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Robust Discriminative Tracking via
Landmark-Based Label Propagation

Yuwei Wu, Mingtao Pei, Min Yang, Junsong Yuan, Member, IEEE, and Yunde Jia, Member, IEEE

Abstract— The appearance of an object could be continuously
changing during tracking, thereby being not independent
identically distributed. A good discriminative tracker often needs
a large number of training samples to fit the underlying data
distribution, which is impractical for visual tracking. In this
paper, we present a new discriminative tracker via landmark-
based label propagation (LLP) that is nonparametric and makes
no specific assumption about the sample distribution. With an
undirected graph representation of samples, the LLP locally
approximates the soft label of each sample by a linear combina-
tion of labels on its nearby landmarks. It is able to effectively
propagate a limited amount of initial labels to a large amount of
unlabeled samples. To this end, we introduce a local landmarks
approximation method to compute the cross-similarity matrix
between the whole data and landmarks. Moreover, a soft label
prediction function incorporating the graph Laplacian regular-
izer is used to diffuse the known labels to all the unlabeled
vertices in the graph, which explicitly considers the local geo-
metrical structure of all samples. Tracking is then carried out
within a Bayesian inference framework, where the soft label
prediction value is used to construct the observation model. Both
qualitative and quantitative evaluations on the benchmark data
set containing 51 challenging image sequences demonstrate that
the proposed algorithm outperforms the state-of-the-art methods.

Index Terms— Visual tracking, label propagation, appearance
changes, Laplacian regularizer.

I. INTRODUCTION

GOOD appearance model is one of the most critical

prerequisites for successful visual tracking. Designing
an effective appearance model is still a challenging task due
to appearance variations caused by background clutter, object
deformation, partial occlusions, and illumination changes, efc.
Numerous tracking algorithms have been proposed to address
this issue [1], [2], and existing tracking algorithms can be
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roughly categorized as either generative [3]-[7] or discrim-
inative [8]-[14] approaches. Generative methods build an
object representation, and then search for the region most
similar to the object. However, generative models do not take
into account background information. Discriminative methods
train an online binary classifier to adaptively separate the
object from the background, which are more robust against
appearance variations of an object. In this paper, we focus on
the discriminative tracking method.

In visual tracking scenarios, samples obtained by the tracker
are drawn from an unknown underlying data distribution.
The appearance of an object could be continuously changing
and thus it is impossible to be independent and identically
distributed (i.i.d). A good discriminative tracker often needs a
large number of labeled samples to adequately fit the real data
distribution [15]. This is because if the dimensionality of the
data is large compared to the number of samples, then many
statistical learning methods will be overfitting due to the “curse
of dimensionality”. However, precisely labeled samples only
come from the first frame during tracking, i.e., the number
of labeled samples is very small. To acquire more labeled
samples, in most existing discriminative tracking approaches,
the current tracking result is used to extract positive samples
and the surrounding regions are used to extract negative
samples. Once the tracker location is not precise, the assigned
labels may be noisy. Over time, the accumulation of errors can
degrade the classifier and cause drift. This situation makes us
wonder: with a very small number of labeled samples, whether
we can design a new discriminative tracker which makes no
specific assumption about the sample distribution.

In this paper, we take full advantage of the geometric
structure of the data and thus present a new
discriminative tracking approach with landmark-based label
propagation (LLP). The LLP locally approximates the soft
label of each sample by a linear combination of labels on
its nearby landmarks. It is able to effectively propagate a
limited amount of initial labels to a large amount of unlabeled
samples, matching the needs of discriminative trackers.
Under the graph representation of samples, we employ a
local landmarks approximation (LLA) method to design
a sparse and nonnegative adjacency matrix characterizing
relationship among all samples. Based on the Nesterov’s
gradient projection algorithm, an efficient numerical algorithm
is developed to solve the problem of the LLA with guaranteed
quadratic convergence. Furthermore, the objective function
of the label prediction provides a promising paradigm
for modeling the geometrical structures of samples via
Laplacian regularizer. Preserving the local manifold structure
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Fig. 1. Landmark-based label propagation for visual tracking. The proposed
method treats both labeled and unlabeled samples as vertices in a graph.
For each new frame, candidates predicted by particle filter are considered
as unlabeled samples and utilized to constitute a new graph representation.
The label of each sample is a locally weighted average of the labels on
landmarks. Then the classification scores f of candidates are used to construct
the observation model of the particle filter to determine the best candidate.

of samples can make our tracker have more discriminating
power to handle appearance changes.

Fig. 1 shows the flow diagram of visual tracking using
the LLP. Specifically, the proposed method treats both labeled
and unlabeled samples as vertices in a graph and builds edges
which are weighted by the affinities (similarities) between the
corresponding sample pairs. For each new frame, candidates
predicted by the particle filter are considered as unlabeled
samples and utilized to constitute a new graph representation
together with the collected samples stored in the sample
pool. A small number of landmarks obtained from the entire
sample space enable nonparametric regression that calculates
the soft label of each sample as a locally weighted average of
labels on landmarks. Tracking is carried out within a Bayesian
inference framework where the soft label prediction value is
used to construct the observation model. A candidate with
the highest classification score is considered as the tracking
result. To alleviate the drift problem, once the tracked object is
located, the labels of the newly collected samples are assigned
according to the classification score of the current tracking
results, in which no self-labeling is involved. The proposed
tracker adapts to drastic appearance variations, as validated in
our experiments.

The remainder of this paper is organized as follows. For
the ease of reading, we firstly discuss the related work
in Sect. II. In Sect. III, we introduce the landmark-based label
propagation method to train an effective classifier. Then the
tracking algorithm based on the LLP is presented in Sect. IV.
Experimental results and demonstrations are reported and
analyzed in Sect. V and the conclusion is given in Sect. VL.

II. RELATED WORK

Discriminative tracking has received wide attention for its
adaptive ability to handle appearance changes. In this section,
we only discuss the most relevant literature with our method.
Interested readers may refer to [2] for a comprehensive review.

The essential component of discriminative trackers is
the classifier learning. Many trackers employ online super-
vised learning methods to train the classifiers. Avidan [16]
introduced an ensemble tracking method in which a set of
weak classifiers is trained and combined for distinguishing
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the object and the background. The features used in [16] may
contain redundant and irrelevant information which affects
the classification performance. Collins e al. [17] developed
an online feature selection mechanism using the two-class
variance ratio to find the most discriminative RGB color
combination in each frame. Grabner et al. [18] proposed an
online boosting feature selection method for visual tracking.
However, above-mentioned methods [16]-[18] only utilize
one positive sample (i.e., the tracking result in the current
frame) and multiple negative samples to update the classifier.
If the object location is not perfectly detected by the current
classifier, the appearance model would be updated with a sub-
optimal positive example. Over time the accumulation of errors
can degrade the classifier, and can cause drift.

