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Randomized Spatial Context for Object Search
Yuning Jiang, Junsong Yuan,IEEE Member, Jingjing Meng and Jiebo LuoIEEE Fellow,

Abstract—Searching visual objects in large image or video
datasets is a challenging problem, because it requires efficient
matching and accurate localization of query objects that often
occupy a small part of an image. Although spatial context
has been shown to help produce more reliable detection than
methods that match local features individually, how to extract
appropriate spatial context remains an open problem. Instead
of using fixed-scale spatial context, we propose a randomized
approach to deriving spatial context, in the form of spatial
random partition. The effect of spatial context is achievedby
averaging the matching scores over multiple random patches.
Our approach offers three benefits: 1) the aggregation of the
matching scores over multiple random patches provides robust
local matching; 2) the matched objects can be directly identified
on the pixel-wise confidence map, which results in efficient object
localization; 3) our algorithm lends itself to easy parallelization
and also allows a flexible trade-off between accuracy and speed
through adjusting the number of partition times. Both theoretical
studies and experimental comparisons with the state-of-the-art
methods validate the advantages of our approach.

Index Terms—Object Search, Spatial Context, Random Parti-
tion

I. I NTRODUCTION

T HE matching of local visual features plays a critical role
in the state-of-the-art systems for visual object search

and detection. The fundamental problem is to measure the
similarity between an object (query) and a sub-region of
an image. Sub-regions with the highest similarity scores are
identified as the detection or search results. One category
of methods represents each image as a collection of local
features, and assume that they are independent from each
other. Thus the matching score of the whole or subimage
can be calculated as the summation of the matching scores of
its individual features. Such a Naive-Bayes assumption, e.g.,
Naive-Bayes Nearest Neighbor classifier [1] [2] [23] [39], has
led to successes in visual object recognition, detection and
search.

However, as local features are in fact not spatially in-
dependent, rather than matching local features individually,
some methods propose to consider the spatial context for
matching. For example, a group of co-located visual fea-
tures can be bundled together and matched as a whole.
The benefits of introducing such a feature group for vi-
sual matching have been proven to generate more reliable
and discriminative results than matching individual features,
thus leading to a higher precision in visual matching and
search [7] [12] [19] [20] [25] [28] [34] [40] [42].
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Fig. 1: Visual object search is a more challenging problem than
whole-image retrieval, since the target objects in the database can
vary greatly in location, scale, orientation and appearance.

Despite previous successes in employing spatial context
for more discriminative visual feature matching, e.g. visual
phrases [41] [43] [44] or bundled features [13] [36], one
problem remains unsolved: how to select the appropriate
spatial context when matching local features?

In general, there are two ways to select the spatial context.
The first category of methods relies on image segments or re-
gions to determine the spatial context [29] [30] [42] [35] [37],
where local features located in the same image region or seg-
ment are bundled together and matched as a whole. Although
such spatial context is reasonable, this approach is highly
dependent on the quality of image segmentation or region
detection results, which require a time consuming pre-process
to obtain and are usually unreliable.

The second category of methods selects the spatial context
at a relatively fixed scale. The most common way is to bundle
each local point with itsk spatial nearest neighbors, namely
k-NN group [32] [41]. However, as reported in [42], unstable
local features may be detected when images are resized or
stretched, resulting in varying numbers of detected local fea-
tures at different scales. Hence for each local point, itsk-NN
group may be totally different from that at a different scale,
as shown in Fig. 2(a). Therefore, spatial context provided
by the k-NN group is not scale invariant. Furthermore, it is
difficult to determine an appropriatek. Using a largerk reveals
more contextual information while running a higher risk of
introducing noise from the background. Moreover, if the user
wants to change the value ofk, he will need to re-calculate
the spatial threshold and re-index the feature groups all over.

Grid-based local feature bundling is an alternative to thek-
NN group for the fixed-scale spatial context [13]. An image
is partitioned into fixed-size grids and all features withineach
grid are bundled together and matched as a whole. However,
similar to thek-NN selection, the grid-based spatial context
is also not invariant to scale and it is difficult to choose a
proper grid size without knowing the size of the target object.
In addition, as shown in Fig. 2(b), local points near the edges
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Fig. 2: Comparison between different ways to choose the spatial context. The similarity between two spatial context regions are calculated
as the number of matched points (including the center point)in them, denoted by∩.

of the grids may be separated from their nearest neighbors,
therefore the grids may not accurately describe spatial context.

We believe that an ideal spatial context selection for object
search task should satisfy the following requirements: 1) it
can support robust object matching despite scale variations,
rotation and partial occlusions; 2) it can support fast object
localization in the cluttered backgrounds; and 3) it can be
efficiently extracted and indexed.

To address the three requirements, we propose a new
spatial context selection approach based on random partition of
images. After extracting local invariant features, we randomly
partition the image multiple times to form a pool of over-
lapping image patches. Each patch bundles the local features
inside it and is characterized by a histogram of visual words.
Essentially, for each individual point, we generate a collection
of random image patches in varying sizes and rectangular
shapes as its spatial context. Instead of matching an individual
feature point, we match its randomized spatial context, i.e., all
local features in a random image patch. Fig. 2(c) explains the
randomized spatial context. For each spatial context (i.e., each
image patch), we independently calculate the similarity score
between it and the query object as its voting weight. The final
confidence score of each pixel in the image is calculated as the
expectation of the voting weights of all patches that contain
this pixel, and we record the pixel-wise confidence scores ona
confidence map. Finally, the matched regions can be identified
on the confidence map as the detected objects.

