and-bound search, our algorithm guarantees the indepeadeare used as the testbeds:
of each round of partition, hence the patches from differe@roundhog Day databaseThe database consists of 5640
partition rounds can be processed simultaneously. In latexyframes extracted from the entire moviéroundhog
experiments we implement the parallelization @ = 16 Day [32], from which 6 visual objects are chosen as queries.
threads on CPU, denoted 4%.}¢ ; in Fig. 6. So the time As in [32], local interest points are extracted by the Harris
complexity of our algorithm iSO(KMN/C). The second Affine detector and the MSER detector respectively, and
parallelized part is for the pixel-level object segmemiati described by 128-dimensional SIFT descriptors [22]. To re-
After generating a confidence map, in which each pixel has dace noise and reject unstable local features, we follow the
independent confidence score, we just need to check whetloeal feature refinement method in [42]: all the keyframes
the confidence score of each pixel is larger than the thrdshake stretched vertically and horizontally, and local iegtr
or not. GPU is exactly designed for this job: huge amoupbints are extracted from the stretched keyframes. Thase lo
of repeated but simple computation. We configure the threfghtures that survive image stretching are supposed tdibe af



invariant and hence are kept as refined features. All theafir
features, more than 5 million, are clustered into a vocapule (,,
of 20K visual words using the Hierarchical K-Means (HKM)
method [26].

Belgalogo databaseBelgalogo is a very challenging logo
database containing0, 000 images covering various aspect:
of life and current affairs. As in [15], all images are re )
sized with a maximum value of height and width equal t
800 pixels, while preserving the original aspect ratio. Sinc
the database is larger and the image backgrounds are nr
cluttered, more than 24 million SIFTs are extracted from tt
database and clustered into a large vocabulary of 1M vist
words to ensure the discriminative power of visual words. .
total of 6 external logos from Google are selected as theyque
objects. Meanwhile, to test our discriminative randomigart
approach (DRP), we randomly pick out two images containiry
no logos from the database as negative queries. Fig. 7: Image examples from the three databases. (a) Grogridhy

. . ... database consisting of 5640 keyframes; (b) Belgalogo datgba
Belgalogo + Flickr databaseTo further verify the scalability benchmark database for logo retrieval; (c) Flickr databesetaining

and effectiveness. of our appr(.)achz we build a 1M imaggarly 1M images which are added as the distractors for Bejga
database by adding crawled Flickr images to the Belgalogo

database as distractors. In total about 2 billion SIFTsO@,0 ) )
points per image on average) are extracted. We randomly pfék@S shown in Tab. 1ll, from which we can see thathas
1% points from the feature pool to generate a vocabulary garginal influence on the retrieval performance.
1M y|sual words. All points are indexed by an inverted file i T HT T NOT T Dot | s
costing about 12G RAM. mAP | 0.435 | 0.444 | 0.449 | 0.397 | 0.406
For all the databases above, a Stpp list is made to.removeTABLE II: mAP for different vector distances with = 3.0.
the top 10 percent most frequent visual words. In this way,
the most frequent but meaningless visual words that occur p 10 T 20 1T 30 | 40 | 50
in almost all images are suppressed. To evaluate the raitriev mAP | 0.403 | 0.422 | 0.435 | 0.434 | 0.420
performance, in most cases w_e.adopt the Average PreuS"P,&\BLE I1l: mAP for different segment coefficient: using Bin(-).
(AP) and mean Average Precision (mAP) as the measures.
Given a ranking list includingR retrieved results, the AP is
calculated as the area under the Precision/Recall curve:

Next, we study how the partition parameters affect the
retrieval performance in both accuracy and efficiency. W& fir
4 Zle Prec(r) x rel(r) fix K =200 and test differenfi/ x N, from 8 x 4 to 32 x 16,