Numerous approaches also apply multiple positive samples
and negative samples to train classifiers. Babenko et al. [11]
integrated multiple instance learning (MIL) into online boost-
ing algorithm to alleviate the drift problem. In the MIL tracker,
the classifier is updated with positive and negative bags rather
than individual labeled examples. Zhang and Maaten [19]
developed a structure-preserving object tracker that learns
spatial constraints between objects using an online structured
SVM algorithm to improve the performance of single-object
or multi-object tracking. Wu et al. [20] and Jiang et al. [21]
addressed visual tracking by learning a suitable metric matrix
to effectively capture appearance variations, such that different
appearances of an object will be close to each other and be
well distinguished from the background.

Discriminative trackers also exploit the semi-supervised
learning scheme to address the appearance variations.
Grabner et al. [9] employed an online semi-supervised learn-
ing framework to train a classifier by only labeling samples
in the first frame and leaving subsequent samples unlabeled.
Although this method has shown to be less susceptible to
drift, it is not adaptive enough to handle fast appearance
changes. Kalal et al. [13] developed a P-N learning method
to train a binary classifier with structured unlabeled data.
Zeisl et al. [22] presented a coherent framework which is able
to combine both online semi-supervised learning and multiple
instance learning.

Recently, researchers utilized the graph-based discriminative
learning to construct the object appearance model for visual
tracking. Zha et al. [23] employed the graph-based transduc-
tive learning to capture the underlying geometric structure of
samples for tracking. With the 2"¢-order tensor representation,
Gao et al. [24] designed two graphs for characterizing the
intrinsic local geometrical structure of the tensor space. Based
on the least square support vector machine, Li et al. [25]
exploited a hypergraph propagation method to capture the
contextual information on samples, which further improves the
tracking accuracy. Kumar and Vleeschouwer [26] constructed
a number of distinct graphs (i.e., spatiotemporal, appearance
and exclusion) to capture the spatio-temporal and the appear-
ance information. Then, they formulated the multi-object
tracking as a consistent labeling problem in the associated
graphs.

In works of [9], [11], [13], and [20], candidates are not
used to train a classifier, and therefore the class labels of
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them are assigned by the previous classifier. Different from
these works, in our tracker, candidates are considered as
unlabeled samples and utilized to constitute a new graph
representation to update the current classifier for each new
frame, as illustrated in Fig. 1. Explicitly taking into account
the local manifold structure of labeled and unlabeled samples,
we introduce a soft label propagation method defined over the
graph, which has more discriminating power. In addition, once
the tracked object is located, the new training samples are
collected both in a supervised and unsupervised way which
makes our tracker more stable and adaptive to appearance
changes. More details are discussed in Sect. IV.

Our method differs from [23]-[25] both in the graph
construction and the label propagation method. Methods
in [23]-[25] construct the graph representation using kNN
whose computational cost is expensive. In contrast, employing
local landmarks approximation, we design a new form of
the adjacency matrix characterizing the relationship between
all samples. The total time complexity scales linearly with
the number of samples. More importantly, our method is an
inductive model which can be used to infer the labels of
unseen data (i.e., candidates). The label of each sample can
be interpreted as the weighted combination of the labels on
landmarks. Graph Laplacian is incorporated into the objective
function of soft label prediction as a regularizer to preserve
the local geometrical structure of samples.

III. LANDMARK-BASED LABEL PROPAGATION

In this section, we introduce a simple yet effective linear
classifier. The core idea of our model is that the label of
each sample can be interpreted as the weighted combina-
tion of the labels on landmarks. Employing local landmarks
approximation, we design a new form of the adjacency
matrix characterizing the relationship between all samples.
Graph Laplacian is incorporated into the objective function
of semi-supervised learning as a regularizer to preserve the
local geometrical structure of samples, which makes our
model have more discriminative power compared to traditional
semi-supervised learning methods.

A. Problem Description

Suppose that we have [ labeled samples {(x;, yi)}ﬁz1 and u
unlabeled samples {xi}éz‘ﬂ, where x; € R?, and yi € R¢
is the label vector. Since discriminative models take track-
ing as a binary classification task to separate the object
from its surrounding background, the number of classes ¢
equals 2. Denote X = f{x1,x2,---,x,} € R4*"  and
Y, = {y1,y2, -, 3} € R, where n = [ + u. If x; belongs
to the kth class (1 < k < ¢), the kth entry in y; is 1 and all the
other entries are 0’s. In this paper, the data X is represented
by the undirected graph G = {X, E}, where the set of vertices
is X = {x;} and the set of edges is E = {e;;}, where
e;j denotes the similarity between x; and x;. Define a soft
label prediction (i.e., classification) function f : RY — Re,
A crucial component of our method is the estimation of a
weighted graph G from X. Then, the soft label of any sample
can be inferred using G and known labels Y;.
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The time complexity of traditional graph-based semi-
supervised learning methods is usually O (n?) with respect to
the data size n, because n x n kernel matrix (e.g., multiplication
or inverse) is calculated in inferring the label prediction. Since
full-size label prediction is infeasible when n is large, the
work of [27] inspires us to exploit the idea of landmark
samples. To accomplish the soft label prediction, we employ
an economical and practical prediction function expressed as

fx) =D K(x,da, (1

k=1

where dj denotes the k-th landmark, a; is the label of the
k-th landmark, and K (x,dy) represents the cross-similarity
weight between the data x and the landmark di. The idea of
Eq. (1) is that the label of each sample can be interpreted
as the locally weighted average of variables a;’s defined
on m landmarks [27], [28]. As a trade-off between compu-
tational efficiency and effectiveness, in this paper, k-means
algorithm is used to select the centers as the set of landmarks
D = {d)]_, € RP>m,

Eq. (1) is deemed as a label propagation model, because it
can diffuse the label of landmarks to all unlabeled samples, as
discussed in Sect. III-D. It avoids optimizing the labels of all
the samples, by just concentrating on the labels of the land-
marks. Unlike the traditional label propagation method [29],
our model takes full advantage of the geometric structure of
the data and makes no specific assumption about the sample
distribution.

The above model can be written in a matrix form

F=HA, 2)

where F = [f(x1), f(x2), -+, f(xx)]T € R"™C is the
landmark-based label prediction function on all samples.
A = [f@d), f(d),-. fdw)]" = [A1, A2, -, Ac] €
R™*¢ denotes the label of landmarks di’s. H € R™™ is
the cross-similarity matrix between the whole data X and
landmarks dy,

Hj; = K(xj,dy) >0, 1<i<n, 1<k<m.
In what follows, we will elaborate how to effectively solve

A and H.