Our random partition approach provides several benefits.
First of all, compared with the state-of-the-art systems for
object search, our approach results in better matching and

thus better retrieval performance thanks to the randomized
spatial context. Moreover, it is robust to the scale variations
and partial occlusions of the objects. Second, our spatial
random partition-based patch voting scheme indirectly solves
the object localization problem, as the object can be seg-
mented out directly from the confidence map. This largely
reduces the computational cost compared with the subimage
search methods for object localization [17] [18] [6]. Third,
our approach allows the user to make a trade-off between
effectiveness and efficiency through adjusting the number of
partition times on-line without re-indexing the database;this
is important for a practical search system. In addition, the
design of the algorithm makes it ready for parallelization and
thus well suited for large scale applications.

To evaluate our spatial random partition approach, we
conduct visual object search first on a movie database, and
then on a benchmark logo database with a million-level image
database from Flickr as distractors. In Fig. 1, we provide some
sample results of visual object search. Although in some cases
it is challenging even for human observers to find and locate
the small query objects in the cluttered scenes, our algorithm
performs very well.

The remainder of the paper is organized as follows: Sec-
tion II introduces the background and related work on object
search in recent years. In Section III, we present our random
partition-based object search algorithm to account for multi-
scale spatial context. In Section IV, we provide theoretical
validation of our algorithm, and describe its parallel imple-
mentation. The experimental results are shown in Section V,
followed by the conclusions in Section VI.
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II. RELATED WORK

The developments of invariant local visual features and
fast image indexing and search algorithms have led to
great successes in image search and retrieval. Given an
image query, the state-of-the-art image retrieval systems
[3] [4] [8] [9] [10] [38] [11] [21] [24] [45] [46] have been
able to retrieve and rank similar or near-duplicate images with-
in million-level databases. Despite rapid progress in whole-
image retrieval, visual object search, whose goal is to find
and accurately locate the target object in image collections,
remains a challenging problem. This is due to the fact that
the target objects usually appear in the cluttered backgrounds,
occupying a very small and unknown portion of an image, and
can differ significantly from the query because of the changes
in scale, view point and color, as well as partial occlusions. In
this respect, visual object search can be viewed as two tasks
combined: object matching and object localization.

For object matching, the bag-of-visual-words (BoVW)
scheme [5] [16] [26] [27] [31] [33] has been widely adopted
although there is the obvious drawback of quantizing high-
dimensional descriptors into visual words. In general, there are
two ways to address the quantization error incurred by BoVW
scheme. One is to match individual descriptors in the feature
space directly, e.g. the Naive-Bayes Nearest Neighbor (NBNN)
classifier proposed in [1] [2]. The method in [23] uses the
NBNN-classifier and calculates the mutual information score
between each local feature and the query object independently.
However, the NBNN-based algorithms are all under the Naive-
Bayes assumption that each feature point is independent from
the others, therefore they can fail when the assumption is
violated. Besides, searching nearest neighbors in the feature
space is costly both in memory and time.

Another way to mitigate the quantization error is to consider
spatial context instead of an individual point, which is also
used in other image-related applications. By bundling co-
occurring visual words within a constrained spatial distance
into a visual phrase [41] [43] [44] or feature group [42] as the
basic unit for object matching, the spatial context information
is incorporated to enhance the discriminative power of visual
words. In [32], each local feature is combined with itsk spatial
nearest neighbors to generate a feature group. And in [13],
each image is partitioned into non-overlapping grid cells which
bundle the local features into grid features. However, unlike
the whole-image retrieval problem, our target object may
appear at all possible scales. Therefore such feature groups
are not scale invariant and not capable of handling the various
objects without apriori knowledge. Also it is not a trivial
problem to select the optimalk or grid size. Moreover, it
is not convenient if the user wants to change the scale of
feature group because he would need to re-index the whole
database. As an earlier version of this paper, [14] proposes
the Randomized Visual Phrases (RVPs) to consider spatial
context in varying shapes and sizes, and thereby provides a
robust partial matching.

For object localization, in most previous work the relevant
images are retrieved firstly and then the object location is
determined as the bounding box of the matched regions in the

Fig. 3: Illustration of object search via spatial random partition (M×

N×K = 3×3×3). The input includes a query object and an image
containing the object, while the output is the segmentationof the
object (highlighted in green).

post-processing step through a geometric verification, such as
RANSAC [26] or neighboring feature consistency [32]. Since
geometric verification methods are usually computationally
expensive, they are applied only to the top images in the
initial ranking list. Alternatively, efficient subimage retrieval
(ESR) [17] and efficient subwindow search (ESS) [18] are
proposed to find the subimage with maximum similarity to
the query. In addition, spatial random partition is proposed
in [40] to discover and locate visual common objects.

III. M ULTI -SCALE SPATIAL CONTEXT VIA RANDOM

PARTITION

Given a databaseD = {Ii} of I images, our objective is
to retrieve all the images{Ig} that contain the object, and
identify the object’s locations{Lg}, where Lg ⊂ Ig is a
subimage ofIg. An overview of our proposed algorithm is
presented in Alg. 1 and Fig. 3.

A. Image Description

We first represent each imageIi ∈ D as a collection of local
interest points, denoted by{fi,j}. Follow the BoVW scheme,
each local descriptorf is quantized to a visual word using a
vocabulary ofV words, represented asw = (x, y, v), where
(x, y) is the location andv ∈ {1, . . . , V } is the corresponding
index of the visual word. Using a stop list analogy, the most
frequent visual words that occur in almost all images are
discarded. All feature points are indexed by an inverted fileso
that only words that appear in the queries will be checked.