P = #Ground Truth ©) and compare their performance in Tab. IV. It shows that the

) o ) . highest AP scores of the query objects Microphone, Phil Sign
where Prec(r) is the precision at cut-off in the L'St’ and  and Red Clock are achievedftx N = 16 x 8. Given the size
rel(r) is an indicator function equaling 1 if the’ resuIF _of the queries, we can infer that the best matching accuracy
contains the target objects (i.e., ground fruth), O oth&Wwi js more likely to be achieved when the average size of the
then the mAP is the mean average precision over all querigg,qom patches is close to the target object size. Howeer, w
Since some previous work published their results in differe, 5o note that there is an exception case, namely the Frames
measures, we will follow their measures when comparing W'@ign, where the query object is of a relative large size but

them. the AP decreases with the average size of the random patches
increases. It is because the size of the Frames Signs in the
A. Sensitivity of Parameters video varies quite a lot, and most of them are much smaller

than the query one. From this experiment we can see that

“:j this seg?on, the senrs],n_lw;y (:If steV(terz(ajl partz?]meéers e;ﬁlllthough the random partition approach could handle thie sca
random partition approach Is irstly tested on the Lroundngg, - iant to some extent, it essentially implies the asgionp

Day database. : . L) .
. : on the target object size when partitioning the images.
At first we test vector matching kernel and segment co- 9 J P 9 9

efficient a. The normal random partition (NRP) approach is QuerySize || 8x4 | 16x8 | 24x 12 | 32 x 16
implemented with the partition parametefs x M x N = Black Clock | 65p x 60p || 0.387 | 0456 | 0470 | 0426
Digital Clock | 165p x 100p || 0.423 | 0.412 | 0.409 0.405

200 x 16 x 8, where M x N is set aCCOl’ding to the aspect——Frrames Sign | 297p x 67p 0.426 0.486 0.499 0.508
ratio of the keyframes empirically. The results are evaldat | Microphone | 63p x 77p 0.186 | 0.238 0.229 0.225

. . Phil Sign 75p X 50p 0.743 0.767 0.757 0.765

el
by mAP over 6 query ObJeCtS. All the vector r |atCh|ng kernels Red Clock 60p X 60p 0.204 0.249 0.229 0271
in Tab. | are tested, and the results are showed in Tab. [T._ Avg. 0.395 0.435 0.432 0.425

NHI(-) performs sightly better than the others although it is taBLE Iv: mAP for different partition parameters/ x N.
slower. Also, we test the impact of the segment coefficient
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(K=50)
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Fig. 8: The influence of the number of partition times. The row lists three pairs of queries (denoted by yellow box onl#ig and an
example image containing the object (denoted by blue boxiemight). The output includes a confidence map on the leftaaselgmentation
result on the right. Th&,,.4, 3,4, 4:» row are associated with the number of partition tiniés= 25, K = 50, K = 100, respectively. As
the number of partition times increases, the confidence meaprbes more salient and the object is located more acouratel

0.44 18 with the query, which means no spatial support. We fix
043 s — \ partition parameterdX x M x N = 200 x 16 x 8 and

042 / / « = 3.0 for all queries in this database. The experimental
041 o / results are shown in Fig. 10, from which we can see that: 1)

mAP

the optimal scale of spatial context differs for differemnteqy
objects. Ask increases, the retrieval performance improves for
most queries while it drops for the Frames Sign. The reason

Retrieval Time (s)
o
®

0.7 /

:37 } o // is that the Frames Sign objects in groundtruth keyframes are
0 B R im0 0 0 artiter e Y 200 much smaller than the query so that it is easier to introduce
@) () the noise with a larger context scale; 2) although the optima

