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Resolving Ambiguous Hand Pose Predictions by
Exploiting Part Correlations

Hui Liang, Junsong Yuan, Senior Member, IEEE, and Daniel Thalmann

Abstract—The positions of the hand joints are important high-
level features for hand-based human-computer interaction. We
present a novel method to predict the 3D joint positions from the
depth images and the parsed hand parts obtained with a pre-
trained classifier. The hand parts are utilized as the additional cue
to resolve the multi-modal predictions produced by the previous
regression-based method without increasing the computational
cost significantly. In addition, we further enforce the hand motion
constraints to fuse the per-pixel prediction results. The posterior
distribution of the joints is formulated as a weighted Product of
Experts model based on the individual pixel predictions, which
is maximized via the Expectation-Maximization algorithm on a
learned low dimensional space of the hand joint parameters.
The experimental results show the proposed method improves the
prediction accuracy considerably compared to the rivals that also
regress for the joint locations from the depth images. Especially,
we show that the regressor learned on synthesized dataset also
gives accurate prediction on real-world depth images by enforcing
the hand part correlations despite their discrepancies.

Index Terms—Hand Joint Prediction, Multimodal Prediction
Fusion, Random Regression Forest.

I. INTRODUCTION

HAND pose estimation is an important research topic in
human-computer interaction (HCI) which has various

applications, such as gesture recognition and animation syn-
thesis. Previously the specialized hardware, e.g. the optical
sensors [1] and the data-gloves [2], are commonly used to
accomplish this task. Although they provide accurate mea-
surements and achieve real-time performance, such devices
are cumbersome to use and expensive. Thus the vision-based
methods have been the mainstream in this field, which are
cheaper and provide more natural interaction experiences.
However, due to the high flexibility and self-occlusion of the
hand, it remains a challenging task to capture the articulated
hand motions from the visual inputs.

Most conventional vision-based methods utilize certain
global characteristics, e.g. the contour and silhouette, to infer
the hand pose either by template matching [3-5] or model-
based fitting [6-9, 35]. In template matching, the hand pose is
obtained by nearest-neighbor search in a vast set of templates,
each of which contains the descriptor for matching and the
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Fig. 1. Illustration of the per-pixel vote distributions of the middle fingertip
obtained by regression using [13] (Lower Row). The upper and middle rows
show the input color and depth images.

associated pose parameters. As the global descriptors are
generally incapable of encoding all the information needed
to infer the complete pose parameters, these methods suffer
from ambiguous pose predictions. In model-based fitting, the
hand pose is estimated by fitting an adjustable hand model to
the hand image to minimize the matching error between the
model and image. Such methods are still popular as they work
well in the constrained environments, e.g. the hand is precisely
extracted and the model is consistent with the input hand.
However, they lack the robustness against imperfect inputs and
are relatively slow due to the high computation cost involved in
optimizing the high dimensional pose model. To address these
issues, the recent trend in pose estimation has been fusing the
individual estimations obtained by many weak pose estimators
[10-13, 27, 31] to reconstruct the complete pose, and each
weak estimator infers a subset of the pose parameters based
on part of the input, e.g. an image patch or a set of pixels.
These methods prove more efficient and robust compared to
those that rely on the global image features.

In this paper we follow the idea of fusing weak pose
estimators to predict the hand pose from single depth images,
and define the pose as the 3D positions of the hand joints. The
proposed method is motivated by the human pose regression
framework in [13], in which the regression forest is used for
per-pixel joint prediction. Despite its high accuracy and capa-
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Fig. 2. The pipeline of the proposed hand pose estimation scheme.

bility to handle partial occlusion, it relies on the independent
per-pixel votes and the correlations among the hand parts are
not exploited. Given the inconsistency between the real-world
inputs and the synthesized training data, many pixels will be
misclassified and the vote distribution can be multi-modal. Fig.
1 shows the vote distributions for the middle fingertip obtained
by accumulating the per-pixel predictions with the regression
forest in [13], in which the warm colors indicate high confi-
dences, and vice versa. The vote distributions obtained on the
real-world images using the regressor trained on synthesized
images are quite scattered. Besides, the different joint positions
are estimated independently of each other by aggregating the
votes from all the pixels via the Mean-Shift algorithm in [13].
However, such independent estimation scheme can easily lead
to infeasible poses without exploiting the joint correlations,
considering the severe self-occlusion of the hand and large
viewpoint variations compared to the body.

Therefore, we propose to enforce the hand part correlations
to resolve the ambiguous per-pixel predictions obtained using
the regression forest [13]. The hand part correlations are
exploited from two different aspects. First, the co-occurrence
pattern between the hand parts, e.g. some parts are more
likely to be adjacent than others [26], is useful to refine
the per-pixel votes in a discriminative way. As the hand
parsing results have encoded such co-occurrence patterns, we
propose to extract the semantic context descriptor from the
discrete hand part labels to complement the depth context
descriptor for pose regression. The combination of the depth
and semantic contexts proves more effective than regression
using the depth context alone. Besides, the hand motion is
highly constrained and the joint parameters are embedded
in a low dimensional space. To handle the multi-modal per-
pixel predictions obtained by the regression forest, the pose
can be refined by maximizing the joint posterior of the pose
parameters in the low dimensional space instead of the original
space. In this paper the posterior distribution is modeled as a
weighted Products of Experts [28] based on the per-pixel joint
predictions. The low dimensional space of the joint parameters
is learned by Principal Component Analysis (PCA) of the
training samples. Based on this formulation we show that
the posterior distribution can be efficiently maximized by the
Expectation-Maximization (EM) algorithm [29].

The pipeline to process one frame during the testing stage
is shown in Fig. 2. The depth image is first parsed by per-pixel
classification using a pre-trained Random Decision Forest
(RDF) classifier to obtain the hand parts. The parsing results

are then combined with the depth image to be encoded into
the depth and semantic context descriptors. Each pixel casts
its votes for the joint locations with the Regression Forest,
which is trained using both descriptors. To illustrate this we
show some exemplary per-pixel votes for the middle fingertip
in Fig. 2. The final joint locations are obtained by fusing the
multimodal per-pixel predictions. By utilizing the hand part
correlations in this way, the prediction accuracy is substantially
improved compared to [13] and [33] on both a synthesized
dataset and a real-world dataset. Especially, on the challenging
real-world dataset which consists of four different subjects, the
proposed method improves the prediction accuracy by 14.44%
compared to the baseline method [13], and many of the results
are visually very close to the ground truth joint positions.

The remainder of this paper is organized as follows: In
Section II, we give a literature review of vision-based hand
pose estimation techniques. In Section III, IV and V, we
present a detailed description and analysis of the proposed
hand pose estimation scheme. In Section VI we show the
experimental results and performance comparison. In Section
VII we give our concluding remarks and further work.

II. RELATED WORK

The problem of vision-based pose estimation for the human
hand and the full body has been extensively studied in liter-
ature. However, as the hand is highly flexible and the hand
parts often occlude each other, it is still difficult to restore the
full degree-of-freedom hand motion from the color and depth
inputs. Generally the pose can be defined as either the joint
positions or the joint angles. As in Section I, we categorize the
related techniques in pose estimation into template-matching
or model-based fitting with the global descriptors, and fusion
of multiple estimations obtained by weak pose estimators.