B. Spatial Random Partition

We randomly partition each imageIi into M × N non-
overlapping rectangular patches and perform such partition K
rounds independently. This results in a pool ofM ×N ×K
image patches for eachIi, denoted as:Pi = {Pi}. Note that



4

Algorithm 1 Spatial Random Partition for Object Search

Input:
an image databaseD = {Ii}
the query objectQ+ (sometimes the negative queryQ−

is also given to model the backgrounds),
Output:

subimages{Lg}, which contain the retrieved object.

1: Partition: ∀Ii ∈ D, partition it intoM×N patches forK
times randomly, and obtain a pool of patchesPi = {Pi}
containingM ×N ×K patches (Sec. III-B).

2: Matching: ∀Pi ∈ Pi, match it against the query object
Q+ (or bothQ+ andQ−), and assign it a weight propor-
tion to its similarity to the query objectQ+ (Sec. III-C).

3: Voting: ∀Pi ∈ Pi, distribute its voting weight to each
pixel it contains, and a pixel-wise confidence map is
generated for each imageIi (Sec. III-C).

4: Localization: ∀Ii ∈ D, segment out the dominant re-
gion Li from its confidence map as the object location
(Sec. III-D).

for a given partitionk ∈ {1, 2, . . . ,K} the M × N patches
are non-overlapping, while the patches from different partition
rounds may overlap. Since in thekth partition, each pixel
t falls in a unique patchP (k)

t , in total there areK patches
containing the pixelt after K rounds of partitions, denoted
as:

Ω
K
t = {P

(k)
t } = {Pi | t ∈ Pi}, k = 1, . . . ,K. (1)

Then each patchP is composed of a set of visual words,
denoted asP : {w|w ∈ P}, and is further characterized as a
V -dimensional histogramhP recording the word frequency of
P .

Given each pixelt ∈ Ii, we consider the collection of all
possible patches containingt, denoted byΩt = {Pt}. Then
after K rounds of partitions, we essentially sample the col-
lectionK times and obtain a subsetΩK

t = {P
(k)
t }Kk=1 ⊂ Ωt.

The sizes and aspect ratios of the patches in the subsetΩ
K
t are

random since these patches result fromK independent random
partitions. Therefore, for the pixelt, its spatial context at
different scales has been taken into consideration by matching
the random patch setΩK

t against the query object. To simplify
the problem, we assume the probability that each patch will
be sampled in thekth partition is the same, which means
p(P

(k)
t ) = 1

|ΩK
t |

= 1
K

is a constant.

C. Patch Matching and Voting

Given a pixelt, its confidence scores(t) is calculated as
the expectation of similarity scores of its spatial context, i.e.,
the patchPt, and the query objectQ+, denoted as:

s(t) = E(s(Pt)) =
∑

Pt∈Ωt

p(Pt)s(Pt)

≈
∑

P
(k)
t ∈ ΩK

t

p(P
(k)
t )s(P

(k)
t ) =

1

K

K∑

k=1

s(P
(k)
t ), (2)

symbol similarity function

Bin(hQ, hP )
∑

v min(hv
Q
hv
P
, 1)

HI(hQ, hP )
∑

v min(hv
Q, hv

P )

NHI(hQ, hP )
∑

vmin(hv
Q
, hv

P
)/
∑

vmax(hv
Q
, hv

P
)

dot(hQ , hP )
∑

vh
v
Qhv

P

ρbhatt(hQ, hP ) 1√
||hQ||1||hR||1

∑

k

√

hv
Q
hv
P

TABLE I: Several vector distances for patch matching.

where the expectation is estimated using the subsetΩ
K
t instead

of the complete collectionΩt. Now our problem becomes how
to define the similarity scores(P ) for each patchP . And as
mentioned in [23], the input types of a practical search system
could be 1) only positive queryQ+, i.e., the target which user
wants to search; 2) both positive queryQ+ and negative query
Q−, i.e., the noise which user wants to avoid. Considering
these two kinds of cases, here we provide two ways to address
the patch matching problem, respectively.

1) Normal Patch Matching: First let us consider the case
that only positive queryQ+ is available, which is represented
as the word-frequency histogramhQ+ as well. In this case
we can adopt any vector distance listed in Tab. I as the
matching kernel, and match each patch against the query just
like a whole image. Here we use the normalized histogram
intersectionNHI(·) as an example:

s(t) =
1

K

K∑

k=1

s(P
(k)
t ) =

1

K

K∑

k=1

NHI(h
P

(k)
t

, hQ+). (3)

In addition, some other vector distances can be chosen instead
of NHI(·), resulting in reduced computational cost, as shown
in Tab. I. The comparison between all these distances will be
discussed in later experiments.

2) Discriminative Patch Matching: Then we consider the
case in which both positive queriesQ+ and negative queries
Q− are given. This case is similar to the discriminative
grid matching [13], and we calculate the pixel-wise mutual
information scoreMI(Q+, P ) as the similarity scores(P ) as
follows:

s(P ) = MI(Q+, P ) = log
p(P |Q+)

p(P )

= log
p(P |Q+)

p(Q+)p(P |Q+) + p(P |Q−)p(Q−)

= log
1

p(Q+) +
p(P |Q−)
p(P |Q+)p(Q−)

. (4)

We estimate the likelihoodp(P |Q) in Eqn. 4 using the
normalized histogram intersection:

p(P |Q) = NHI(hP , hQ) =
|hP ∩ hQ|

|hP ∪ hQ|
∈ [0, 1]. (5)

Note that according to Eqn. 4, we need to estimate the prior
probabilityp(Q+) or p(Q−), which is a constant for all pixels
and patches. In the paper we assume the prior of positive
and negative class are equal, as in [23] [39]. However this
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assumption leads to a bias in results since in fact the negative
class is much larger than the positive class. We will address
the bias when localizing the object.