scale is unknown, our NRP approach is stable and robust to
Fig. 9: Performance of different number of partition tim&sm 10  the scale variations of the objects, therefore achievestarbe
%0 8 e AP it s e of D 7 perfomance over N metnoc
patch matching, confidence map generatign and object ,sdegtimgn Furthgr, our dlscrlm.lnatlve r.and.or.n partmo_n (DRP) ap-
(no parallel implementation). proach is compared with the discriminative grid-based algo
rithm [13] on the Belgalogo database. The partition paranset
are set tak x M x N = 200 x 16 x 16 for this database and the
Then we fix M x N = 16 x 8 and vary the number of segment coefficientv = 5.0 is fixed for all queries. Similar
partition times X from 10 to 200, and record their mAPto the k-NN methods, 4 different grid sizes, fromx8 to
and average time cost, as shown in Fig. 9. It shows that 32x32, are tested. Normalized histogram intersecfioH /(-
the number of partition times increases, the retrieval ltesuis chosen as the similarity function. The top 100 retrieval
improve in accuracy while cost more time. And the retrievdgsults are used for evaluation. The comparison results are
accuracy tends to convergence when the number of partitigiven in the2,,; to 5;, columns and);, column of Fig. 11,
times is large enough. Therefore the approach based \ghich show that the mAP of DRP is improved by more than
random partition allows the user to easily make a trade-cff% over that of the grid-based approach using the same local
between accuracy and speed since he can adjust the partifg#ures and matching kernel. It validates that the random
time on-line without re-indexing the database. Increasirgy Spatial context is superior to fixed-scale spatial contaxrtlted
number of partition times leads to a more salient confidenby grids.

map and better object localization, as showed in Fig. 8. _ _ _ _ _
C. Comparison with Naive-Bayes Point Matching Methods

_ _ _ _ In this section, we employ the interactive search strategy

B. Comparison with Fixed-scale Spatial Context Methods and make a comparison between DRP and [23], in which

First, we compare our NRP approach with the spatial an interactive object search algorithm based on discritivima
Nearest NeighboriNN) method [32]. Here we sek = individual point (DIP) matching is proposed. After the;
5,10, 15, 20 to test the retrieval performance when consideringund DRP search, the tap = 5 returned results are verified
spatial context at different scale®in(-) is selected as the manually. Denoting by{£,} the collection that contain®
matching kernel. As in [32], random patcheskeNN regions verified segments, and representing each segment as a word-
are rejected if they have less than two visual words matchidquency histogranh,, a new queryQ. is constructed by



| | || Dexia | Ferrari | Mercedes| President][| Average |

1s¢ round recall 0.096 0.013 0.145 0.357

DIP [23] precision 0.810 0.010 0.917 0.050 0.359
DRP precision 0.667 1.000 0.917 1.000 0.896

2,4 round recall 0.060 0.039 0.184 1.000

DIP [23] precision 0.100 0.750 1.000 0.826 0.669
DRP precision 1.000 1.000 1.000 1.000 1.000

TABLE V: Interactive search results for DIP [23] and DRP. &rBase and Kia are not opted in [23], here we only compareeb@ts on
the other 4 logos. To make a fair comparison, we compare theigions at the specific recall level given in [23].

Base Dexia Ferrari
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Recall Recall Recall
8-Grid | 16-Grid | 24-Grid | 32-Grid ESR[17] | RANSAC [26] NRP DRP | DRP2,4
Base 0.079 0.093 0.099 0.116 0.179 0.194 0.208 0.215 0.440
Dexia 0.144 0.143 0.151 0.145 0.117 0.151 0.153 0.165 0.366
Ferrari 0.023 0.015 0.011 0.010 0.052 0.051 0.013 0.013 0.046
Kia 0.365 0.355 0.358 0.364 0.497 0.473 0.506 0.506 0.612
Mercedes|| 0.185 0.184 0.183 0.181 0.180 0.139 0.215 0.216 0.275
President|| 0.346 0.368 0.353 0.424 0.446 0.537 0.675 0.680 1.000
[ mAP [ 0190 | 093 [ 0.192 [ 0.207 | 0245 | 0258 | 0295 | 0299 | 0457 ]

Fig. 11: Precision/Recall curves and AP scores of grid-thaggproach with different grid sizes X®, 16x 16, 24x24 and 3% 32), ESR [17],
RANSAC [26], NRP, DRP and DRR;, for the 6 query logos on the BelgalLogos database.

averaging the word-frequency histograms {a, }: h;, = low recall level limits our observation, we also evaluate th

