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Topical Video Object Discovery from Key
Frames by Modeling Word Co-occurrence Prior
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Abstract—A topical video object refers to an object that is
frequently highlighted in a video. It could be, e.g. , the product
logo and the leading actor/actress in a TV commercial. We
propose a topic model that incorporates a word co-occurrence
prior for efficient discovery of topical video objects from a
set of key frames. Previous work using topic models, such
as Latent Dirichelet Allocation (LDA), for video object dis-
covery often takes a bag-of-visual-words representation, which
ignored important co-occurrence information among the local
features. We show that such data driven co-occurrence infor-
mation from bottom-up can conveniently be incorporated in
LDA with a Gaussian Markov prior, which combines top down
probabilistic topic modeling with bottom up priors in a unified
model. Our experiments on challenging videos demonstrate
that the proposed approach can discover different types of
topical objects despite variations in scale, view-point, color and
lighting changes, or even partial occlusions. The efficacy of the
co-occurrence prior is clearly demonstrated when comparing
with topic models without such priors.

Index Terms—LDA, word co-occurrence prior, video object
discovery, Gaussian Markov, Top-down, Bottom-up

I. I NTRODUCTION

W ITH the prevalence of video recording devices and
the far reach of online social video sharing, we

are now making more videos than ever before. The videos
usually contain a number of topical objects, which refer
to objects that are frequently highlighted in the video,
e.g., the leading actor/actress in a film. It is of great
interests to automatically discover topical objects in videos
efficiently as they are essential to the understanding and
summarization of the video contents.

One potential approach to automatically discover video
objects is using frequent pattern mining [1]. Although
significant progress has been made along this path [2],
it is still a challenge to automatically discover topical
objects in videos using frequent pattern mining methods.
As a bottom-up approach, frequent pattern mining requires
the predefined items and vocabularies. However, different
instances of the same video object may endure significant
variabilities due to viewpoint, illumination changes, scale
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changes, and partial occlusion, etc. This makes the frequent
item set mining with video data to be very difficult with
the ambiguity of visual items and visual vocabularies.

To mitigate this challenge, several methods have been
proposed to discover topical objects in images and
videos [2] [3] [4] [5] [6]. Notwithstanding their demon-
strated successes, these methods are limited in different
ways. For example, Zhao and Yuan [6] have proposed
to discover topical objects in videos by considering the
correlation of visual items via cohesive sub-graph mining.
It has been shown to be effective in finding one topical
object, but it can only find multiple video objects one by
one.

Russell et al. have proposed to discover objects from
image collections by employing the Latent Dirichlet Al-
location (LDA) [5] [7]. It can discover multiple objects
simultaneously while each object is one topic discovered
by the LDA model in a top-down manner. However, the
computational cost will be too high if the LDA model is
directly leveraged to discover video object, as one second
video contains dozens of frames. One possible mitigation is
to discover the video object from selected key frames only.
As a consequence, dense motion information can no longer
be exploited, and any model needs to address the problem
with learning of limited number of training examples to
avoid overfitting. In addition, the LDA model requires
to segment each image to acquire the word-document
representation. As a perfect image segmentation is not
always achievable, the topical objects may be hidden in the
segments of cluttered background. Therefore, the instances
of topical objects may not be discovered if considering only
the word-document information.

To effectively address the issue of limited training sam-
ples and the imperfect segment based representation, we
propose a new topic model which explicitly incorporates
a word co-occurrence prior using a Gauss-Markov network
over the topic-word distribution in LDA. We call our model
as LDA with Word Co-occurrence prior (LDA-WCP). This
data-driven word co-occurrence prior can effectively regu-
larize the topic model to learn from limited samples and
imperfect segmentation, as illustrated in Figure 1.

In our model, a video sequence is characterized by a
number of key frames and each frame is composed of
a collection of local visual features. Each key frame is
segmented at multiple resolutions [5]. After clustering the
features into visual words, we obtain the bag-of-words
representation for each segment. The parameter of the word
co-occurrence prior is obtained by analyzing the spatial-
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Fig. 1. Illustration of the importance of visual word co-occurrence
for video object discovery. (a) shows three keyframes of one video.
Several visual words of the topic video object are shown inblue
color. (b) shows the topics of each visual word estimated by LDA
model. Thegreen color represents the topic of video object while
the red color represents other topics. With the help of word co-
occurrence prior, the proposed LDA-WCP model can adjust the
topics of visual words, as shown in (c). Therefore, more instances
of one topical video object will be categorized to the same topic.

temporal word co-occurrence information. After that, the
topical objects are discovered by the proposed LDA-WCP
model.