D. Object Localization

After assigning each pixelt ∈ Ii a confidence score, we
obtain a pixel-wise confidence map for each imageIi. Object
localization then becomes an easy task since we just need to
identify the dominant regionLi from Ii as the object location:

Li = {t|s(t) > thres, ∀t ∈ Ii}. (6)

In an ideal case if the confidence map is generated by
discriminative patch matching,thres = 0 should be used
as the threshold, which indicates that the mutual information
score between a pixel and the query is zero. However, due
to the invalid assumption made in Eqn. 4 (i.e.,p(Q+) equals
to p(Q−)), the threshold has a bias from 0. Therefore we set
the thresholdthres adaptively, which is in proportion to the
average confidence score of the whole imageIi:

thresi =
α

|Ii|

∑

t∈Ii

s(t), (7)

where|Ii| is the number of the non-zero pixels inIi andα is
the parameter. Then all the pixels whose confidences are higher
than the threshold will be directly segmented out and finally
compose the detected regions. The score of a detected regionis
calculated as the sum of all the scores of the pixels it contains,
and its location is returned as a detected target, regardless of
the size and shape. And by adjusting the coefficientα, we can
modify the bias caused by the assumption to some extent and
obtain more accurate localization results.

Moreover, in practice we set the coefficientα > 1 to
degrade the influence of the noisy points in the image back-
ground. From Eqn. 7 it is obvious to see that the threshold
cannot be higher than the average confidence score when
α ≤ 1. In the condition, given any a confidence map there must
be some relatively salient regions containing higher scores
than the threshold, even if the regions are just caused by the
isolated points (see the4th row in Fig. 4). Therefore, with
the objective to filter the isolated points, we experimentally
use a largerα to heighten the threshold. By doing so, the
thresholding strategy favors the matched points to co-locate
in a local region since the co-located points will reinforce
each other and finally generate a salient enough region to be
segmented out; otherwise, if the matched points are distributed
sparsely in the map, there may be no dominant region above
the same threshold (see Fig. 5). Such a property is important
for searching small object such as a logo, because the positive
matched feature points are usually co-located in a small
local region, while the noisy points are usually distributed
sparsely in the background. Thus this thresholding strategy
can effectively help to reduce the false alarm detections.

IV. A LGORITHM ANALYSIS

A. Asymptotic property

The asymptotic property is given below as the theoretical
justification of our algorithm.

Fig. 4: Examples for voting and localization. The query logois the
same as in Fig. 3. The1st column shows the original images. The
2nd column shows the confidence maps after 200 random partitions.
The 3rd column shows the segmentation results with the coefficient
α = 5.0. By comparing the last two rows with the first two rows,
we can see that our algorithm is robust to the noisy points in the
background (3rd row), and can reduce the false alarm detections as
well (4th row).

Proposition 1. Asymptotic property:
We consider two pixels i, j ∈ I, where i ∈ G ⊂ I is located

inside the groundtruth region while j /∈ G is located outside.
Suppose SK

i and SK
j are the total votes (or scores) for i and

j, respectively, considering K times random partitions. Both
SK
i and SK

j are discrete random variables, and we have:

limK→∞(SK
i − SK

j ) > 0 (8)

The above theorem states that when we have enough rounds
of partitions for each image, the groundtruth regionG must
receive more votes, so that it can be easily discovered and
located. The explanation of Proposition 1 is given in the
supplementary material because of space limit.

B. Parallel implementation

One of the most challenging problems for visual object
search is the efficiency and scalability, especially for theweb-
scale databases. On the other hand, nowadays the computation-
al capability of PC has been improved significantly with the
advances in hardware. Thanks to the development of multi-
core CPU and programmable GPU, we can now divide one
computation task into several independent threads and execute
them in parallel. However, not all algorithms could be parallel
implemented such as some interactive algorithms, in which the
computational tasks are highly interrelated. Therefore, whether
it can be easily parallelized has become an important criterion
to evaluate the feasibility of an object search algorithm,
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Fig. 5: The simulated experiment for voting and localization. The
target object is theUSTC word (denoted in blue) in the left-top
image while the right-top image contains the same letters but not
co-located. Their voting maps after 200 rounds are shown in the
second row, from which we can see that their average confidence
scores are almost the same. That is, the thresholds of the twomaps
are also very close multiplied by the coefficient (α = 2, denoted
by the surface in the dash). However, the right image will notbe
retrieved since it cannot generate such dominant regions above the
threshold with these sparsely distributed points.

although it used to be ignored in previous work. In this section
we briefly describe the parallel implementation of our random
partition algorithm.

Fig. 6 shows the parallel implementation of our algorithm.
There are two parts that can be parallelized on CPU and
GPU, respectively. The first part is for the image partition,
patch matching and voting. Compared with the subimage
search methods [17] [18] which employ the iterative branch-
and-bound search, our algorithm guarantees the independence
of each round of partition, hence the patches from different
partition rounds can be processed simultaneously. In later
experiments we implement the parallelization inC = 16
threads on CPU, denoted as{Tc}

C
c=1 in Fig. 6. So the time

complexity of our algorithm isO(KMN/C). The second
parallelized part is for the pixel-level object segmentation.
After generating a confidence map, in which each pixel has an
independent confidence score, we just need to check whether
the confidence score of each pixel is larger than the threshold
or not. GPU is exactly designed for this job: huge amount
of repeated but simple computation. We configure the thread

Fig. 6: An overview of the parallel implementation of our algorithm.

hierarchy on GPU as 64 thread blocks with 64 threads in
each block in our experiment, hence the total number of GPU
threads isG = 64× 64 = 4096.