B. Solving Optimal H

Typically, we may employ Gaussian kernel or Epanechnikov
quadratic kernel [30] to compute H. However, choosing
appropriate kernel bandwidths is difficult. Instead of adopting
the predefined kernel, we learn an optimal H by consider-
ing the geometric structure information between labeled and
unlabeled samples. We reconstruct x; as a combination of
its s closest landmarks in the feature space. In this work, we
employ the Euclidean distance to select the s = 10 closest
landmarks for the given sample x;. Recently, Wang et al. [31]
proposed locality-constrained linear coding (LLC) which uses
the locality constraints to project each descriptor into its local-
coordinate system [32]. To enhance the coding efficiency,
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approximated LLC is proposed in [31], in which the local-
ity constraint function is replaced by using the s closest
landmarks. For each x; approximated LLC is defined as

min Hx,- — 5h,~“2,
h,‘E]RA

3)

where D € RY*S is the s closest landmarks of X;.

Inspired by the idea of LLC, our goal is to design a
both sparse and optimal cross-similarity matrix H between
the whole data X and landmarks D. A Local Landmarks
Approximation (LLA) method is proposed to optimize the
coefficient vector h; € R® for each data point x;, correspond-
ing to the following problem:

1 2

i h:) = —
h{i‘ﬁsg( i) >

>

s
X; — Zdjhij
j=1

st. 1Thi =1, h; >0 “4)

where h;; is the coefficient activated by the j th nearby
landmark of x;. The s entries of the vector k; correspond to
the s coefficients contributed by the s nearest landmarks. The
constraint 17h; = 1 follows the shift-invariant requirements.
The main difference between LLC and our method is that
we incorporate inequality constraints (i.e., non-negative con-
straints) into the objective function as we require the similarity
measure to be a positive value. Therefore we need to develop
a different optimization algorithm to solve Eq. (4).

It is easy to see that the constraints set C = {h; € R® :
1Th; = 1, hij = 0} is a convex set. Standard quadratic
programming (QP) algorithms can be used to solve Eq. (4) but
most of them are computationally expensive for computing an
approximation of the Hessian. To speed up the convergence
rate, Nesterov’s gradient projection (NGP) method [33], a first-
order optimization procedure, is employed to solve the con-
strained optimization problem Eq. (4). A key step of NGP is
how to efficiently project a vector k; onto the corresponding
constraint set C.

1) Euclidean Projection Onto the Simplex: For simplicity,
let v € R denote the vector which needs to be mapped onto C,
and v" be the output. Therefore, the Euclidean projection of
v € R® onto C is to solve the following optimization problem:

1
¢ (v) = arg min = |jv — v'||?
c(v) gv/eCZ” 2

st.1Tv =1, v >0,

5)

where I1c(v) denotes the Euclidean projection operator on
any v € R®.
The Lagrangian of the problem in (5) is

k
1
LW, w) = Sl - VIZ+u(D vi-1)—w-v, (6
i=1
where u is a Lagrange multiplier and @ is a vector of
non-negative Lagrange multipliers. By setting the derivative
w.I.t. vlf to zero, we have

oL

ﬁzv;—vi—}—,u—wizo.
i

)
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Algorithm 1
Operator I1¢(v)

Solving the  Euclidean Projection

Input: A vector v € R®.
Output: A vector Il¢(v) = v’ = [v],v5, -
v = max{v; — p,0}.
1 Sort v into z such that z; > 2o > -+ > z;

Zi— %(Zi:lzT—

,v.] T such that

2 Compute p = max{i €fl:s]:
3 Compute = %(Zle zi —1).

1) >0};

The complementary slackness KKT condition implies that
whenever vlf > 0 we have w; = 0. Thus, we can get
v/ = max{v; — u«,0}, where y = %( P yzi — 1) and
p =max{i e[l:s]: zi — %(Z;zl Zr — 1) > 0t. z denotes
the vector obtained by sorting v in a descending order. The
projection operator I1¢(-) can be implemented efficiently in
O(slogs) [34]. The euclidean projection onto the simplex is
summarized in Algorithm 1. For more details, please refer
to [34].

2) Nesterov’s Gradient Projection (NGP): We use NGP to
solve the constrained optimization problem Eq. (4) by adopting
the Euclidean projection. Denote

Qp,o(hi) = g(0) + Vg@) " (hi —v) + §||hi —ol3, ®

which is the first-order Taylor expansion of g(k;) at v with the
squared Euclidean distance between h; and v as a regulariza-
tion term. Here Vg (v) is the gradient of g(h;) at v. According
to Eq. (5), we can easily obtain

1
arg min Q. (hi) = M (v = £ Vg (). ©)

B
From Eq. (9), the solution of Eq. (4) can be obtained by gen-
erating a sequence {hft)} at v = hlm—f- o (h;t) —h;t_l)), ie.,

1
hf”rl) = Hc(v(’) - ﬁ—Vg(v(’)))
1

= arggleiré Qﬁl,v(t) (h;). (10)
In NGP, choosing proper parameters fS; and a; is also
significant for the convergence property. Similar to [33], we set

a; = (6-1— 1)/ with &, = (14,/1446%)/2, 5 = 0 and
01 = 1. B, is selected by finding the smallest nonnegative inte-
ger j such that g(h;) < Qg o (hi) with f; =27, _1. In [35],
Nesterov states that NGP has a convergence rate O(1/t?).
The convergence property is summarized in Theorem 1. The
solving process of Eq. (4) is summarized in Algorithm 2.

Theorem 1: Employing NGP to solve the constrained opti-
mization problem (4) by adopting the Euclidean projection,
for any t, we have

2BLlis” — 5713

G+
where ,B’\L = max(2fL, Po), Po is the initial estimation of
gradient Lipschit; constant fr of g(s;). For Vs; and Vv,
Bu. satisfies |Vg(si) — Vg@)ll2 < Brllsi — vli2. Besides, the
first t steps of the method require t evaluations of Vg(s;) and
no more than 2t + logz(EL/ﬁo) evaluations of g(s;).

gy — min g(si) < (11)
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Algorithm 2 Nesterov’s Gradient Projection for Solving the
Optimal H
Input: samples set X € R4X™ | the set of landmarks D € R4X™, the

number of neighbors of each sample s.
Output: {H;}* |

1 fori=1—ndo
2 for each x; find s nearest neighbors in D;
3 | nitialize h” = RV = 175,80 = 0,81 =1, Bo = 1;
4 fort=1,2,--- do
s ar = (61— 1)/6e, v® = BV 4 oy (R — RITY);
6 for j=1,2,--- do
7 B=21811;
8 hi” =Il¢c (’U(t) - éV!](’U(t)))?
9 if g(h;) < Qﬁt,v(t) (h;) then
10 update S; = S, hgt'H) = hgt) ;
11 break;
12 end
13 end
144/14+462
14 5t+1 = %;
15 end
16 Compute H; using h;.
17 end

After getting the optimal weight vector h;, we set
H; iy = h;, where (i) is the vector of indices corresponding to
the s nearest landmarks and the cardinality |(i)| = s. For the
remaining entries of H, m» we set 0’s. Apparently, H;; = 0
when landmark d; is far away from x; and H;; # 0 is only for
the s closest landmarks of x;. In contrast to weights defined
by kernel function (e.g., Gaussian kernel), the LLA is able
to provide optimized and sparser weights, as validated in our
experiments.