By combining data-driven co-occurrence prior from
bottom-up with top-down topic modeling method, the ben-
efits of our method are three-fold. First, by using the
multiple segmentation and the bag-of-words representation,
our method is able to cope with the variant shapes and
appearance of the topical video objects. Second, through
the proposed LDA-WCP model, our method can simul-
taneously discover multiple topical objects. Last but not
least, by incorporating the word co-occurrence prior, the
proposed LDA-WCP model can successfully discover more
instances of the topical video objects. Experimental results
on challenging video datasets demonstrated the efficacy of
the proposed unsupervised topical video object discovery
method.

A preliminary version of this paper was described in [8].
The current version described here differs from the former
in several ways, including: the description of one new word
co-occurrence prior estimation algorithm; the introduction
of the temporal documents co-occurrence prior of adjacent
frames; comprehensive evaluation of the method with more
datasets; further analysis and discussion of the whole ap-
proach; as well as the introduction of more related works
about visual object discovery. While the preliminary version
in [8] focuses on the incorporating of word co-occurrence,
the current version will provide more details on the word
and document co-occurrence estimation techniques, too.

This paper is organized as follows. In Section 2, we

briefly survey the visual object discovery. After giving the
overview for LDA model, we describe the proposed LDA
with word co-occurrence in Section 3. The temporal co-
occurrence of documents is presented in Section 4. Thor-
ough experiments are conducted in Section 5 for evaluation.
We conclude our paper in Section 6.

II. RELATED WORKS
Over the past decade, visual object discovery has re-

ceived increasing attention in the computer vision commu-
nity. Most existing visual object discovery methods fall into
one of two categories: bottom-up methods and top-down
methods [9]. The bottom-up object discovery methods start
with basic visual units (e.g., features and their nearest
neighbors [10]) and then merge these basic units until the
visual objects are found. In contrast, the top-down method
start with the modeling of visual objects (e.g., topic-word
distribution [5] or attributed relational graphs [11]) andthen
infer the pattern discovery result for the given data. In this
section, we first give an overview on the literature of visual
object discovery and then briefly introduce the variants of
topic model techniques.

A. Bottom-up methods

For bottom-up methods, it is essential to estimate the
repetitiveness of visual features. Different bottom-up meth-
ods use different ways to address this issue.

The first type of bottom-up methods discovers the visual
object by directly matching the local features. Heathet
al. extract the visual objects by merging the corresponding
matched features between different images [12]. Chum and
Matas rely on the min-Hash algorithm for fast detection
of pairs of images with spatial overlap [13]. Yuanet al.
propose to detect visual object by speeding up the local
feature matching through LSH-Hash [14] [15]. Choet al.
[16] propose a multi-layer match-growing method for visual
object discovery. The geometric relations between object
instances are estimated through local feature matching and
represented by the object correspondence networks.

The second type of bottom-up methods depends on the
frequent pattern mining algorithms. These methods first
translate each image into a collection of visual words
and then discover the visual object through frequently co-
occurring words mining [10] [2]. To represent each image
using the transaction data, Sivic and Zisserman build spatial
configurations of individual visual words on theirk-nearest
neighbors in the image space [10]. Yuanet al. consider
the spatialk-nearest neighbors of each local features as
a transaction record [2]. Wanget al. [17] [18] integrate
the transaction building and visual object discovery in a
uniform solution. However, it is difficult to select the size
k of the nearest neighbors as there is noa priori knowledge
about the visual object scale.

Another type of bottom-up methods formulates the visual
object discovery as a sub-graph mining problem. The graph
can be used to model the affinity relationship of visual
features in the same image. With this kind of graph, Gaoet
al. propose a frequent sub-graph pattern mining algorithm
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to discover high-order geometric patterns which occur in
a single image [19]. Chu and Tsai also employ the sub-
graph mining algorithm to discover visual object [20]. By
building this kind of graph, Liu and Yan discover the visual
objects by the maximum sub-graph mining algorithm [21].
The similar affinity graph is used in [22]. To handle multiple
images simultaneously, Zhao and Yuan propose another
kind of graph which describes the affinity relationship of all
visual features of one video and they find the video object
by a cohesive sub-graph mining algorithm [6]. Recently, J.
Liu and Y. Liu [23] propose a joint assignment algorithm
for visual object mining which considers visual words and
instances of visual object simultaneously in the process of
sub-graph matching.

In general, the bottom-up methods discover the visual
objects by linking the basic visual units together. However,
the bottom-up methods do not provide a model of the visual
object and it is also very difficult to incorporate the prior
knowledge of visual objects into them.

B. Top-down methods

For top-down methods, it is essential to model the
visual objects. According to the modeling approaches, we
categorize the top-down methods to three types.