V. EXPERIMENTS

In this section, our random partition approach is compared
with several previous object retrieval algorithms in termsof
both speed and performance. We compare our approach with
three categories of methods: the first is between the fixed-scale
spatial context methods, i.e., thek-NN group [32] and the
grid feature [13] (Sec. V-B); the second is the individual point
matching method under the Naive-Bayes assumption, i.e., the
DIP algorithm [23] (Sec. V-C); the third is the state-of-the-
art subimage search methods, i.e., ESR [17] and ESS [18]
(Sec. V-E). All these algorithms are implemented in C++ and
performed on a Dell workstation with 2.67 GHz Intel CPU
and 16 GB of RAM. The algorithms are implemented without
parallelization unless emphasized. Three challenging databases
are used as the testbeds:
Groundhog Day databaseThe database consists of 5640
keyframes extracted from the entire movieGroundhog
Day [32], from which 6 visual objects are chosen as queries.
As in [32], local interest points are extracted by the Harris-
Affine detector and the MSER detector respectively, and
described by 128-dimensional SIFT descriptors [22]. To re-
duce noise and reject unstable local features, we follow the
local feature refinement method in [42]: all the keyframes
are stretched vertically and horizontally, and local interest
points are extracted from the stretched keyframes. Those local
features that survive image stretching are supposed to be affine
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invariant and hence are kept as refined features. All the refined
features, more than 5 million, are clustered into a vocabulary
of 20K visual words using the Hierarchical K-Means (HKM)
method [26].
Belgalogo databaseBelgalogo is a very challenging logo
database containing10, 000 images covering various aspects
of life and current affairs. As in [15], all images are re-
sized with a maximum value of height and width equal to
800 pixels, while preserving the original aspect ratio. Since
the database is larger and the image backgrounds are more
cluttered, more than 24 million SIFTs are extracted from the
database and clustered into a large vocabulary of 1M visual
words to ensure the discriminative power of visual words. A
total of 6 external logos from Google are selected as the query
objects. Meanwhile, to test our discriminative random partition
approach (DRP), we randomly pick out two images containing
no logos from the database as negative queries.
Belgalogo + Flickr databaseTo further verify the scalability
and effectiveness of our approach, we build a 1M image
database by adding crawled Flickr images to the Belgalogo
database as distractors. In total about 2 billion SIFTs (2,000
points per image on average) are extracted. We randomly pick
1% points from the feature pool to generate a vocabulary of
1M visual words. All points are indexed by an inverted file
costing about 12G RAM.

For all the databases above, a stop list is made to remove
the top 10 percent most frequent visual words. In this way,
the most frequent but meaningless visual words that occur
in almost all images are suppressed. To evaluate the retrieval
performance, in most cases we adopt the Average Precision
(AP) and mean Average Precision (mAP) as the measures.
Given a ranking list includingR retrieved results, the AP is
calculated as the area under the Precision/Recall curve:

AP =

∑R

r=1 Prec(r)× rel(r)

#Ground Truth
, (9)

wherePrec(r) is the precision at cut-offr in the list, and
rel(r) is an indicator function equaling 1 if therth result
contains the target objects (i.e., ground truth), 0 otherwise;
then the mAP is the mean average precision over all queries.
Since some previous work published their results in different
measures, we will follow their measures when comparing with
them.

A. Sensitivity of Parameters

In this section, the sensitivity of several parameters of the
random partition approach is firstly tested on the Groundhog
Day database.

At first we test vector matching kernel and segment co-
efficient α. The normal random partition (NRP) approach is
implemented with the partition parametersK × M × N =
200 × 16 × 8, whereM × N is set according to the aspect
ratio of the keyframes empirically. The results are evaluated
by mAP over 6 query objects. All the vector matching kernels
in Tab. I are tested, and the results are showed in Tab. II.
NHI(·) performs sightly better than the others although it is
slower. Also, we test the impact of the segment coefficient

Fig. 7: Image examples from the three databases. (a) Groundhog Day
database consisting of 5640 keyframes; (b) Belgalogo database, a
benchmark database for logo retrieval; (c) Flickr database, containing
nearly 1M images which are added as the distractors for Belgalogo.

α, as shown in Tab. III, from which we can see thatα has
marginal influence on the retrieval performance.

Bin HI NHI Dot ρbhatt
mAP 0.435 0.444 0.449 0.397 0.406

TABLE II: mAP for different vector distances withα = 3.0.

α 1.0 2.0 3.0 4.0 5.0
mAP 0.403 0.422 0.435 0.434 0.420

TABLE III: mAP for different segment coefficientα usingBin(·).

Next, we study how the partition parameters affect the
retrieval performance in both accuracy and efficiency. We first
fix K = 200 and test differentM ×N , from 8× 4 to 32× 16,
and compare their performance in Tab. IV. It shows that the
highest AP scores of the query objects Microphone, Phil Sign
and Red Clock are achieved atM×N = 16×8. Given the size
of the queries, we can infer that the best matching accuracy
is more likely to be achieved when the average size of the
random patches is close to the target object size. However, we
also note that there is an exception case, namely the Frames
Sign, where the query object is of a relative large size but
the AP decreases with the average size of the random patches
increases. It is because the size of the Frames Signs in the
video varies quite a lot, and most of them are much smaller
than the query one. From this experiment we can see that
although the random partition approach could handle the scale
invariant to some extent, it essentially implies the assumption
on the target object size when partitioning the images.