In template-matching based methods, a set of templates are
usually required to contain the possible postures and indexed
for fast nearest-neighbor search. The pose of the input can be
obtained by looking for the templates that have the similar
descriptor to the input. However, as the global descriptors
alone are hardly capable to encode all the information needed
to infer the complete pose parameters, the estimated poses
can be ambiguous. This problem is more severe if using
descriptors extracted in the color images, e.g. the contour,
as the hand is chromatically homogeneous in color. In [14]
the set of possible body poses are defined by a few clusters
obtained from the training data, and a function is learned to
map the low-level descriptors, e.g. the image moment, to each
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of the clusters. The pose of the input is inferred by fusing the
multiple candidate poses based on the mapping confidence.
This method can handle a very limited number of hand poses.
In [15] the simple hand grasping motion is captured with a
single color camera. The locality-sensitive Hashing (LSH) is
utilized to retrieve multiple candidates from the database based
on the HoG feature of the input image. The hand pose is
estimated by applying the temporal constraints on the retrieved
candidates to resolve ambiguity. In order to restore more hand
poses from the color inputs, a color glove with specially
designed pattern is adopted for hand pose tracking in [3],
which provides sufficient discriminative power to estimate the
natural hand rotation and articulation via template matching in
a large database. The final hand pose is determined by blending
the multiple nearest neighbors retrieved from the database.

The model-based fitting methods infer the pose of the input
by adjusting the parameters of a pre-defined model to fit the
input features. To this end, the model should resemble the
hand or the body in terms of both the appearance and the
feasible pose configurations, and the correspondences between
the model and the inputs need to be built correctly to estimate
the matching error. In [16] the human body is modeled as the
deformable pictorial structure, in which the pair-wise correla-
tions between the body parts are approximated as spring-like
connections. The body pose is estimated by jointly minimizing
the matching error between the model and inputs and the pair-
wise energy between the body parts, which is efficiently solved
by the generalized distance-transform technique. In [17], a 3D
hand model with twenty seven pose parameters is used to fit
to the 2D positions of a set of colored markers placed on the
hand to estimate the pose. In order to reduce the complexity,
the hand motion constraints are analyzed to reduce the twenty
seven pose parameter to twelve.

In [6], the hand pose parameters are decoupled into the
global motion and local finger articulations and estimated
separately. The global motion is estimated by assuming the
finger poses are fixed. The local finger motion is estimated by
inverse kinematics using the fingertips as the end-effectors.
The method is not robust as extraction of fingertips is difficult
and sensitive to self-occlusion. In [18] the quadric surfaces
are used to model the hand to generate the model contours
efficiently, which are used to match to the image contour.
A frame rate of 3 Hz is reported on a seven DOF hand
motion sequence. In [19] the feasible hand configuration space
is discretized and indexed with a KD-tree. The Nelder-Mead
simplex algorithm is adopted to search for the hypothesized
pose that best matches the input in terms of edge and silhouette
similarities. However, no quantitative results are reported. In
[7] the pixel depth and skin color are used to evaluate the
fitting error, and its minimization is solved using a variant
of particle swarm optimization (PSO) algorithm. In [9], the
hand pose is restored by fitting an elaborate hand model to
the inputs of eight high-resolution cameras. Several salient
points on the fingers are detected by pre-trained classifiers,
which are used with the edges and optical flow to build reliable
correspondence between the inputs and the model. The subtle
motion of the hand can be captured precisely, such as wearing
the ring on the finger.

Template matching and model-based fitting can be com-
bined to supplement each other. In [20] the geodesic extrema
are extracted from the depth images, which are used to
retrieve the candidate body pose by searching in the database
of geodesic extrema templates. Another candidate pose is
obtained by fitting a mesh body model to the depth image,
and the fusion of both produces the final estimation. A similar
framework is adopted in [21], in which the fingertips are
detected with the SVM classifier and HoG descriptor in the
depth images, and used to retrieve the finger poses from the
database. The retrieved poses are fused with the fitted poses
obtained by fitting the hand model to multiple color input
images. The results show the detected fingertips largely reduce
the estimation error compared to model fitting alone.

The performances of these two methods largely rely on
the quality of the extracted global descriptor, and thus are
sensitive to imperfect inputs. Therefore, it would be more
favorable to restore the complete pose by fusing the partial
estimations obtained by many weak pose estimators. In [12],
the whole parameter set of the hand pose is decomposed into
many overlapping subsets. LSH-based nearest neighbor search
is used to get the partial estimation for each subset, and the
results are further integrated by a simulated annealing EM
algorithm to estimate the global pose. In [10, 22], the RDF
classifier is trained for per-pixel classification of the depth
images and the joint locations are obtained by mean-shift mode
seeking based on the labeled results. In [30] the RDF classifier
is adopted for contour pixel labeling for hand pose recognition
based on a rotation-invariant depth feature. [23] presents a
human body pose tracking framework based on 3D model
fitting. While the input body size can vary a lot, the RDF
classifier provides rough body parsing for fitting the size of
the 3D model to the real inputs as well as for initialization and
recovering from tracking failure. In [13] the regression forest
is utilized to prediction the body joint positions independently,
but the motion constraints of the joints are not fully exploited.
Therefore, in [33] the authors propose to improve [13] by
first finding a set of candidate locations for each joint through
mode-seeking, and then applying the bone length constraints to
obtain the optimal combination of the different joint locations
via Dynamic Programming (DP). However, the bone lengths
alone are still insufficient to describe the feasible hand pose
space, e.g. the motion constraints between multiple fingers.
Besides, this method can only work for a fixed hand size, and
does not generalize well to different users.

III. THE PROPOSED SCHEME

We propose to infer the 3D positions of the hand joints
from single depth images, and aim to address the inconsistency
between the real-world inputs and the synthesized training
datasets by enforcing the hand part correlations. The sixteen
objective joint positions are shown in Fig. 3(a), which consist
of the wrist center, the five fingertips, the inter-phalangeal
and metacapophalangeal joints of the thumb, and the proximal
inter-phalangeal and metacapophalangeal joints of all the other
four fingers.

Similar to [13], the regression forest is utilized for per-
pixel voting for the individual joints separately. However, we
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Fig. 3. (a) The objective positions of the sixteen hand joints, denoted as the
circles. (b) The hand partition scheme for hand parsing.

enforce the hand part correlations to improve the per-pixel
regression results by (1) improving the discriminative power
of the regression forest and (2) fusing the per-pixel votes
for all the joints simultaneously. First, by incorporating high-
level features to model the hand part interdependence, we
design a more effective regression forest to predict the joint
locations. Compared with the raw depth image, the parsed
hand parts [26] can be taken as the semantic context to encode
the co-occurrence pattern in the neighborhood of a given
pixel, which is helpful to produce more compact per-pixel
predictions. Second, as the hand motion is highly constrained,
the parameters of the sixteen joints are essentially embedded in
a much lower dimensional space. The posterior distribution of
the entire joint set can be modeled via the Product of Experts
model to fuse the independent per-pixel predictions, and the
optimized joint parameters can be obtained by maximizing the
posterior in the low dimensional space.