C. Solving Label Prediction Matrix A

Note that the adjacency matrix W € R™*" between all
samples encountered in practice usually has low numerical-
rank compared to the matrix size [36]. We consider whether
we can construct a nonnegative and empirically sparse
graph adjacency matrix W with the nonnegative and sparse
H e R™™ introduced in Sect. III-B. Interestingly, each
row H; in H can be a new representation of raw sample Xx;.
x; — H; is reminiscent of sparse codmg [31] with the basis D
since x; ~ Dh, = DH;, where D € RS is a sub-matrix
composed of s nearest landmarks of x;. That is to say, samples
X € R¥" can be represented in the new space, no matter
what the original features are. Intuitively, we can design the
adjacency matrix W to be a low-rank form

W=HH', (12)

where the inner product is regarded as the metric to measure
the adjacent weight between samples. Eq. (12) implies that if
two samples are correlative (i.e., W;; > 0), they share at least
one landmark, otherwise W;; = 0. W defined in Eq. (12)
naturally preserves some good properties (e.g., sparseness
and nonnegativeness). The effectiveness of W will be
demonstrated in Sect. V-E2.

We define the degree of x; as A;
Therefore, the vertex degree

= zl}:l Wl]
matrix of the whole

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 5, MAY 2015

G is A = diag(Ay, Az, -+, A,). To compute the label
prediction matrix A, we exploit the following optimization
framework [27]:

N
mln5||f||g+L(fz,yz)- (13)

The first term || f|lg in Eq. (13) enforces the smoothness
of f with regard to the manifold structure of the graph, and
is formulated as

113 = > @) — £ Wy
i,j=1
= > (IFEDI? + 1 FGpIP = 2f (i f (e)) Wy
i,j=1

DUFEDIPAG+ DI xPIPA

i=1 j=I

n
~2 2 fa)fxpW;
i,j=1

=2Tr(F'AF — FTWF)
=2Tr(F'LF) (14)
where L = A — W is the graph-based regularization matrix
L € R, and Tr(-) is a matrix trace operation. Substituting
W = HH' into Eq. (14), Laplacian graph regularization can
be approximated as

F'LF =F"(diag(HH'1) — HH)F, (15)

where  nonnegative @~ W  guarantees the  positive
semi-definite (PSD) property of L. Keeping L PSD is
important as it ensures that the graph regularizer F'LF is
convex.

The second term L(-,-) in Eq. (13) is an empirical loss
function, which requires that the prediction f should be
consistent with the known class labels. # is a positive regular-
ization parameter. f; € R/*¢ is the sub-matrix corresponding
to the labeled samples in f € R"*¢.

By plugging F = HA into Eq. (13) and choosing the
loss function L(-, ) as the L2-norm, the convex differentiable
objective function for solving label prediction matrix A can
be formulated as

min £(4) = 7 Tr(F'LF) + |HA - Y)|%

= Tr((HA)TL(HA)) + | HA - Y/||3. (16)

Here, H; € R is made up of the rows H that corresponds
to the labeled samples, and L is defined in Eq. (15). We easily
obtain
oL
oA

By setting the derivative w.r.t. A to zero, the globally optimal
solution of Eq. (16) is given by

=2n(H"LHA) +2H," (HIA - Y)). (17)

A* = (HH +nH LH) 'H Y. (18)
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Fig. 2. Object representation using five different image patches. The
candidate is normalized to the same size (24 x 24 in our experiment), each
image patch is with 12 x 12.

D. Soft Label Propagation

Through applying the label propagation model Eq. (2), we
are able to predict the soft label for any sample x; (unlabeled
training samples or new test samples) as

=~ H(x;i) Ag
i) = —_—, 19
J(xi) 8 THAL (19)

where {Ai}i_, € R™*1 is the column vector of A, and

H(x;) € R represents the weight between x; and land-
marks dj’s. Specifically, if x; belongs to unlabeled training
samples, H(x;) = H; where H; denotes the i-th row of H,
i =14+1,---,n If x; is a new test sample, we need to
compute the vector H; as H(x;) described in Algorithm 2,
then update H € R(”“)X’", i.e., H < [H; H;]. After deriving
the soft label prediction (i.e., classification) of each sample, the
classification score can be utilized as the similarity measure for
tracking. In the next section, we will elaborate the application
of the proposed landmark-based label propagation in tracking.

IV. LLP TRACKER

In this section, with the landmark-based label propagation
introduced in Sect. III, we propose the LLP tracker based
on Bayesian inference. In our tracker, the patch-based image
representation is able to handle partial occlusion. Once the
tracked object is located, the labels of the newly collected
samples are determined by the classification score of the
current tracking results, in which no self-labeling is involved.
This labeling strategy is effective to alleviate the drift problem.

A. Object Representation

In order to potentially alleviate the drift caused by par-
tial occlusions, we employ the part-based scheme to train
the classifier in our tracking framework. As a trade-off
between computational efficiency and effectiveness, the object
is divided into 5 different image patches empirically. That
is, an object is represented by five image feature vectors
inside the object region. The first patch is the entire object.
Then the object is partitioned into 2 x 2 subsets which
constitute the 4 remaining patches. These five image patches
correspond to the five parts of an object, respectively, as
exemplified in Fig. 2. Finally, image patches corresponding to
the same part of all samples construct a sub-sample set X (),
7 = 1,2,---,5. For example, the first patch of all samples
constitute the first sub-sample set. Each sub-sample set X () is
used to train a single classifier f(*) using the label propagation
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model previously predefined in Eq. (2). The final tracking
result can be determined by the sum of the classification scores
of the five image patches inside the object region:

5
SC =2 o f, (20)
=1

where @, is the weight of the 7-th image patch (Zle w; =1
and w, = 0.2 in the experiments). This part-based
scheme could potentially alleviate the drift caused by partial
occlusions.