Query Size 8 × 4 16 × 8 24 × 12 32 × 16
Black Clock 65p × 60p 0.387 0.456 0.470 0.426
Digital Clock 165p × 100p 0.423 0.412 0.409 0.405
Frames Sign 297p × 67p 0.426 0.486 0.499 0.508
Microphone 63p × 77p 0.186 0.238 0.229 0.225
Phil Sign 75p × 50p 0.743 0.767 0.757 0.765
Red Clock 60p × 60p 0.204 0.249 0.229 0.221

Avg. 0.395 0.435 0.432 0.425

TABLE IV: mAP for different partition parametersM ×N .
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Fig. 8: The influence of the number of partition times. The1st row lists three pairs of queries (denoted by yellow box on theleft) and an
example image containing the object (denoted by blue box on the right). The output includes a confidence map on the left anda segmentation
result on the right. The2nd, 3rd, 4th row are associated with the number of partition timesK = 25, K = 50, K = 100, respectively. As
the number of partition times increases, the confidence map becomes more salient and the object is located more accurately.

(a) (b)

Fig. 9: Performance of different number of partition times,from 10
to 200: a) the mAP curve as the number of partition times increases;
b) the time cost for different number of partition times, including
patch matching, confidence map generation and object segmentation
(no parallel implementation).

Then we fixM × N = 16 × 8 and vary the number of
partition timesK from 10 to 200, and record their mAP
and average time cost, as shown in Fig. 9. It shows that as
the number of partition times increases, the retrieval results
improve in accuracy while cost more time. And the retrieval
accuracy tends to convergence when the number of partition
times is large enough. Therefore the approach based on
random partition allows the user to easily make a trade-off
between accuracy and speed since he can adjust the partition
time on-line without re-indexing the database. Increasingthe
number of partition times leads to a more salient confidence
map and better object localization, as showed in Fig. 8.

B. Comparison with Fixed-scale Spatial Context Methods

First, we compare our NRP approach with the spatialk-
Nearest Neighbor (k-NN) method [32]. Here we setk =
5, 10, 15, 20 to test the retrieval performance when considering
spatial context at different scales.Bin(·) is selected as the
matching kernel. As in [32], random patches ork-NN regions
are rejected if they have less than two visual words matched

with the query, which means no spatial support. We fix
partition parametersK × M × N = 200 × 16 × 8 and
α = 3.0 for all queries in this database. The experimental
results are shown in Fig. 10, from which we can see that: 1)
the optimal scale of spatial context differs for different query
objects. Ask increases, the retrieval performance improves for
most queries while it drops for the Frames Sign. The reason
is that the Frames Sign objects in groundtruth keyframes are
much smaller than the query so that it is easier to introduce
the noise with a larger context scale; 2) although the optimal
scale is unknown, our NRP approach is stable and robust to
the scale variations of the objects, therefore achieves a better
performance over thek-NN methods.

Further, our discriminative random partition (DRP) ap-
proach is compared with the discriminative grid-based algo-
rithm [13] on the Belgalogo database. The partition parameters
are set toK×M×N = 200×16×16 for this database and the
segment coefficientα = 5.0 is fixed for all queries. Similar
to the k-NN methods, 4 different grid sizes, from 8×8 to
32×32, are tested. Normalized histogram intersectionNHI(·)
is chosen as the similarity function. The top 100 retrieval
results are used for evaluation. The comparison results are
given in the2nd to 5th columns and9th column of Fig. 11,
which show that the mAP of DRP is improved by more than
40% over that of the grid-based approach using the same local
features and matching kernel. It validates that the random
spatial context is superior to fixed-scale spatial context bundled
by grids.

C. Comparison with Naive-Bayes Point Matching Methods

In this section, we employ the interactive search strategy
and make a comparison between DRP and [23], in which
an interactive object search algorithm based on discriminative
individual point (DIP) matching is proposed. After the1st
round DRP search, the topR = 5 returned results are verified
manually. Denoting by{Lr} the collection that containsR
verified segments, and representing each segment as a word-
frequency histogramhLr

, a new queryQ̃+ is constructed by



9

Dexia Ferrari Mercedes President Average

1st round recall 0.096 0.013 0.145 0.357
DIP [23] precision 0.810 0.010 0.917 0.050 0.359

DRP precision 0.667 1.000 0.917 1.000 0.896

2nd round recall 0.060 0.039 0.184 1.000
DIP [23] precision 0.100 0.750 1.000 0.826 0.669

DRP precision 1.000 1.000 1.000 1.000 1.000

TABLE V: Interactive search results for DIP [23] and DRP. Since Base and Kia are not opted in [23], here we only compare the results on
the other 4 logos. To make a fair comparison, we compare the precisions at the specific recall level given in [23].

8-Grid 16-Grid 24-Grid 32-Grid ESR [17] RANSAC [26] NRP DRP DRP-2nd

Base 0.079 0.093 0.099 0.116 0.179 0.194 0.208 0.215 0.440
Dexia 0.144 0.143 0.151 0.145 0.117 0.151 0.153 0.165 0.366
Ferrari 0.023 0.015 0.011 0.010 0.052 0.051 0.013 0.013 0.046

Kia 0.365 0.355 0.358 0.364 0.497 0.473 0.506 0.506 0.612
Mercedes 0.185 0.184 0.183 0.181 0.180 0.139 0.215 0.216 0.275
President 0.346 0.368 0.353 0.424 0.446 0.537 0.675 0.680 1.000

mAP 0.190 0.193 0.192 0.207 0.245 0.258 0.295 0.299 0.457

Fig. 11: Precision/Recall curves and AP scores of grid-based approach with different grid sizes (8×8, 16×16, 24×24 and 32×32), ESR [17],
RANSAC [26], NRP, DRP and DRP-2nd for the 6 query logos on the BelgaLogos database.