Let the sixteen objective positions be Φ = {φk}Kk=1 and
K = 16. The regression forest determines a set of maximum
J relative votes {∆ijk, wijk}Jj=1 for each φk for the pixel i
during testing, where ∆ijk is the 3D relative offset between
the 3D position of the pixel and the objective; wijk is the
weight of the vote. Given the 3D position vi of the pixel
i, the relative votes can be converted to the absolute votes
{vijk, wijk}Jj=1, where vijk = ∆ijk+vi. Let the depth image
and label image be ID and IL respectively, and the depth
context and semantic context descriptors for the pixel be D
and S respectively. Let the low dimension joint space be Ω.
We present the proposed pose estimation method in Algorithm
1, with the details provided in the following sections. Overall,
the goal to predict the joint locations can be achieved by two
sub-tasks, each of which models different aspects of the hand
part correlations:

Per-pixel Joint Regression: for each pixel i, retrieve the
absolute votes {vijk, wijk}Jj=1 reached by D and S in the
regression forest. This sub-task corresponds to Step 1-7 in
Algorithm 1.

Multimodal Prediction Fusion: aggregate the individual
votes from all the candidate pixels to produce the posterior dis-
tribution P (Φ|ID). Maximize P (Φ|ID) with the constraints
Φ ∈ Ω to find the optimal joint locations. This sub-task
corresponds to Step 8-9 in Algorithm 1.

Algorithm 1 Hand Joint Position Prediction.
1: Parsing the depth image ID to get the label image IL;
2: for all pixel i in the input depth image ID do
3: Retrieve the 3D position vi of the pixel;
4: Retrieve the relative votes {∆ijk, wijk}Jj=1 from the

regression forest based on both D and S;
5: Calculate the absolute votes {vijk, wijk}Jj=1 by setting

vijk = ∆ijk + vi;
6: end for
7: Eliminated unreliable long range predictions by setting

the vote weights to zero for those votes which satisfy
‖∆ijk‖ > λk;

8: Down-sample the pixels and fuse their votes to obtain the
joint posterior distribution P (Φ|ID);

9: Estimate the optimal joint positions Φ∗ by maximizing
P (Φ|ID) subject to the hand motion constraints Ω;

IV. PER-PIXEL JOINT REGRESSION

We utilize the regression forest [13] to obtain the joint
location predictions for each pixel in the depth images. The
regression forest is an ensemble of multiple random regression
trees, each of which consists of a number of split nodes and
leaf nodes. Each split node contains one split function learned
from the training data to branch to the child node based on the
feature values of the descriptor of an input pixel i. Each leaf
node contains the distributions over the 3D relative offsets to
the objective positions, which are collected from the training
samples.

Different from [13] which directly regresses for the relative
votes from the depth image, we propose to use the hand
parsing results as the supplemental cue to the depth image
for regression. Similar idea proves effective in [32], in which
the input image is first parsed to get the independent body
part potentials at each pixel and the potentials are then used
as extra multi-channel feature for pose regression. However,
this is quite memory-inefficient for training as it requires extra
12-channel potential images in our problem compared to only
1-channel depth image in [13], especially considering the large
amounts of training samples involved. We therefore use the 1-
channel discrete hand part labels IL instead.

We illustrate this idea in Fig. 4. During training, the depth
images are used to train a hand parser to classify the testing
depth image into non-overlapping hand parts. By running the
trained hand parser on the training depth images, their label
images can be obtained. The depth and parsed label images are
then combined to train the regressor. By training the regression
forest with both the depth and semantic contexts, the training
samples that reach each leaf node will be similar in terms
of both the depth values and hand part co-occurrence pattern
in the neighborhood, which is helpful for the leaf nodes to
generate more consistent predictions of the joint locations. In
the testing phase, the raw input depth image is first processed
to generate IL. Then both the depth image ID and label image
IL are concatenated as the input of the regression forest to
predict the objective joint positions.
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Fig. 4. The training and testing phases for per-pixel joint regression with the
depth and semantic contexts. The exemplary votes for the middle fingertip
are illustrated.

A. Hand Parsing

The task of hand parsing is to assign a label l ∈ L to
each pixel in the depth image of the hand region. Fig. 3(b)
shows our hand label partition scheme for classification, and
the whole hand is divided into twelve non-overlapping parts.
We adopt the depth-context feature [26] and the RDF classifier
[24] to fulfill this task. For a pixel i, the depth context
descriptor D is defined as the depth differences between i
and a set of its neighboring points:

D = ID

(
p+

u

ID(p)

)
− ID(p), (1)

where D is one dimension of D; p is the pixel coordinate of
the pixel i; u is the offset of a neighboring point. Usually
the depth context D consists of hundreds of dimensions,
each of which uses a different offset u to estimate D. Based
on the depth context, the RDF classifier is trained for the
classification task.

During the test stage, an input pixel i is first processed by
each tree in the forest. For each tree, the posterior probability
Pt(l|D) is obtained by starting at the root and recursively
branching to the left or the right child based on the tree node
test result until it finally reaches a leaf node. The final posterior
probability P (l|D) is obtained by fusing the results of all the
trees:

P (l|D) =
1

Tc

Tc∑
t=1

Pt(l|D), (2)

where Tc is the number of trees in the forest. The label of
the pixel can be directly determined by MAP estimation: l∗ =
arg maxlP (l|D). The label image IL is produced by finding
the hand part labels for all the pixels in ID.

B. Prediction with Regression Forest

The regression forest is used to predict a set of up to J votes
{vijk, wijk}Jj=1 for each input pixel i and objective φk given
the depth context and semantic context descriptors D and S.
During the training phase, the depth images in the training
dataset are first parsed to get the label images by the learned
hand parser in Section IV.A. We then concatenate the depth
context and semantic context to generate the new samples to

train the regression forest for prediction. Thus, for each sample
pixel i, the depth context D is still defined with Formula (1).
At the same time, the semantic context S is defined with the
hand part labels of a set of offsets ul which are similar to
those used in calculating D. The descriptor S is obtained by:

S = IL

(
p+

ul
ID(p)

)
, (3)

where S is one dimension of S. To train the regression forest,
each sample pixel i is also associated with the ground truth of
the hand part label li and the offsets between its 3D position
and the sixteen objectives, i.e. ∆ik, k = 1, ...,K.

Let the regression forest consist of Tr random regression
trees, each of which contains a set of split and leaf nodes.
As the feature values may be either continuous or discrete,
i.e. D and S, and the split functions are tested on a single
dimension of the feature, the number of the child nodes and
the split criteria are thus different for the split nodes. Below
we explicitly write out the indices of the feature dimensions
for clarity. For the split nodes that contain the continuous
dimension Dm, they have two child nodes and the split
function takes the following form:

Dm ≤ τ , (4)

where Dm is the mth dimension of D, and τ is a threshold
to determine the branch to one of the child nodes, i.e. the left
child for Dm ≤ τ and right child otherwise. For the split nodes
that contain the discrete dimension Sn, they have a maximum
of twelve child nodes, each of which corresponds to one hand
part label. The split function of the node selects the branch to
the child node by checking the label value of Sn.