% >, he,. Similarly, we can construct an new negative quergerformance of interactive search by AP and P/R curve, as

and repeat the DRP search in tlg,; round. Since the shown in thel0,, column of Fig. 11. It shows that the mAP

published DIP results are reported in Precision/Recaltes;o of DRP in2,,4 round (DRP2,,4) has a52% improvement over

here we compare with their precisions given the same recé#fiiat in1,, round, and hence highlights the effectiveness of our

as shown in Tab. V. From this experimental result, we catraightforward interactive strategy.

see that our DRP approach outperforms the DIP approach ] ]

in both thel,, and 2,4 rounds except for Dexia in the firstD- Comparison with RANSAC Methods

round. Because in [23] the local descriptors are matched inAs one of the most popular geometric verification al-

the high-dimensional feature space independently (irdeu gorithms, RANSAC has been usually adopted as the post-

the Naive-Bayes assumption), DIP could avoid quantizatigmocessing step in the state-of-the-art image retrieval sy

error completely but considers no spatial context. Theegfotem [26], [4]. In this section, we compare our random panttiti

the experiment indicates that considering spatial corikest approaches with the RANSAC-based system on the Belgalogo

better way to mitigate the quantization error from BoVW andatabase.

enhance the discriminative power of local features. Sihee t As done in [26] and [4], firstly all the images in the database
are fast ranked by their// scores with the help of the
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Fig. 12: There are two examples for the Ferrari and Merceolgss|

sosf | respectively. For the Ferrari logo (left), RANSAC works Wsihce
' it has enough matched points to estimate the transformatiodel
and does not constrain on the size of the objects; howeveth&o
much smaller Mercedes logo (right), there are not enouglcmest
. points to estimate an accurate transformation model by RADS
] o o3 rEm— 1 On the contrary, the random partition method is less stiintesit

Precision

Precision
o
=

S S

0 0.2 0.4 0.6 0.4 0.
Recal Recall only assumes the target object appears in a compact locainreg
Philsign Redclock . . . K
1 That means, when the target object is too larger than itsngstson
. -ﬁi’;‘\q DSy on object size, the random partition method may fail to aaisly
o8l - g 15NN AP:0.150246

segment an entire object out. Instead, it tends to over-segm@n
entire object into a set of smaller regions. Therefore, caneg to
RANSAC, the proposed approaches are more competent fortak s
object search job.

——20NN AP:0.157272]
——NRP_AP:0.248850

Precision

> r,i
Precision

—=-5NN AP:0.545242| \ |
02| 15 APioT27972 AN Ls:;w_ ESR [17] | RANSAC [26] | NRP | NRP (parallel)
P AP0 Ta854 AN = \ Time (5) 2.97 1.17 2.84 0.44
0! 0
P YReaa™ " e’ " ' TABLE VI: Retrieval time of NRP, RANSAC and ESR on the
5-NN | 10-NN | 15-NN | 20-NN | NRP Belgalogo database.
Black Clock || 0.385 | 0.386 | 0.392 | 0.399 | 0.456
Digital Clock || 0.293 | 0.359 | 0.372 | 0.378 [ 0.412 Ferrari logo, RANSAC has a much better performance than
Frames Sign || 0.556 | 0.474 | 0.465 | 0.442 | 0.486 NRP, and in fact it gets the highest AP among all algorithms;
Microphone || 0.138 | 0.158 [ 0.186 | 0.154 | 0.238 but for the Mercedes logo, its performance is even much worse
RPhll Sign 0.545 | 0.718 | 0.727 | 0.739 0'767 than the grid-based algorithms. The reason is that the fferra
gthc 021 0 100 |0 (020 logos appearing in the database are usually of a much larger
[ mAP [ 0340 [ 0.373 | 0.382 | 0.378 | 0.435 |

size, while the Mercedes logos are usually tiny (see Fig. 12)
Fig. 10: Precision/Recall curves and AP scores for the sierqqu When the target object is large, the object search problem is
objects in the Groundhog Day database. Each plot containsves, close to the traditional whole-image retrieval problem eveh
respeciiely. In the battom table, the red number in each e <NSAC has proven successful but NRP may fail due to ts
bes[z result¥or the given query ob}ect while the blue one ésstbcond gssumptlon on the object size; however, when the targe(‘tbbje
best. is relatively small, there may be no enough matched points to
estimate an exact transformation model by RANSAC. On the

inverted file. Then for the top 100 images in the initial ranki contrary, NRP is less strict since it only requires the medch
list, we employ the RANSAC algorithm to estimate an affingoints are distributed in a local region. Therefore, coragar
transformation model with 6 degrees of freedom between tHe RANSAC, the proposed random partition approaches are
query and each of the retrieved images. Finally the numpBPré competent in searching small objects.