averaging the word-frequency histograms of{Lr}: hQ̃+ =
1
R

∑
r hLr

. Similarly, we can construct an new negative query
and repeat the DRP search in the2nd round. Since the
published DIP results are reported in Precision/Recall scores,
here we compare with their precisions given the same recall,
as shown in Tab. V. From this experimental result, we can
see that our DRP approach outperforms the DIP approach
in both the1st and 2nd rounds except for Dexia in the first
round. Because in [23] the local descriptors are matched in
the high-dimensional feature space independently (i.e., under
the Naive-Bayes assumption), DIP could avoid quantization
error completely but considers no spatial context. Therefore,
the experiment indicates that considering spatial contextis a
better way to mitigate the quantization error from BoVW and
enhance the discriminative power of local features. Since the

low recall level limits our observation, we also evaluate the
performance of interactive search by AP and P/R curve, as
shown in the10th column of Fig. 11. It shows that the mAP
of DRP in2nd round (DRP-2nd) has a52% improvement over
that in1st round, and hence highlights the effectiveness of our
straightforward interactive strategy.

D. Comparison with RANSAC Methods

As one of the most popular geometric verification al-
gorithms, RANSAC has been usually adopted as the post-
processing step in the state-of-the-art image retrieval sys-
tem [26], [4]. In this section, we compare our random partition
approaches with the RANSAC-based system on the Belgalogo
database.

As done in [26] and [4], firstly all the images in the database
are fast ranked by theirHI scores with the help of the
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Fig. 10: Precision/Recall curves and AP scores for the six query
objects in the Groundhog Day database. Each plot contains 5 curves,
referring to the 5-NN, 10-NN, 15-NN, 20-NN and NRP approach
respectively. In the bottom table, the red number in each rowis the
best result for the given query object while the blue one is the second
best.

inverted file. Then for the top 100 images in the initial ranking
list, we employ the RANSAC algorithm to estimate an affine
transformation model with 6 degrees of freedom between the
query and each of the retrieved images. Finally the number
of the inliers according to the affine transformation model
is regarded as the new similarity score (the position error
tolerance is set to 3 pixels), by which the initial retrieved
images are re-ranked as the final result.

The performance of RANSAC is shown in the7th column
in Fig. 11. From the mAP over all 6 queries we can see
that our random partition approaches have an about14%
improvement over RANSAC on the database. Moreover, after
carefully studying the performance of RANSAC on different
query logos, we find some interesting results: for most queries,
e.g., the Base, Dexia, Kia and President logos, RANSAC
performs comparably to or sightly worse than NRP; but the
Ferrari logo and the Mercedes logo are two extremes. For the

Fig. 12: There are two examples for the Ferrari and Mercedes logos,
respectively. For the Ferrari logo (left), RANSAC works well since
it has enough matched points to estimate the transformationmodel
and does not constrain on the size of the objects; however, for the
much smaller Mercedes logo (right), there are not enough matched
points to estimate an accurate transformation model by RANSAC.
On the contrary, the random partition method is less strict since it
only assumes the target object appears in a compact local region.
That means, when the target object is too larger than its assumption
on object size, the random partition method may fail to accurately
segment an entire object out. Instead, it tends to over-segment an
entire object into a set of smaller regions. Therefore, compared to
RANSAC, the proposed approaches are more competent for the small
object search job.

ESR [17] RANSAC [26] NRP NRP (parallel)
Time (s) 2.97 1.17 2.84 0.44

TABLE VI: Retrieval time of NRP, RANSAC and ESR on the
Belgalogo database.

Ferrari logo, RANSAC has a much better performance than
NRP, and in fact it gets the highest AP among all algorithms;
but for the Mercedes logo, its performance is even much worse
than the grid-based algorithms. The reason is that the Ferrari
logos appearing in the database are usually of a much larger
size, while the Mercedes logos are usually tiny (see Fig. 12).
When the target object is large, the object search problem is
close to the traditional whole-image retrieval problem, where
RANSAC has proven successful but NRP may fail due to its
assumption on the object size; however, when the target object
is relatively small, there may be no enough matched points to
estimate an exact transformation model by RANSAC. On the
contrary, NRP is less strict since it only requires the matched
points are distributed in a local region. Therefore, compared
to RANSAC, the proposed random partition approaches are
more competent in searching small objects.

We also compare the time cost of NRP and RANSAC. The
NRP algorithm is implemented parallelized as proposed in
Section IV-B. All algorithms are re-run for 3 times to calculate
the average retrieval time, and the results are shown in
Tab. VI. Because only the top 100 images in the initial list are
processed, the total time cost of the RANSAC-based system is
reduced sharply, and it is in fact not a fair comparison. Even
though, we can see that the NRP algorithm has a significant
advantage in efficiency with parallel implementation.

E. Comparison with Subimage Search Methods

Subimage search algorithms employing the branch-and-
bound scheme are the state-of-the-art for object search, e.g.,



11

the efficient subimage retrieval (ESR) algorithm [17] and
the efficient subwindow search (ESS) [18] algorithm. The
advantage of this category of algorithms is that it can find the
global optimal subimage very quickly and return this subimage
as the object’s location. In this section we compare our random
partition approach with ESR on the Belgalogo database and
with ESS on the Belgalogo+Flickr database in both accuracy
and speed.