To learn the tree structures of the regression forest, a set of
candidate split functions {ψ} = {ψD, ψS} are first generated
as the proposals. {ψD} are associated with the continuous
dimensions and generated by sampling m and τ . {ψS} are
associated with the discrete dimensions and generated simply
by sampling n. Similar to [13], we choose the Shannon
Entropy Gain for the hand part labels to select the split
functions, which proves to be more effective than the other
criteria such as the variances of the offsets. The Shannon
Entropy Gain for ψD is calculated by:

G(ψD) = H(A)−
∑

b∈{l,r}

|Ab(ψD)|
|A|

H(Ab(ψD)), (5)

where H is the entropy of the hand part label distributions
in the sample set A that reaches the split node, and Al and
Ar are the two subsets of A split by the function ψD. The
Shannon Entropy Gain for the split function ψS is calculated
by:

G(ψS) = H(A)−
12∑
b=1

|Ab(ψS)|
|A|

H(Ab(ψS)), (6)

where Ab, b = 1, ..., 12 are the twelve subsets of A, each
of which contains the samples that have the hand part label
b. Thus, the optimal split function is selected so that ψ∗ =
arg maxψG(ψ) at each split node during training. With this
criterion, the tree structure of the forest is learned with the
procedure similar to that in [22].
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The regression models for the relative votes at the leaf nodes
are learned from the set of relative offsets {∆ik} associated
with the training samples reaching them. At each leaf node, we
define the regression model as a single relative vote (∆k, wk)
for each joint, where ∆k represents the possible prediction of
the relative offset based on the relative offsets {∆ik} from
the training samples, and wk represents the confidence of the
prediction. As in [13], we adopt the mean-shift algorithm [25]
to obtain the modes of the relative offset using the following
density estimator:

gk(∆) =

nL∑
i=1

exp

(
−
∥∥∥∥∆−∆ik

bk

∥∥∥∥2
)
, (7)

where nL is the number of the training samples reaching
the leaf node; bk is the bandwidth. Besides, the weight wk
is estimated for each mode at the leaf node to reflect their
significance in prediction. Following [13], it is defined as the
sum of the depth-adjusted weights of the samples that reach
each mode.

In the testing phase, an input pixel i will recursively branch
down the tree and reach one leaf node in each regression tree in
the forest based on the descriptors D and S. In total the pixel
reaches Tr leaf nodes in the regression forest and thus retrieves
at most J = Tr votes from the forest for each objective, i.e.
{∆ijk, wijk}Jj=1. In addition, as shown in [13], the long range
predictions are usually unreliable and could be eliminated to
improve the prediction accuracy by threshold of ∆ijk with a
constant λk. Therefore, the votes that do not satisfy ‖∆ijk‖ ≤
λk are taken away from the vote set of each pixel by setting
their corresponding weights to zero. The threshold λk takes
different value for each objective and can be learned during
training. With the 3D position vi of the pixel i, we can finally
obtain the absolute votes {vijk, wijk}Jj=1 with the regression
forest, where vijk = ∆ijk + vi is the absolute vote for the
kth joint.

Since we also learn classification when building the regres-
sion forest during the training stage, the regression forest can
thus be used for hand parsing again with the input of the
depth image and the parsing results from the RDF classifier in
Section IV.A. Therefore, our proposed two-layered forest can
be further extended to NL layers. During testing, the parsing
results from the n layer are reutilized with the depth image
as the input for the n + 1 layer, and finally we regress for
the joint positions at the NL layer with the depth and parsing
results from NL− 1 layer. We have tested the performance of
such extended multi-layered forest in Section VI.E.

C. Discussion of the Impact of the Semantic Context

To make the regression forest accurate in estimating the
joint locations, we expect the samples reaching the same leaf
node to give consistent predictions. However, as only a subset
of the dimensions of D is tested for a testing sample going
from the root to the leaf, the chances that the sample pixels
at completely different positions of the hand can reach the
same leaf node is still high during the testing stages. In
addition, as the multiple regression trees of the forest are
trained independently and the subsets of the dimensions of

Fig. 5. Comparison of the vote distributions for the middle fingertip, in which
the long range votes have been eliminated. Middle Row: The remaining
votes obtained with [13]; Lower Row: the votes obtained with the proposed
regression forest.

D tested can thus be quite different for the same input sample
going through different trees. As a result, the misclassified
pixels give considerable false responses during testing, and
the votes retrieved for the same pixel from the multiple trees
are also multimodal. The problem becomes more prominent
especially for the real-world test inputs that are inconsistent
with the synthesized training data.

In contrast, the samples reaching one leaf node in the
proposed regression forest will be similar in terms of the
depth context as D is utilized. Moreover, S has encoded the
semantic context of the pixel, i.e., the co-occurrence pattern
of the different hand parts. That is, some hand parts are
more likely to be neighbors than others [26], e.g. the hand
part 8 and 7 stay together more often than 8 and 3 in
Fig. 3(b). By utilizing S to build the regression forest, we
enforce that the samples reaching the same leaf node will
share similar semantic contexts in their neighborhood, and
thus the predictions could be more consistent. In Fig. 5 we
show several examples to compare the distributions of the
prediction confidence for the middle fingertip obtained with
[13] and the proposed regression forest, which are obtained by
projecting the 3D votes of each pixel to the 2D image plane
and accumulating the votes for all the pixels. Note here the
long range predictions have been eliminated for both methods
as in Section IV.B, and we can see the proposed regression
forest produces much more compact prediction votes. In
Section VI the experimental results also demonstrate that the
prediction accuracy is improved considerably by incorporating
the semantic context.

V. MULTIMODAL PREDICTION FUSION

By per-pixel prediction with the regression forest in Section
IV, each pixel i casts maximum J votes for the individual
joints independently, i.e. {vijk, wijk}Jj=1. As we have seen
in Fig. 1 and 5, the per-pixel predictions can form multi-
modal votes for each joint even when the unreliable long range
predictions have been eliminated. It is difficult to determine
which mode corresponds to the real joint position if we
perform mode-seeking for each joint separately as in [13].
However, as the hand motion is constrained, the 3D positions
of the multiple joints are highly correlated. Therefore, a large
portion of the false mode combinations of different joints
can be easily eliminated if we seek the modes of the per-
pixel predictions for multiple joints simultaneously subject to
specific learned hand configuration constraints. In Fig. 6 we
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Fig. 6. Illustration of multimodal prediction fusion using the joint position
constraints. (a) The two objective joints. (b) The multiple modes obtained by
per-pixel regression. (c) The valid mode combination subject to the constraints.

illustrate this idea with a simple example in which we only
constrain the relative positions between the proximal inter-
phalangeal joint and the fingertip of the pinky. Assume two
modes are found for the fingertip and three modes are found
for the proximal inter-phalangeal joint according to per-pixel
regression, which are denoted by the triangles and circles
separately. In total there are six combinations of the modes for
the two joints. Since the maximum distance between the two
joints are limited, the number of candidate valid combinations
is reduced from six to only two, as shown in Fig. 6 (c).