B. Classifier Initialization

To initialize the classifier in the first frame, we draw positive
and negative samples around the object location. Suppose
the object is labeled manually, perturbation (e.g., shifting
1 or 2 pixels) around the object is performed for collecting N,
positive samples Xy,. Similarly, N, negative samples Xy,
are collected far away from the located object (e.g., within
an annular region a few pixels away from the object).
X1 = Xn,UXu, is the initialized labeled sample set.
According to discussion in Sect. IV-A, each sample in X is
partitioned into 5 different patches. X thus contains 5 subsets.
The k-means algorithm is used to select the centers as the set
of landmarks D in each subset. Using labeled samples and
landmarks, we can train prior classifiers via the LLP.

C. Updating the Samples and Landmarks

For each new frame, candidates predicted by the particle
filter are considered as unlabeled samples X. According to
Eq. (19), we can get the classification score of each candidate.
A candidate with higher classification score indicates that it
is more likely to be generated from the target class. The most
likely candidate is considered as the tracking result for this
frame. Then, perturbation (i.e., the same scheme in the first
frame) around the tracking result is performed for collecting
sample set X ¢. If the classification score of the located object
is higher than the predefined threshold € (i.e., the current
tracking result is reliable), samples in X¢ are regarded as
labeled ones, otherwise regarded as unlabeled ones. That is,
samples are collected both in a supervised and unsupervised
way, and thus the stability and adaptivity in tracking objects
of changing appearance are preserved.

To make our tracker more adaptive to appearance changes,
we construct a sample pool X p and a sample buffer pool X'
to update the samples and landmarks, as shown in Fig. 3.
We keep a set of T previous X¢ to constitute the sample
buffer pool X', ie, X' = [Xc—r+1; Xc—142; - Xcl,
where X¢ denotes the sample set collected from the current
frame. Every T frames, X’ is utilized to update Xp. After
updating the sample pool, we will leave X’ empty and then
reconfigure it. In our experiment, we set the sample pool
capacity @ (X p).! If the total number of samples in the sample
pool is larger than ®(Xp), some samples in Xp will be
randomly replaced with samples in X’. To reduce the risk of

IThe cardinality ® (X p) denotes the number of samples in the sample pool.
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Every T frames, update the sample pool using the sample buffer pool

+ D
== Classifier ==
-7 i Sc
| I Obtain the best
Sample poo candidate
Sample buffer pool
Unlabeled and labeled samples obtained from the
sample buffer pool
* =Y - @ Labeled samples obtained from the first frame
4 it + Positive samples
Sample the = Negative samples

Current frame Unlabeled samples

candidates states

Fig. 3.

? Unlabeled samples

Mlustration of constructing the sample pool and sample buffer pool. For each new frame, candidates cropped by the particle filter are considered as

unlabeled samples. Every T frames, the sample pool is updated by the sample buffer pool. After updating, we will leave the sample buffer pool blank and

then reconfigure it.

Sample pool

K-meansl

K-means

Current
landmarks set

New
landmarks set

Previous
landmarks set

Fig. 4. The set of landmarks updating. The updated set of landmarks is
obtained by carrying out twice k-means.

visual drift, we always retain the samples X obtained from
the first frame in the sample pool. That is, Xp = [X1; X'].
Note that candidates are considered as unlabeled samples and
utilized to train the classifier together with collected samples
stored in the sample pool.

Similarly, landmarks also should be updated using the
sample pool every T frames. Specifically, we first implement
the k-means algorithm in the current sample pool X p to obtain
a new landmarks set. Then, the updated set of landmarks can
be gained by carrying out the k-means algorithm again using
both the new and the previous landmarks set which are able
to better characterize the samples distribution. The landmarks
updating are illustrated in Fig. 4.

D. Bayesian State Inference

Object tracking can be considered as a Bayesian inference
task in a Markov model with hidden state variables. Given
the observation set of the object Op. {o1,02, - ,0¢},
the optimal state s, of the tracked object is obtained
by the maximum a posteriori estimation p(s/|O1.), where s;
indicates the state of the i-th sample. The posterior probability
p(s:|O1) is formulated by Bayes theorem as p(s;|O1.)
p(0,|st)fp(s,ls,_l)p(st_1|01¢t_1) ds;_1. This inference is
governed by the dynamic model p(st|st_1) which models
the temporal correlation of the tracking results in consecutive
frames, and by the observation model p(o;|s;) which estimates
the likelihood of observing o; at state s;.

With particle filtering, the posterior p(s,‘(?lzt) is approx-

imated by a finite set of N, samples or particles {st’ }l.:S1

with importance weights {a)é}lN;l The particle sample s/
is drawn from an importance distribution g(s/|s1:1—1, O1:),
which for simplicity is set to the dynamic model p(s;|s;—1).
The importance weight w§ of particle i is equal to the obser-
vation likelihood p(o,lsti ). We apply an affine image warp
to model the object motion between two consecutive frames.
Let s; = {x1, 1,0, 5, 1, Wi}, where xi, yi, Or, st, 1, Wi
denote x, y translations, rotation angle, scale, aspect ratio and
skew at time ¢, respectively. The state transition distribution
p(s,ls,_l) is modeled by Brownian motion, i.e., p(st|st_1) =
N(ss; s¢-1,), where > is a diagonal covariance matrix
whose diagonal elements are the corresponding variances
of respective parameters. The observation model p(o;|s;) is
defined as

p(oslsy) o< SCy, 21

where SC; = f(x(®) is the classification score at time 7 based
on Eq. (19). The detailed description of the proposed tracking
method is summarized in Algorithm 3.

V. EXPERIMENTS

We run our tracker on the benchmark dataset [37] including
51 challenging image sequences. The total number of frames
on the benchmark is more than 29000. We evaluate the
proposed tracker against the 11 state-of-the-art tracking algo-
rithms including ONNDL [38], RET [39], CT [40], VTD [5],
MIL [11], SCM [41], Struck [12], TLD [13], ASLSA [3],
LSST [4] and SPT [14]. For fair comparisons, we use the
source codes provided by the benchmark with the same
parameters except ONNDL, RET, LSST and SPT whose para-
meters of the particle filter are set as in our tracker. Since the
trackers involve randomness, we run them 5 times and report
the average result for each sequence. The MATLAB source
code and experimental results of the 12 trackers are available
at http://iitlab.bit.edu.cn/mcislab/~wuyuwei/download.html.

A. Experimental Setup

Note that we fix the parameters of our tracker for all
sequences to demonstrate its robustness and stability. The
number of particles is 400 and the state transition matrix
is [8, 8,0.01,0.001, 0.005, 0] in the particle filter. We resize
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Algorithm 3 The Proposed Tracking Algorithm

Input: Image frames Fy, Fo,--- , Fy; Object state s7.
Output: Tracking results Sy at time ¢.