The implement details of ESR and ESS are as follows: for
both ESR and ESS, we relax the size and shape constraints on
the candidate subimages, to ensure that the returned subimage
is global optimal;NHI(·) is adopted as the quality function
f , and for a set of regionsR, the region-level quality bound
f̂ is defined as:f̂ =

|hR∩hQ|
|h

R
∪hQ| ≥ f , wherehR and hR are

the histograms of the union and intersection of all regions in
R; for ESR, given a set of imagesI, the image-level quality
boundf̃ is defined as:̃f =

|hI∩hQ|
|h

I
∪hQ| ; the inverted files are used

to quickly calculate the visual word histograms.
First we compare our NRP approach with ESR on the

Belgalogo database. We set the partition parametersK×M ×
N = 200× 16× 16 andα = 5.0, and chooseNHI(·) as the
matching kernel as well. The retrieval performance is givenin
the6th and8th columns of Fig. 11. We can see that the NRP
approach leads to a better retrieval performance compared with
the state-of-the-art ESR algorithm, although ESR could return
the top 100 optimal subimages with highestNHI scores
as detections. The reason is that ESR only searches for the
subimage of the most similar word-frequency histogram with
the query, but does not require these matched visual words fall
in a spatial neighborhood region. In other words, as long as an
image has several matched visual words, even if these words
may be distributed very dispersedly, it is likely to be retrieved
by ESR. On the contrary, the NRP approach bundles the local
features by random patches. It favors matched points that are
distributed compactly, otherwise the confidence map will not
produce a salient enough region. Therefore, compared with
our NRP approach, ESR leads to more false alarms, especially
when the background is noisy. Moreover, our approach could
more easily handle the case in which one image contains
multiple target objects. Fig. 13 gives a comparison between
ESR and NRP by several examples. In addition, by comparing
the performances of NRP and DRP, shown in the8th and9th
columns of Fig. 11 respectively, we see that negative queries
will help to improve the retrieval accuracy.

Next, the NRP algorithm is compared with ESR in retrieval
speed (see Tab. VI). As we can see, without parallel implemen-
tation NRP is comparable with ESR in speed; and the parallel
implementation for NRP achieves about 7 times speedup.

Finally to verify the scalability of our algorithm, we further
perform the NRP approach on the Belgalogo+Flickr database
consisting of 1M images. BothHI(·) andNHI(·) are tested
in NRP approach with parallel implementation. Since ESR is
essentially an extension of ESS to improve efficiency and we
have compared NRP with ESR on the Belgalogo database,
here we compare our NRP approach with ESS on this 1M
database. The speed of the algorithms is evaluated by the
average processing time per retrieved image. Tab.VII shows

ESS [18] NRP(HI) NRP(NHI)
Base 0.050 0.165 0.189
Dexia 0.029 0.105 0.118
Ferrari 0.017 0.020 0.023

Kia 0.244 0.406 0.418
Mercedes 0.032 0.115 0.148
President 0.165 0.386 0.543

mAP 0.090 0.200 0.240

Time cost per
retrieved image (ms) 25.4 1.8 7.8

TABLE VII: Comparison on the Belgalogo+Flickr database.

Fig. 13: Examples of the search results by ESR and our approach.
The images in the first column are retrieved by ESR, in which the
red bounding boxes are returned as the object location; the second
column are the confidence maps generated by our NRP approach,and
the third column are the segmentation results (highlightedin green).
Note that each row stands for a specific case (from top to bottom):
multiple target objects, noisy background and discrete matched points
(false alarm by ESR).

the comparison results between ESS and NRP on this 1M
database, in which our NRP algorithm beats ESS in both
accuracy and speed. This experimental results shows that: 1)
employing eitherHI(·) or NHI(·) as the matching kernel,
our NRP approach produces a more than120% improvement
of mAP over ESS. It highlights the effectiveness of our
approach; 2) compared to the results on the Belgalogo database
consisting of only 10K images, the retrieval performances of
both NRP and ESS/ESR become worse. However, the mAP
of ESS/ESR decreases much more sharply than that of NRP.
It verifies the analysis we made above that compared with
our approach, ESR is not robust to a cluttered database and
leads to more false alarms; 3)HI(·) kernel is much faster
(about 4 times) thanNHI(·) but has a lower mAP. With the
parallel implementation our NRP approach adoptingHI(·)
kernel could process more than 500 images in one second,
therefore it has a great potential in large-scale applications
such as online detection.

VI. CONCLUSIONS

In this paper, we propose a scalable visual object search
system based on spatial random partition. Our main contri-
bution is the introduction of randomized spatial context for
robust sub-region matching. We validate its advantages on
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Fig. 14: Examples of our search results on the BelgaLogos database for 5 logos: Base, Dexia, Mercedes, Kia and President (from top to
bottom). Queries from Google are in the first column. The selected search results are in the right columns. The correct detections are denoted
in green while the wrong detections are in red. We can see thatour random partition approach is able to produce satisfactory results even for
challenging images, such as non-rigid deformation (row 1, column 5) and bad partial occlusion (row 3, column 5). Moreover, it can handle
the multiple objects case (row 4, column 2).

three challenging databases in comparison with the state-of-
the-art systems for object retrieval. It is shown that compared
with systems using only individual local features or fixed-
scale spatial context, our randomized approach achieves better
search results in terms of accuracy and efficiency. It can also
handle object variations in scale, shape and orientation, as
well as cluttered backgrounds and occlusions. We also describe
the parallel implementation of our system and demonstrate its
performance on the one million image database. Moreover, we
can use discriminative patch matching and interactive search
to further improve the results.

Although we have only used quantized SIFT descriptors to
match the random patches, other regional features, e.g., color
histogram, can also be incorporated into the similarity score

for patch matching. Furthermore, we believe that as a novel
way to select suitable spatial context, random partition can be
applied to other image-related applications as well.
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