Based on the above observations, we propose to fuse the
multimodal per-pixel votes through the maximization of the
joint posterior distribution of all the joints in a learned low
dimensional joint parameter space, which can be efficiently
solved via an Expectation-Maximization (EM) framework.
Due to the vast number of the pixels, we first randomly sample
N candidate pixels from the input depth image for further
prediction fusion to strike a balance between computational
cost and prediction accuracy. For each candidate pixel i, its
retrieved votes {vijk, wijk}Jj=1 for the kth joint can be taken
as a multimodal distribution P (φk|pi). We approximate this
distribution with the Gaussian Mixture Model:

P (φk|pi) =

J∑
j=1

ρijk exp

(
−‖φk − vijk‖

2

δ2

)
, (8)

where ρijk = wijk/
∑
j wijk is the weight of each mode. For

simplicity we assume the same bandwith δ for the J modes.
Following the weighted Products of Experts model [28], the
joint posterior distribution of the entire joint set given the depth
image observation can be formulated as the weighted product
of the individual predictions from all the candidate pixels:

P (Φ|ID) ∝
∏
i

P (Φ|pi) =
∏
i

∏
k

P (φk|pi)wik

=
∏
i

∏
k

[∑
j

ρijk exp
(
−‖φk−vijk‖2

δ2

)]wik

,
(9)

where wik =
∑
j wijk/

∑
i,j wijk is the normalized weight to

indicate the total contribution of pixel i to φk, and
∑
i wik = 1.

The optimal joint locations can be obtained by maximizing
logP (Φ|ID) with respect to Φ, which is difficult to solve
directly as the log

∑
term in logP (Φ|ID) cannot be further

simplified. To this end, we further assume that the real joint
location φk could be consistent with at most one mode among
the maximum J votes from each pixel i. Therefore, ρijk should
be adjusted so that the inconsistent modes could be filtered out
before estimating φk. To this end, we use an EM algorithm to

maximize P (Φ|ID) with respect to both the joint locations
φk and the mode weights ρijk alternately. In addition, as
the locations of the joints are highly correlated, such inter-
dependence can be further utilized to resolve the ambiguous
predictions. To be specific, we perform PCA analysis to the
joint locations in the training data to learn a low dimensional
representation Ω of the hand configuration. During maximiza-
tion of the posterior, Φ is constrained to take the linear form
Φ =

∑M
m αmem + µ, M � 3 ×K, where {em} is the set

of the principal components. The problem to find the optimal
Φ∗ is thus formulated as follows:

Φ∗, ρ∗ = arg max
Φ,ρ

logP (Φ|ID)

= arg max
Φ,ρ

∑
i,k

wik log

[∑
j

ρijk exp
(
−‖φk−vijk‖2

δ2

)]
s.t. Φ =

∑
m αmem + µ,

∑
j ρijk = 1

(10)
Note that the constraint on the mode weights is enforced only
within the J votes, and ρijk can thus be optimized separately
in Formula (10) during the E step. By maximizing P (Φ|ID)
with respect to ρijk we can get:

ρ∗ijk =

{
1 if j = arg maxj exp

(
−‖φk−vijk‖2

δ2

)
0 otherwise

(11)

This result conforms to our goal to filter out the inconsistent
modes, i.e., the optimized weights ρ∗ijk only keep the mode
v∗ijk that is most consistent with the current estimation φk
among the maximum J modes of the pixel i, and discard
all other modes. Given ρ∗ijk, P (φk|pi) is now simplified to
a uni-modal distribution, and Formula (10) is thus easy to
optimize in the M step. Also, the partitioned representation
for each objective can be written as: φk =

∑
m αmem,k+µk,

where {em} = [eTm,1, , e
T
m,K ]T is a partition of the principal

components for each joint k. The M step is thus equivalent
to finding the optimal coefficients {α∗m} to maximize the
posterior distribution:

Φ∗ = arg max
Φ

∑
i,k

wik log

[
exp

(
−‖φk−v∗

ijk‖2
δ2

)]
= arg min

Φ

∑
i,k

wik
‖φk−v∗

ijk‖2
δ2

= arg min
Φ

∑
i,k

wik
‖
∑

m
αmem,k+µk−v∗

ijk‖2
δ2

(12)

Denote χ = [χT1 , ..., χ
T
K ]T , where χk =

∑
i wikv

∗
ijk and χ

is thus the weighted sum of the filtered votes v∗ijk from all
the candidate pixels. Without the low-dimensional assumption
of the joint parameter space, the solution φ∗k of Formula (12)
actually equals to χk. As shown in the Appendix, given the
constraints Φ =

∑
m αmem + µ, the optimal coefficients

{α∗m} are:

α∗m =
∑
k

eTm,k

(∑
i

wikv
∗
ijk − µk

)
(13)

We can see the optimal solution of {α∗m} with the constraints
is the projection coefficients of χ on the principal component
subspace, i.e. α∗m = eTm(χ − µ). The optimal joint locations
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Φ∗ are then reconstructed by back projecting the coefficients
{α∗m} to the original space with the principal components.

To sum up, the proposed multimodal prediction fusion
(MPF) algorithm consists of a series of iterations. During each
iteration, the pixel modes that are inconsistent with the current
estimation are first filtered out. The optimal joint locations
are then obtained by maximization of the posterior with the
remaining modes subject to the hand motion constraints Ω,
and the solution proves to be the reconstructed vector of the
weighted sum of the filtered votes χ on the space Ω. To
start the iterative procedure, we first calculate the weighted
sum of the unfiltered votes from all the candidate pixels, i.e.
φk(0) =

∑
i,j wijkvijk, and then choose Φ∗(0) to be the

reconstructed vector of {φk(0)}Kk=1 on the subspace spanned
by Φ =

∑
m αmem+µ to initialize the EM steps. The E and

M steps then iterate until a minimum increase of P (Φ|ID) or
a maximum number of iterations are met. Also note that the
value of P (Φ|ID) is monotonically increasing during both
the E and M steps, and the optimization algorithm is thus
guaranteed to converge.

VI. EXPERIMENTAL RESULTS

In this section we present the experimental results on both
synthesized dataset and real-world dataset. The synthesized
dataset is used for both forest training and quantitative eval-
uation of the prediction accuracy. The real-world dataset is
used to test the generalization ability of the proposed method
when the regression forest is trained on synthesized datasets. In
addition, we also investigate the impact of various parameters
on the system performance.