1 fort=1—ndo

2 if t == 1 then

3 Obtain labeled samples set X1 = XNp UXn,

4 Obtain the initial the set of landmarks D with k-means;
5 Initialize the sample pool Xp = X7;

6 Initialize the sample buffer pool X’ = (.

7 end

8 (D Sample the object candidates X as unlabeled samples

according to the motion model p(st|st,1) ;
9 @ Let X = [Xp; X|;

10 @ Get 5 subsets of X according to the discussion in Sect. IV-A;
11 @ Solve optimal H for each subset using Eq. (4);
12 ® Solve label prediction matrix A for each subset using Eq. (18);

13 ©® Infer the soft label of each candidate using Eq. (19) and get the
best candidate based on Eq. (21);

14 (@ Collect training samples set X in the current frame;
15 if SC; > € then

16 Samples in X are regarded as labeled ones;

17 else

18 Samples in X are regarded as unlabeled ones;

19 end

n | ® X' =[X'Xc]:
21 if mod(t,T) == 0 then

2 Update X p with X’;

23 Update the set of landmarks D;
24 X' =0.

25 end

26 end

the object image to 24 x 24 pixels and each image patch is
12 x 12 pixels, as illustrated in Fig. 2. 144 dimensional gray
scale feature and 128 dimensional HOG feature are extracted
from each image patch, and they are concatenated into a
single feature vector of 272 dimensions. In the first frame,
N, = 20 positive samples and N, = 100 negative samples
are used to initialize the classifier. The predefined threshold of
classification score € is set to 0.3. Given the object location
at the current frame, if SC > 0.3, 2 positive samples and
50 negative samples are used for the supervised learning.
If SC < 0.3, the tracking result is treated as the unreliable one
and 100 unlabeled samples are utilized for the unsupervised
learning. The sample pool capacity ®(Xp) is set to 310,
in which the number of positive, negative and unlabeled
samples are 50, 160 and 100, respectively. The number of
landmarks is set to 30 empirically and the regularization
parameter expressed in Eq. (18) is set to # = 0.01. The set of
landmarks D is updated every T = 10 frames.

B. Evaluation Criteria

One widely used evaluation method to measure the tracking
results is the center location error. It is based on the relative
position errors (in pixels) between the central locations of
the tracked object and those of the ground truth. Ideally, an
optimal tracker is expected to have a small error. However,
when the tracker lost the object for some frames, the output
location can be random and therefore the average center
location errors may not evaluate the tracking performance
correctly [37]. In this paper, the precision plot is also adopted
to measure the overall tracking performance. It shows the per-
centage of frames whose estimated location is within the given
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Fig. 5. Overall performance comparisons of precision plot and success rate.

The performance score for each tracker is shown in the legend (best viewed
on high-resolution display).

threshold distance (e.g., 20 pixels) of the ground truth. More
accurate trackers have higher precision at lower thresholds.
If a tracker loses the object it is difficult to reach a higher
precision [42].

The tracking overlap rate indicates stability of each algo-
rithm as it takes the size and pose of the target object into
area(ROIT (N ROIg)
area(ROIT \JROIg)’
where ROIr is the tracking bounding box and RO is the
ground truth. This can be used to evaluate the success rate
of any tracking approach. Generally, the tracking result is
considered as a success when the score is greater than the
given threshold 7;. It may not be fair or representative for
tracker evaluation using one success rate value at a specific
threshold (e.g., t; = 0.5). Further, we count the number of
successful frames as the thresholds vary from O to 1 and
plot the success rate curve for our tracker and the compared
trackers. The area under curve (AUC) of each success rate
plot is employed to rank the tracking algorithms. More robust
trackers have higher success rates at higher thresholds.

account [43]. It is defined by score =

C. Overall Performance

The overall performance for the 12 trackers is summarized
by the precision plot and the success rate on the 51 sequence,
as shown in Fig. 5. For precision plots, we use the results at
error threshold of 20 pixels for ranking these 12 trackers. The
AUC score for each tracker is shown in the legend. In success
rate, our tracker is 4.6% above the SCM, and outperforms the
Struck by 3.4% in precision plot. SCM, ASLSA and LSST
trackers also perform well in success rate, which suggests
sparse representations are effective models to account for the
appearance change, especially for occlusion. Since the Struck
does not handle scale variation, the success rate of Struck is
higher than SCM, LSST and ALSA when the overlap threshold
ty is small, but less than SCM, LSST and ASLSA when ¢, is
large (e.g., t; = 0.4).

Overall, our tracker outperforms the other 11 trackers both
in precision plot and success rate. The good performance of
our method can be attributed to the fact that the classifier
generalizes well on the new data from a limited number
of training samples. That is, our method has excellent gen-
eralization ability. In addition, the local manifold structure
of samples makes the classifier have more discriminating
power.
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display).

D. Attribute-Based Performance

Apart from summarizing the performance on the whole
sequences, we also construct the 11 subsets corresponding
to different attributes to test the tracking performance under
specific challenging conditions. Because the AUC score of the
success plot is more accurate than the score at one threshold
(e.g., 20 pixels) of the precision plot, in the following we
mainly analyze the rankings based on success plots, as shown
in Fig. 6.

On the OCC subset, SCM, ASLSA, LSST and our method
get better results than others. The results suggest that local
image representations are more effective than holistic tem-
plates in dealing with occlusions. On the SV subset, we see
that trackers with affine motion models (e.g., our method,
SCM, ASLSA and LSST) are able to cope with scale variation
better than others that only consider translational motion
(e.g., Struck and MIL). Similarly, on the OPR and IPR subsets,
besides our tracker, the SCM and ASLSA trackers are also
able to obtain satisfactory results. The performance of SCM
and ASLSA trackers can be attributed to the efficient spare
representations of local image patches.

When the object undergoes fast motion and/or motion blur,
our method performs worse than the Struck, SPT trackers due
to the poor dynamic models in the particle filter. Our tracker
can be further improved with more effective state transition
matrix of the particle filter. In the LR subset, our tracker does
not perform well, because low-resolution objects which are
resized to 24 x 24 may not capture sufficient visual information
to represent objects for tracking.

——Ours[0.470
SCM[0.452]
SPT[0.450]

+VTD[0.449]

+Struck[0.427]
ASLSA[0.421]

Success rate
Success rate

==='ONNDL[0.400]| S N ===TLD[0.242]
021 wmiLo.346) S MIL{0.232]
RET[0.337] e AN —— Ours[0.230]
0.1 CT[0.335] N 0.1 LSST(0.162]
===-TLD[0.327] SR ASLSA[0.156]
ol st ~oR plz—cmoria i
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Overlap threshold Overlap threshold

Attribute-based performance analysis in success rate. The performance score of each tracker is shown in the legend (best viewed on high-resolution

E. Diagnostic Analysis

In this section, we analyze two aspects of our landmark-
based label propagation that are important for good tracking
results, i.e., the weight H between the whole samples and
landmarks, and the label prediction matrix A.