of the inliers according to the affine transformation model e also compare the time cost of NRP and RANSAC. The
is regarded as the new similarity score (the position errbfRP algorithm is implemented parallelized as proposed in
tolerance is set to 3 pixels), by which the initial retrievec®Ction IV-B. Al algorithms are re-run for 3 times to calatd
images are re-ranked as the final result. the average retrieval time, and the results are shown in

The performance of RANSAC is shown in thg, column Tab. VI. Because only the top 100 images in the initial lig ar _
in Fig. 11. From the mAP over all 6 queries we can sdyocessed, the total tlmg cpst of the RAN_SAC—base.d system is
that our random partition approaches have an abii reduced sharply, and it is in fact not a f:?ur comparison. _E_ven
improvement over RANSAC on the database. Moreover, aftough, we can see that _the NRP aI_gorlthm has_ a significant
carefully studying the performance of RANSAC on differendvantage in efficiency with parallel implementation.
query logos, we find some interesting results: for most gseri _ ) _

e.g., the Base, Dexia, Kia and President logos, RANSAE Comparison with Subimage Search Methods
performs comparably to or sightly worse than NRP; but the Subimage search algorithms employing the branch-and-
Ferrari logo and the Mercedes logo are two extremes. For theund scheme are the state-of-the-art for object seargh, e.
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the efficient subimage retrieval (ESR) algorithm [17] and ESS [18] | NRP(HI) | NRP(NHI)

L ) ) Base 0.050 0.165 0.189
the efficient subwindow search (ESS) [18] algorithm. The Dexia 0.029 0.105 0.118
advantage of this category of algorithms is that it can firel th Ferrari 0.017 0.020 0.023
global optimal subimage very quickly and return this suliima Meféides 8-3‘3"‘2‘ 8-‘1‘22 8-‘1‘12
as the object’s location. In this section we compare ouroand President 0165 07386 0543
partition approach with ESR on the Belgalogo database and | AP [ 0090 | 0200 | 0240 |
with ESS on the Belgalogo+Flickr database in both accuracy Time cost per

and speed. retrieved image (ms)| 25.4 1.8 7.8

The implement details of ESR and ESS are as follows: for TABLE ViI: Comparison on the Belgalogo+Flickr database.
both ESR and ESS, we relax the size and shape constraints on
the candidate subimages, to ensure that the returned syir ESR
is global optimal;NHI(-) is adopted as the quality function :
f, and for a set of region®, the region-level quality bound |

f is defined as;f = }ZZBZ?){ > f, wherehy and by, are
the histograms of the union and intersection of all regions

R; for ESR, given a set of images the image-level quality

bound is defined asy = };218231 the inverted files are used EINE £
i -

to quickly calculate the visual word histograms. 'ij 4
First we compare our NRP approach with ESR on tt l,,!f‘“: _'5 Ve
Belgalogo database. We set the partition parametexsi/ x e o,

N =200 x 16 x 16 anda = 5.0, and chooseVHI(-) as the S—
hing kernel Il. Th ieval perf is gi sop koRe - EU FRA

matching kernel as well. The retrieval performance is given ["frials AL

the 6,, and8,;, columns of Fig. 11. We can see that the NRI [k Pig| FARMER

approach leads to a better retrieval performance compaithd v P TCToN
the state-of-the-art ESR algorithm, although ESR couldrret =
the top 100 optimal subimages with higheStH{] scores Fig. 13: Examples of the search results by ESR and our approac
as detections. The reason is that ESR only searches for The images in the first column are retrieved by ESR, in whiah th
subimage of the most similar word-frequency histogram witted bounding boxes are returned as the object location; ebensi