A. Datasets and Evaluation Metrics

The synthesized dataset consists of 114.2k templates to
quantitatively evaluate the performance of the methods for
a large variety of hand configurations. Each template in the
dataset includes the depth image, the ground truth of the hand
part labels and the sixteen joint positions. Similar to [26],
we use a CyberGlove II [2] to capture the hand articulation
parameters for various hand motions, e.g. grasping, pinching,
single and multiple finger bending, performing ASL gestures,
etc. The captured local articulation parameters are clustered
to approximately 400 templates. The range of global hand
rotation is defined to be to (−60◦, 20◦) for global rotation
around the X axis and (−80◦, 80◦) around Y axis, i.e. the axes
parallel to the image plane of the camera, and (−35◦, 35◦)
around the Z axis, i.e. the axis perpendicular to the image
plane. The global rotation parameters are discretized uniformly
into near 300 sets within this range, and combined with
the local articulation parameters to drive a 3D hand model
to generate the synthesized datasets. This dataset is quite
challenging for joint location prediction as a large portion of
the joints are invisible in the templates, as shown in Fig. 7.
In the experiments 80% of the synthesized templates are used
to train the regression forests and the rest 20% for testing, i.e.
91.4k vs 22.8k.

To demonstrate that the proposed depth+semantic contexts
based regression forest and the MPF algorithm can well handle

Fig. 7. Examples of the hand configurations with large viewpoint variations
and different finger articulations in the synthesized dataset.

the discrepancy between the synthesized datasets and real-
world inputs, we collect in total 1354 real depth images of four
subjects using a SoftKinetic DS325 camera. In this dataset the
hands of the subjects go through large viewpoint changes and
various postures, and the hand sizes also vary considerably
for the different subjects. In addition, the depth points are
relatively noisy compared to the synthesized image; the wrist
of the real hand inputs is not well segmented and part of the
lower arm is still visible, as shown in Fig. 8. The resulting
per-pixel votes can thus be multimodal, as in Fig. 5. This is
disadvantageous for independent mode-seeking for each joint
alone, since it can easily get trapped in local optima.

The ground truth joint positions in the real dataset are
obtained by manual annotation. To ensure the annotation
quality, we require the 3D hand skeleton to match both the
2D depth image and the 3D point cloud, as shown in Fig.
8. Each pixel in the depth image view is associated with a
point in the 3D point cloud view. Starting from the initial
skeleton template in Fig. 8 (a), the depth image is first used
for fast annotation of the non-occluded joints by moving the
projected joints to the correct pixel, as shown in Fig. 8 (b).
The 3D position associated with the pixel is assigned to the
joint. Since this position lies on the hand surface, an offset of
0.75cm is then added to the depth of the joint to compensate
the surface-to-interior distance. As shown in Fig. 8 (b), the four
occluded joints in the yellow rectangle cannot be annotated in
the depth image. Therefore, the occluded joints are labeled by
moving each of them in the 3D space and matching to the point
cloud as in Fig. 8 (c). Besides, the inaccurate annotations in
the previous step, e.g. the wrist, can also be corrected with the
point cloud. Fig. 8 (d) illustrates some annotated examples in
the dataset. This dataset and its ground-truth annotations can
be found on our website 1.

For performance evaluation of the methods, we define the
prediction accuracy for each joint as the percentage of the pre-
dictions that are within a distance of DT centimeters from the
ground truth. The overall accuracy is obtained by the average
of the prediction accuracies of the sixteen joint locations. In
this paper we define DT = 1.5cm, while the overall accuracies

1https://sites.google.com/site/seraphlh/projects
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Fig. 8. Joint position annotation on the real dataset by manually fitting the
hand skeleton to the depth image and the 3D point cloud.

with different values of DT i.e. DT ∈ [1.0, 4.0], are also
provided to better illustrate the distribution of correct joint
predictions. Note that the high accuracy corresponding to small
values of DT should be more favorable, as the large values of
DT indicate imprecise measurement.

B. Implementation Details

We implemented [13] and [33] with the depth context
descriptor in Formula (1) for comparison. For [13], the Ecls

criterion is adopted to learn the tree structure, which minimizes
the Shannon entropy of the hand part labels at the split nodes
and is reported to have the best performances. The regression
forest is then learned in the same way to Section IV. Following
[13], the final joint locations are obtained by mode-seeking
with the Mean-Shift algorithm based on the votes and weights
produced by per-pixel regression. The density estimator for
each objective location is given by:

gk(v) =

N∑
i=1

J∑
j=1

wijk exp

(
−
∥∥∥∥v − vijkbk

∥∥∥∥2
)

(14)

where v is the 3D point, (vijk, wijk) is the pixel votes of the
ith pixel, and bk is the bandwidth.

To implement [33], the same Ecls criterion and density
estimator is used, and we perform Mean-Shift mode-seeking
to find maximum five modes for each joint. The Dynamic
Programming (DP) algorithm is utilized to find their best
combination given the bone length constraints, as in [33]. In
addition to (A) D and MS [13] and (B) D and DP [33],
we further tested other three methods: (C) Regression with D
and MPF fusion; (D) Regression with D +S and Mean-Shift
(MS) mode-seeking; (E) Regression with D + S and MPF
fusion. In the experiments, the regression forests consist of 4
trees with a maximum depth of 20. To learn the tree structure
of the regression forest, 10000 candidate split functions are
selected to train each tree, and each leaf node contains at
most three relative votes for each objective. During testing,
1000 pixels are randomly selected for per-pixel regression,
and the EM iteration lasts for at most three times in the MPF
algorithm. These parameters are used in the following tests

unless explicitly specified. All the evaluated methods were
coded in C++/OpenCV, and tested on a server with two Intel
Xeon X5675 CPUs and 16G RAM. The resolution of the
images in all the datasets is 320× 240.

C. Quantitative Evaluations on Synthesized Datasets

The results obtained with [13], [33] and our three methods
on the synthesized dataset are summarized in Table I, which
consist of the average prediction accuracies ζpred for DT =
1.5cm, the time costs for hand parsing, per-pixel regression
and joint prediction with MS, DP and MPF, denoted as tparse,
treg, tMS , tDP and tMPF , and the overall time cost ttotal.
Besides, note the regression forest can also classify the hand
part labels with the label distribution in the leaf nodes, as in
Formula (2), we also report the part classification accuracy
ζcls over all the pixels in Table I for reference, while it is
worth mentioning that only a small number of the pixels are
needed for regression to predict the joint positions. Fig. 9 and
Table II show the overall accuracies for DT ∈ [1.0, 4.0].

In this experiment the training and testing data are relatively
consistent as they are synthesized by the same hand model, and
therefore the per-pixel votes obtained with the regression forest
are compact and the problem of multimodal joint predictions
is not quite serious. Overall, the five tested methods produce
good prediction accuracy, as shown in Table I, and all our
three methods outperform the baseline methods [13] and [33].
Compared to [13], the prediction accuracy is improved by
4.33% via incorporating the semantic context in discriminative
regression alone, and is improved by 3.20% via the MPF
algorithm. Finally, the combination of the depth and semantic
contexts and the MPF algorithm obtains the highest prediction
accuracy, which is 6.42% enhancement compared to the base-
line. In contrast, [33] obtains very little improvement upon [13]
by utilizing the bone length constraints alone, as the motion
constraints between the joints are still not modeled. Moreover,
the results in Fig. 9 show that the predictions obtained with
the proposed methods are more compact, as the distributions
with different values of DT indicate that the joint predictions
obtained by our methods are nearer to the ground truth joint
locations on average.