1) Effectiveness of the Optimal H: To evaluate the contri-
bution of the optimal H described in Sect. III-B to the overall
performance of our tracker, we compute the Nadaraya-Watson
kernel regression [30] for comparison. It assigns weights
smoothly with

—mK”(xi’dk) <i<n, 1<j<m.

ST Ky (xi,dy)

Two kernel functions are exploited in the Nadaraya-Watson
kernel regression to measure the cross-similarity matrix
between the whole data X and landmarks dy’s. We first adopt
Gaussian kernel K, (x;,dy) = exp (— lx;i — dk||2/02) for
the kernel regression. Therefore, the corresponding tracking
method is called as the BaseLinel tracker. Epanechnikov
quadratic kernel expressed as

Hy = (22)

3

(1= flx —di?) i ;—di] < 1;
K, (xi, dy) = 4( [lx; k”) if lx Kl <

0

otherwise.

is also employed for the kernel regression, whose corre-
sponding tracking method is referred to as the BaseLine2
tracker. We use a more robust way to get ¢ which uses the
nearest neighborhood size s of x; to replace o, i.e., o(x;) =
lx; — dg||>, where d; is the sth closest landmarks of x;.
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Fig. 7. Diagnostic analysis of our tracker on the 51 sequence. With fixed A,
BaseLinel and BaseLine2 use different cross-similarity matrix H. Similarly,
BaseLine3 and BaseLine4 use different soft label prediction matrix A with
fixed H.

The only difference between baseline algorithms and Ours is
that baseline algorithms utilize the predefined kernel functions
to solve cross-similarity matrix H while Ours takes advantage
of the LLA method to optimize H. The overall tracking
performance of these two baseline algorithms and our method
on the benchmark is presented in Fig. 7. On the whole, our
method obtains more accurate tracking results than baseline
algorithms.

2) Effectiveness of the Prediction Matrix A: We design
another two baseline algorithms to evaluate the effectiveness
of the soft label prediction matrix A described in Sect. III-C.
In the BaseLine3, we do not consider the Laplacian graph
regularizer in Eq. (16), i.e., # = 0, and thus A becomes the
least-squares solution. In the BaseLine4, we directly construct
the adjacent matrix W using the kNN algorithm instead of
W = HHT. If x; is among the k-neighbors of X; or
x; is among the k-neighbors of x;, W;; = 1, otherwise,
Wi = 0. The overall tracking performance on the benchmark
is illustrated in Fig. 7. Surprisingly, even without Laplacian
graph regularizer, the BaseLine3 produces the precision score
of 0.645 and the success score of 0.504, outperforming the
SCM tracker, which implies that the success is due to the
framework of the landmark-based label propagation. The over-
all performance can be further improved using our scheme of
solving A described in Sect. III-C.

F. Qualitative Comparisons

1) Significant Pose Variations: Fig. 8 shows tracking results
of three challenging sequences with significant pose variations
to verify the effectiveness of our method. In the Basketball
sequence, the object appearance change drastically as the
players run side to side, especially for close-fitting defence
between players. We see that SPT, CT, RET and SCM trackers
are easy to drift at the beginning of the sequence (e.g., £60).
The TLD, ONNDL, Struck and MIL algorithms drift to
another player as the appearance between players in the same
team is very similar (e.g., #473). VID, ASLSA and our
methods are able to track the whole sequence successfully.
We note that the VTD perform better than the other methods.
This can be attributed to that the object appearance can be
well approximated by multiple basic observation models.

The Freeman4 sequence is used to test the performance
of our method in handling pose changes. There are partial
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occlusions and scale changes when the object walks toward the
camera. Most methods fail to track the object. For example,
CT does not manage to get a stable result due to potential
randomness. Although TLD has a re-initialization mechanism
after occlusion, it locks onto the wrong person as the sur-
rounding background is very similar to the object (e.g., §142).
In comparison, our method is able to provide a tracking
bounding box that is much more accurate and consistent.

In the Shaking sequence, the target undergoes illumination
change besides pose variations. the Struck, LSST, TLD, CT
and RET trackers drift from the object quickly when the
spotlight blinks suddenly (e.g., §60). SCM, VTD and our
trackers are able to successfully track the object throughout
the sequence with relatively accurate sizes of the bounding
box. SPT, ONNDL, MIL and ASLSA methods are also able
to track the object in this sequence but with a lower success
rate than our method. In this sequence, the VID performs
better than the other methods.

2) Heavy Occlusion: Fig. 9 shows results from three chal-
lenging sequences with heavy occlusion. Images of the Woman
sequence are acquired by a moving camera and the object color
sometimes appears similar to the background clutter. Many
methods cannot keep tracking of the object after occlusion.
The CT, SCM, MIL, VTD, TLD and ONNDL trackers fail to
capture the object after the woman walks behind the white
car (e.g., #127). The appearance model fuses more back-
ground interference due to an occlusion, which significantly
influences the samples online updating of the MIL, TLD
and ASLSA trackers. The LSST tracker fails gradually over
time (e.g., #297). Although the RET method tracks well,
our method, SPT and Struck trackers achieve more stable
performance in the entire sequence.

In the SUV sequence, most of the trackers drift when
the long-term occlusion happens (e.g., §552). Tracking such
an object is extremely challenging because the vehicle is
almost indistinguishable behind the trees, even for human
eyes. Although VTD, SPT and ASLSA trackers take partial
occlusion into account, the results are not satisfied. The
Struck, RET and ONNDL trackers get slightly better results.
In comparisons, our tracker and SCM have relatively lower
center location errors and higher success rates. The TLD
tracker is equipped with a detection procedure to succeed in
tracking after occlusions, which can explain why the TLD
tracker obtains relatively high success rate but with high center
location error in this sequence.

In the Liquor sequence, the object suffers from background
clutter besides heavy occlusions for many times. The CT,
MIL, LSST and ASLSA trackers drift first when the occlusion
occurs (e.g., §361). Although the TLD, RET, VTD, SPT and
Struck trackers obtain slightly better results than SCM and
ONNDL trackers, they lose the object after several occlusions
(e.g., #733). Overall, our method achieves both the lowest
tracking error and the highest overlap rate. The ASLSA and
LSST methods are generative models that do not take into
account the useful information from the background, and they
are not effective in separating two nearby objects with similar
appearance. Though the SCM tracker incorporates the discrim-
inative model, its classifier does not update online, making
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Qualitative tracking results of the 12 trackers over sequences “Basketball”, “Freeman4” and “Shaking” from top to bottom (best viewed on

high-resolution display). Object appearance changes drastically due to large variations of pose.
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display). Objects undergo heavy occlusion.
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Qualitative tracking results of the 12 trackers over sequences “Woman”, “Liquor” and “SUV” from top to bottom (best viewed on high-resolution
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Fig. 10. Qualitative tracking results of the eleven trackers over sequences “Trellis”, “Singer1” and “Singer2” from top to bottom (best viewed on high-resolution

display). Objects undergo illumination changes.

it unable to adaptively capture the difference between the
object and the background over time. Although the localized
Haar-like features used in the MIL and TLD trackers are
robust to partial occlusion [11], they cannot perform well in
this sequence because of the large scale appearance changes
caused by frequent occlusions and background clutter. Our
tracker performs well as it assigns the sample labels both
in a supervised and unsupervised way during the classifier
learning which makes the updated classifier better differentiate
the object from the cluttered background.