the query, but does not require these matched visual wollds fﬁ)e'”mi? dﬁiﬁ:‘;ﬁ%ﬁg"&?&g;ﬁ ?a?ir:)?]r?teesdul?g ?hﬂémzmr%fr?h*
in a spatial neighborhood region. In other words, as 10ng1aS ge that each row stands for a specific case (from top to o

image has several matched visual words, even if these wopglgitiple target objects, noisy background and discretesheat points
may be distributed very dispersedly, it is likely to be retgd (false alarm by ESR).
by ESR. On the contrary, the NRP approach bundles the local
features by random patches. It favors matched points tleat #te comparison results between ESS and NRP on this 1M
distributed compactly, otherwise the confidence map witl ndatabase, in which our NRP algorithm beats ESS in both
produce a salient enough region. Therefore, compared witbcuracy and speed. This experimental results shows that: 1
our NRP approach, ESR leads to more false alarms, especieltgploying eitherHI(-) or NHI(-) as the matching kernel,
when the background is noisy. Moreover, our approach couddr NRP approach produces a more than% improvement
more easily handle the case in which one image contaiok mMAP over ESS. It highlights the effectiveness of our
multiple target objects. Fig. 13 gives a comparison betweapproach; 2) compared to the results on the Belgalogo dsgaba
ESR and NRP by several examples. In addition, by comparingnsisting of only 10K images, the retrieval performances o
the performances of NRP and DRP, shown in&jeand9;, both NRP and ESS/ESR become worse. However, the mAP
columns of Fig. 11 respectively, we see that negative gsierief ESS/ESR decreases much more sharply than that of NRP.
will help to improve the retrieval accuracy. It verifies the analysis we made above that compared with
Next, the NRP algorithm is compared with ESR in retriev@ur approach, ESR is not robust to a cluttered database and
speed (see Tab. VI). As we can see, without parallel implemdfads to more false alarms; 3jI(-) kernel is much faster
tation NRP is comparable with ESR in speed:; and the paral(@pout 4 times) thatV HI(-) but has a lower mAP. With the
implementation for NRP achieves about 7 times speedup. Parallel implementation our NRP approach adoptifig(-)
Finally to verify the scalability of our algorithm, we fugn <€mel could process more than 500 images in one second,
perform the NRP approach on the Belgalogo+Flickr databa&¢refore it has a great potential in large-scale appooati
consisting of 1M images. Boti/ I(-) and NHI(-) are tested SUCh as online detection.
in NRP approach with parallel implementation. Since ESR is
essentially an extension of ESS to improve efficiency and we VI. CONCLUSIONS
have compared NRP with ESR on the Belgalogo databaseln this paper, we propose a scalable visual object search
here we compare our NRP approach with ESS on this 18§stem based on spatial random partition. Our main contri-
database. The speed of the algorithms is evaluated by thdion is the introduction of randomized spatial context fo
average processing time per retrieved image. Tab.VIl shovebust sub-region matching. We validate its advantages on

Our Approach

No detection
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Fig. 14: Examples of our search results on the BelgaLogosbdsae for 5 logos: Base, Dexia, Mercedes, Kia and Presittem op to
bottom). Queries from Google are in the first column. Thedetbsearch results are in the right columns. The correettiens are denoted
in green while the wrong detections are in red. We can seedtitatandom partition approach is able to produce satisfiacasults even for
challenging images, such as non-rigid deformation (rowolyran 5) and bad partial occlusion (row 3, column 5). Morepitecan handle
the multiple objects case (row 4, column 2).

three challenging databases in comparison with the sfatedor patch matching. Furthermore, we believe that as a novel
the-art systems for object retrieval. It is shown that coraga way to select suitable spatial context, random partitiom loa
with systems using only individual local features or fixedapplied to other image-related applications as well.
scale spatial context, our randomized approach achievts be
search res_ults in tgrms of_ accuracy and efﬂmency. It cam als REFERENCES
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