D. Quantitative Evaluations on Real-world Datasets

For this experiment we tested [13], [33] and our three
methods with the regression forests trained on the synthesized
datasets in Section VI.A. The Iisu Middleware SDK provided
by SoftKinetic [34] is utilized to get relatively rough hand
segmentation from the depth image. Due to the noisy depth
image, inaccurate wrist segmentation and the various hand
sizes of the different subjects, the performance of all the
five methods degrades substantially on this dataset when the
regression forests and the PCA space in the MPF algorithm are
learned with the synthesized data. However, we show that the
MPF is capable of compensating the gap between the training
data and the real-world input to some extent by learning the
PCA space from the real data.

We randomly pick up a small portion of the real dataset, i.e.
270 images, to learn the PCA space for the MPF algorithm and
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TABLE I
COMPARISON OF [13], [33] AND OUR THREE METHODS ON THE SYNTHESIZED DATASET. SAA DENOTES SAME AS ABOVE.

Method ζpred ζcls tparse (ms) treg (ms) tMS (ms) tDP (ms) tMPF (ms) ttotal (ms)
(A) D and MS [13] 83.26% 81.96% - 38.81 1.35 - - 42.70
(B) D and DP [33] 83.51% SAA - 38.70 - 6.64 - 47.90
(C) D and MPF 86.46% SAA - 37.63 - - 2.66 43.59
(D) D+S and MS 87.59% 86.18% 28.16 41.15 1.21 - - 74.04
(E) D+S and MPF 89.68% SAA 28.23 40.88 - - 2.28 75.83

TABLE II
THE AVERAGE PREDICTION ACCURACIES OF [13], [33] AND OUR METHODS ON THE SYNTHESIZED DATASET FOR DIFFERENT DT (CM).

DT 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
(A) 70.16% 78.34% 83.26% 86.39% 88.57% 90.23% 91.48% 92.41% 93.14% 93.71% 94.23% 94.70% 95.09%
(B) 70.30% 78.57% 83.51% 86.68% 88.87% 90.55% 91.80% 92.73% 93.45% 94.05% 94.57% 95.04% 95.43%
(C) 71.72% 81.00% 86.46% 89.92% 92.16% 93.68% 94.71% 95.45% 96.02% 96.42% 96.78% 97.05% 97.27%
(D) 74.18% 82.31% 87.59% 91.04% 93.33% 94.82% 95.82% 96.49% 96.98% 97.35% 97.66% 97.91% 98.13%
(E) 75.89% 84.53% 89.68% 92.89% 94.99% 96.27% 97.12% 97.69% 98.09% 98.41% 98.63% 98.84% 99.01%

Fig. 9. Comparison of the average prediction accuracies on the synthesized
dataset for different DT .

use the rest 1084 images for testing. Besides, the bone length
constraints of the hand for [33] are obtained by calculating
the average bone lengths in the 270 images. The performance
of the MPF algorithm is also evaluated with the PCA space
learned from the synthesized training data for comparison,
which is denoted as (C*) and (E*). Fig. 10 and Table III show
the comparison of the overall accuracies for DT ∈ [1.0, 4.0].
As illustrated, the improvement of [33] over [13] is still trivial.
Besides, MPF alone does not perform quite well with the PCA
space learned from the synthesized data, while it still produces
9.09% enhancement when combined with the semantic context
compared to [13]. In contrast, with the constraints learned from
only a small portion of the dataset, MPF achieves 64.18%
prediction accuracy with the depth context and 72.40% with
the depth and semantic contexts, which improves [13] by
6.22% and 14.44% respectively. As it is generally difficult to
model both the pose and size variations of the hand to train the
regression forest due to the huge amount of training data, these
results give us an insight into another way to generalize well
to different users. Fig. 11 and Fig. 15 show some exemplary

Fig. 10. Comparison of the average prediction accuracies on the real-world
dataset for different DT .

results obtained with [13], (C) and (E). The 3D joint positions
are projected onto the image plane to get their 2D positions
and overlaid on the depth images for better illustration.

It is interesting to note that the semantic context and MPF
appear to utilize the hand part correlations from different
aspects and complement each other. That is, both methods
can improve the prediction accuracy separately, while their
combination produces further improvement. By utilizing the
parsed hand parts, (D) improves [13] by 2.13%. On the other
hand, with MPF, (C) improves [13] by 6.22%, while the best
performance, i.e. 14.44% improvement, is obtained by the
combination of the two. A similar conclusion can also be
drawn from the results on the synthesized dataset.

E. Extension to Multi-Layered Forest

The results on the two datasets demonstrate that the parsed
hand parts can effectively improve the joint prediction accu-
racy at the extra cost to classify all the pixels first. As discussed
in Section IV.B, our two-layered forest can be easily extended
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Fig. 11. Comparison of joint position predictions with [13], (C) D and MPF and (E) D + S and MPF on the real dataset. Second row: parsed hand parts
with the RDF. Third row: ground truth joint annotations. Fourth row: predictions obtained with [13]. Fifth row: predictions obtained with (C). Sixth row:
predictions obtained with (E).

TABLE III
THE AVERAGE PREDICTION ACCURACIES OF [13], [33] AND OUR METHODS ON THE REAL-WORLD DATASET FOR DIFFERENT DT (CM).

DT 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
(A) 36.73% 48.26% 57.96% 65.84% 72.17% 77.00% 81.04% 84.16% 86.63% 89.02% 90.78% 92.32% 93.70%
(B) 36.29% 48.33% 58.09% 66.19% 72.56% 77.43% 81.43% 84.59% 87.29% 89.56% 91.42% 92.95% 94.13%
(C*) 32.79% 46.23% 57.89% 66.93% 74.39% 80.01% 84.60% 87.92% 90.64% 92.79% 94.21% 95.25% 96.21%
(C) 39.42% 53.34% 64.18% 72.25% 78.52% 83.14% 86.82% 89.28% 91.60% 93.32% 94.67% 95.66% 96.43%
(D) 39.20% 50.28% 60.09% 68.03% 74.58% 79.61% 83.85% 87.23% 89.92% 91.87% 93.53% 94.74% 95.83%
(E*) 42.58% 56.11% 67.05% 75.35% 81.64% 85.98% 89.46% 92.15% 94.11% 95.53% 96.69% 97.44% 97.93%
(E) 48.51% 61.99% 72.40% 79.66% 84.94% 88.84% 91.32% 93.47% 95.03% 96.32% 97.17% 97.71% 98.12%

to NL layers, where NL = 1 means no parsed label inputs
from the previous layer, i.e. the regression forest in [13], and
NL = 2 corresponds exactly to our regression forest in Section
IV.B, etc.. To implement an NL-layered forest, NL separate
forests must be trained sequentially. The first layer forest
is trained with the training depth images in the synthesized
dataset. Given that the n-layer forest is trained, it is then used
to parse the training depth images to get the label images,
and the depth and newly parsed label images are used to train
the n + 1-layer forest. This procedure continues until all NL
forests are trained.