3) Hllumination Changes: Fig. 10 shows tracking results of
three challenging sequences to evaluate whether our method is
able to tackle drastic illumination changes. In Trellis sequence,
a man walks under a trellis. Suffering from large changes
in environmental illumination and head pose, the CT, TLD,
MIL, SPT and LSST trackers drift gradually (e.g., #214).
In contrast, RET, ASLSA, SCM, Struck and our trackers have
relatively high overlap rates. Note that the ASLSA get the best
results, which is attributed to the efficient alignment pooling
on the sparse coding of local image patches. For the Singerl
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=== §PT=== CT===VTD=== MIL-~— LSST—=- SCM

Fig. 11.

TLD === ONNDL=-== Struck

ASLSA RET——0Ours

Qualitative tracking results of the eleven trackers over sequences “Tigerl”, “Boy”, “Couple” and “FaccOcc2” from top to bottom (best viewed on

high-resolution display). The challenges include camera jitter, fast motion, in-plane rotation, occlusion and background clutter, efc.

sequence, there are large scale changes of the object and
unknown camera motion in addition to illumination change.
The SPT tracker gets lost in tracking the object after drastic
illumination changes (e.g., 121) whereas ONNDL, LSST and
RET algorithms perform slightly better. The CT, Struck and
MIL trackers perform reasonably well in terms of the center
location error but with lower overlap rate, because they can
not deal with scale changes well (e.g., §207, 279 and #321).
In the Singer2 sequence, the contrast between the foreground
and the background is very low besides illumination change.
Most trackers drift away at the beginning of the sequence when
the stage light changes drastically (e.g., §59). The VTD tracker
performs slightly better as the edge feature is less sensitive
to illumination change. In contrast, our method succeeds in
tracking the object accurately.

Overall, the SCM, ASLSA and our trackers obtains the
relatively robust tracking results in the presence of illumination
changes. The reason that these three methods perform well
can be explained as follows. In SCM and ASLSA trackers,
part-based sparse representations with pooling strategy are less
sensitive to illumination and pose change, thereby achieving
good tracking performance. Our tracker uses an online update
mechanism to account for the appearance variations of the
object and background over time. More importantly, with
the graph representation, our tracker provides a promising
paradigm for modeling the manifold structures of samples,
which makes the classifier have more discriminating power.
Therefore, our tracker is more adaptive to handle appearance
changes.

4) Other Challenges: Fig. 11 presents the tracking results
where the objects suffer other challenges including motion
blur, rotation and scale, efc. In the Tigerl sequences, the
appearances of the object change significantly as a result of
scale, pose variation, illumination change and motion blur at
the same time. The LSST and ASLSA trackers drift to the
background at the beginning of this sequence (e.g., 39). The
ONNDL, TLD, MIL, VID and SCM fail gradually when
the object frequently undergoes occlusion and pose changes

(e.g., $180, #233). In comparisons, the CT, Struck, RET, SPT
and our methods track the object well until the end of this
sequence. In the Struck, RET, SPT and our trackers, the
discriminative appearance models are updated in an online
manner, which take into account the difference between the
foreground and the background over time and thereby allevi-
ating the drift problem. Note that the CT tracker gets the best
results as it effectively selects the most discriminative random
features for updating the classifier, thereby better handling
drastic appearance change in this sequence.

In the Boy sequences, a boy jumps irregularly where the
object undergoes fast motion and out-of-plane. It is difficult
to predict their locations. Most methods achieve relatively
lower center location errors and higher success rates except
CT, SCM and ASLSA trackers. As demonstrated in Fig. 6,
SCM and ASLSA trackers do not perform well in this
sequence as the drastic appearance changes cause by fast
motion and/or motion blur, are not effectively accounted for
the sparse representation.

The object in the Couple sequence is difficult to track as
it moves through the scene with camera jitter and partial
occlusion. The TLD, Struck, MIL and our trackers perform
well with higher success rates and lower location errors. While
the ONNDL, RET and SPT methods perform better than the
CT, SCM, ASLSA, VTD and LSST trackers, they all lose the
object when occlusion occurs (e.g., §112).

In the sequence FaceOcc2, the object undergoes in-plane
rotation and frequent occlusions. The MIL, RET and TLD
trackers fail after the object suffers from the partial occlusion
(e.g., #425). Struck, ASLSA, LSST and ONNDL are slightly
better but gradually drifts after frequent occlusion (e.g., £600).
Though CT, VTD, and SPT trackers are able to keep track of
the object to the end, SCM and our methods achieve both the
lowest tracking error and the highest overlap rate.

G. Computational Complexity

The most time consuming part of our tracking algo-
rithm is the computation of the label prediction function f.
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Specifically, the time complexity of seeking m landmarks
using k-means clustering is O(mn) where n is the number
of samples. The time complexity of solving the optimal H
and the prediction matrix A is O(smn) and O(m> 4+ m?n),
respectively, where s is the number of nearest landmarks of
each sample. We use a fixed number m < n of landmarks for
calculating f, which is independent of the sample size n. Thus,
the total time complexity is @ (m?n) which scales linearly with
the n. The proposed approach was implemented in MATLAB
on a Intel Core2 2.5 GHz processor with 4GB RAM. Our
tracker is about 1.5 frame/sec for all experiments. No code
optimization is performed.

VI. CONCLUSION

In this paper, we have proposed the landmark-based label
propagation for visual tracking, in which the label of each
sample can be interpreted as the weighted combination of
labels on landmarks. Through solving the cross-similarity
matrix H and the label prediction matrix A, our model is
able to effectively propagate a limited number of landmarks’
labels to all the unlabeled candidates, matching the needs
of the discriminative tracker. Explicitly considering the
local geometrical structure of the samples, the graph-based
regularizer is incorporated into the LLP tracker, which makes
our method have better discriminating power and thus is more
adaptive to handle appearance changes. Comparison with
11 state-of-the-art tracking methods on the benchmark dataset
have demonstrated that the LLP tracker is more robust to illu-
mination changes, pose variations and partial occlusions, efc.
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