We test the performance of the Mean-Shift algorithm and
the MPF algorithm with the per-pixel votes from the NL-
layered forest for different NL. Fig. 13 illustrates the results
on the synthesized and real datasets for NL = 1, ..., 5. Overall,
NL = 2 improves the performance by the largest margin on
all the tests. On the synthesized dataset we observe that the
prediction accuracy keeps improving when NL increases, and
the hand part classification accuracy shows the same trend, as
in Table IV. However, on the real dataset the joint prediction

accuracy increases very little for NL > 2 or even begins to
drop for large NL. This may indicate that using too many
layers of the forest tends to overfit the synthesized training
data, and does not necessarily improve the performance for
real inputs.

TABLE IV
THE AVERAGE HAND PARSING ACCURACIES ON THE SYNTHESIZED

DATASET FOR DIFFERENT NL .

Layer Num 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer
Accuracy 81.96% 86.18% 88.31% 89.42% 90.14%

F. Evaluations on the Parameters

In this part we investigate the impact of the following
parameters: the number of pixels used for voting N , the max-
imum number of per-pixel votes J and the maximum number
of EM iterations. Besides, we also investigate the impact of
the amount of the synthesized training data on the performance
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(a) Syn. dataset, MS (b) Syn. dataset, MPF (c) Real dataset, MS (d) Real dataset, MPF

Fig. 12. Comparison of the average prediction accuracies on the synthesized and real datasets for different NL.

on the real dataset. For each test the uninvestigated parameters
take the same values as in Section VI.B.

Number of voting pixels N . Fig. 13 (a-b) illustrates the
prediction accuracy changes with respect to different N on
the synthesized and real datasets, where we use DT = 1.5cm.
All the methods show the same trend on both datasets, i.e.,
the more pixels used for voting, the better the prediction
accuracy. While the computational cost for per-pixel regression
is approximately linear with N , it should be noted that all the
pixels need to be classified in advance if the semantic context
is to be used, which leads to a relatively constant time cost
regardless of N for hand parsing. This makes the methods
“D +S and MS”and “D +S and MPF”inefficient especially
when only a small number of pixels are used for voting.

Maximum number of per-pixel votes J . As defined in
Section VI.B, at most three votes are stored for each joint
in the leaf nodes by mode seeking in the samples. In the
experiment we actually find most leaf nodes contain only
one vote for each joint and the average number is about 1.2.
Since the forest consists of four trees, the average number of
J should be between 4 and 5. Therefore, we investigate the
performance of the MPF algorithm for J = 1, ..., 5, where
J = 1 means there is no mode selection procedure as in
Formula (11). Fig. 13(c-d) presents the prediction accuracies
for DT = 1.5cm on the synthesized and real datasets, and
”All” means all the retrieved votes are used for the pixels.
While J = 1 has the poorest performance, the accuracy does
not improve much for J ≥ 3 and J = 3 produces an average
of 2.3% improvement over J = 1.

Maximum number of EM iterations. The results in
Section VI.D demonstrate the good performance of the MPF
algorithm, and we thus investigate the drop of the average joint
prediction error with respect to the number of EM iterations in
MPF. Fig. 14 (a) illustrates the results on both datasets, which
indicates the prediction error decreases quite fast within the
first several iterations, especially on the real dataset. Since the
prediction error changes very little after about three iterations,
we choose the maximum number of EM iterations as three in
all the other experiments.

Synthesized training data size. In Fig. 14 (b) we compare
the prediction accuracy of the four methods on the real-world
dataset when the regression forests are trained with different
sizes of synthesized data, where DT = 1.5cm. ”All” means
the 91.4k training images are used, as in the other experiments.

(a) (b)

Fig. 14. (a) Drop of the prediction error with more EM iterations on both
the synthesized and real datasets. (b) Prediction accuracy on the real dataset
with different numbers of synthesized training data.

The results are consistent with that in Section VI.D, and our
methods still outperform [13].

VII. CONCLUSION

In this paper we present a novel hand pose estimation
scheme which utilizes the hand part correlations to improve
the joint prediction accuracy from two different aspects.
First, we use the parsed hand parts to extract the semantic
context to construct more discriminative regression forest,
which produces more compact per-pixel votes compared to
using the depth image alone. Second, we propose a MPF
algorithm to fuse the multimodal per-pixel pose votes subject
to the learned hand motion constraints. The MPF algorithm
is especially effective in handling the discrepancies between
the synthesized training data and real-world inputs, and can be
efficiently solved via Expectation-Maximization. Our methods
have shown superior performances on both the synthesized
dataset and the real-world dataset compared to the baselines
[13] and [33]. Besides, we have extended our two-layered
forest to even more layers and tested it on both datasets, while
the results indicate it tend to overfit the synthesized training
data and does not improve the performance for real inputs.

As our current method mainly works on single depth images
and the hand motion dynamics are not exploited, we plan
to analyze the dynamic constraints of the joint positions and
track the hand joint positions in the successive input images
to reduce the jitter of the predictions. In addition, we will
further enlarge the synthesized training dataset to allow more
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(a) N Test, Syn. Dataset (b) N Test, Real Dataset (c) J Test, Syn. Dataset (d) J Test, Real Dataset

Fig. 13. System parameter tests for voting pixel number N and per-pixel vote number J . (a-b) Accuracy change of [13] and our three methods for different
N on both datasets. (c-d) Accuracy changes of the MPF algorithm for different J on both datasets.

Fig. 15. More results on the real dataset. Second row: parsed hand parts with the RDF. Third row: ground truth joint annotations. Fourth row: predictions
obtained with [13]. Fifth row: predictions obtained with (C). Sixth row: predictions obtained with (E).

complex hand configurations, and develop a practical hand-
based human computer interaction system.

APPENDIX

Note that Formula (12) is in the quadric form of the variable
α, we can thus find the optimal solution of α by setting its
derivative with respect to α to zero. The derivative of the
function to be minimized in Formula (12) with respect to the
coefficient αx takes the following form:
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ijk−µk)
δ2

∝
∑
k

∑
m
αme

T
x,kem,k −

∑
k

∑
i

wike
T
x,k

(
v∗ijk − µk

)
=
∑
m
αm
∑
k

eTx,kem,k −
∑
k

∑
i

wike
T
x,k

(
v∗ijk − µk

)
= αx −

∑
k

∑
i

wike
T
x,k

(
v∗ijk − µk

)

In the above derivation we use the property of the principal
components, i.e.

∑
k e

T
x,kem,k equals to 1 for m = x and 0

otherwise. By setting ∂f/∂αx = 0, we can get the solution
for the optimization problem:

α∗x =
∑
k

eTx,k
∑
i

wik

(
v∗ijk − µk

)
=
∑
k

eTx,k

[∑
i

wikv
∗
ijk − µk

]
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