The first type of top-down methods employs the topic
model for visual object discovery. The topic model, such
as Latent Dirichlet Allocation (LDA) [7] and probabilistic
Latent Semantic Analysis (pLSA) [24], discovers semantic
topics from a corpus of documents. The bag of words
representation is used to model the documents. Sivicet
al. introduce the topic model to discover the objects in
images [25]. Following this idea, Russellet al. [5] discover
the visual object categories based on the LDA and pLSA
models. They first segment the images multiple times and
then discover object topics from a pool of segments. To
discover the hierarchical structure of visual objects, Sivic
et al. investigate the hierarchical Latent Dirichlet Alloca-
tion (hLDA) model [26]. Liu and Chen show promising
video object discovery results by combining pLSA with
Probabilistic Data Association (PDA) filter based motion
model [27].

The second type of top-down methods uses sub-space
projection for visual object discovery. Inspired by the
success of topic model based visual object discovery, Tang
and Lewis [28] propose to use non-negative matrix fac-
torization (NMF) to approximate the semantic structure of
visual objects. The results of NMF are comparable with
that of LDA on the same dataset. Sun and Hamme [29]
further integrate spectral cluster and NMF for visual object
discovery.

The third type of top-down methods explicitly use a
graph or tree to model the spatial structure of visual objects.
Hong and Huang [11] model the visual object as a mix-
ture of attributed relational graphs whose nodes represent
the basic primitives. They also propose an expectation-
maximization (EM) algorithm to learn the parameters of
visual object model. Tan and Ngo also represent each image

as one attributed relational graph of image segments while
Earth Movers Distance (EMD) is used to estimate the
segment similarity [30]. Todorovic and Ahuja model the
spatial layout of primitive regions in a tree structure to learn
object category [4].

In general, the top-down methods can capture the
overview of the visual objects. However, for most top-
down methods, there are only approximated solutions for
the inference and parameter estimation. This may affect the
performance of top-down methods.

C. Variants of Topic Models

As our work most closely builds upon the topic model
based object discovery method [5], we further give a brief
overview on the variants of topic models. Among them,
there are works related to exploring the order or the
spatial correlation of words in each document. Gruberet
al. propose to model the topics of words in the document
as a Markov chain [31]. Wang and Grimson propose a
Spatial Latent Dirichlet Allocation (SLDA) model which
encodes the spatial structure among visual words [32].
The word-document assignment is not fixeda priori but
depends on the generative procedure which assigns visual
words into the same documents if they are close in space.
Philbin et al. propose a Geometric Latent Dirichlet Allo-
cation (gLDA) model for discovering a particular object
in unordered image collections [33]. It is an extension of
LDA, with the affine homography geometric relation built
into the generative process. Cao and Li propose a spatially
coherent latent topic model for recognizing and segmenting
object and scene classes [34]. Andreettoet al. propose a
new Affinity-Based Latent Dirichlet Allocation (A-LDA)
which considers the affinities between pixels to improve
the segmentation performance [35].

The temporal properties of documents are also helpful
for several applications. Leventet al. employs the temporal
ordering of the documents to discover the topic propagation
between different time segments [36]. Wanget al. use
the temporal ordering to capture the causal relationship
of social media event. Different with these applications,
the temporal ordering can not be applied for the topical
video object discovery problem. This is because different
instances of one same topical object have no casual relation-
ship. Therefore, we only model the temporal co-occurrence
between segments of adjacent frames and do not consider
the temporal ordering of different segments.

As for Markov Random Field model, zhaoet al. de-
fines a Markov Random Field over hidden labels of an
image to enforce the spatial coherence between topic labels
for neighboring regions [37]. Verbeeket al. improve the
performance of PLSA by introducing an image-specific
Markov Random Field to enforce the spatial coherence on
the labels of the fine-grained local patches [38]. Wallach
et al. relaxes the bag of words assumption by assuming
that the topics generate words conditional on the previous
word [39]. Different with these methods, we define the
Markov word co-occurrence prior over the whole video for
the topical object discovery.
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(a) (b)

Fig. 2. Graphical model representation for (a) the original LDA, and (b) the proposed LDA-WCP. The curves between the items of
topic-word distributionβ in (b) imply the incorporation of word co-occurrence prior. Here we set the number of words to be four for
illustration convenience.

III. LDA-WCP M ODEL

To discover topical objects from videos, visual features
are extracted from key frames and clustered into visual
words first. Then each video frame is segmented at different
resolutions to obtain the bag-of-words representation for
each segment. After that we obtain the word co-occurrence
prior by analyzing the spatial-temporal word co-occurrence
information. Finally, video objects are discovered by the
proposed LDA-WCP model. This section describes details
about LDA-WCP model and the word co-occurrence prior
estimation.

A. Preliminaries and LDA Model

Our method first extracts a set of local visual features
from key frames, e.g., SIFT feature. Each visual feature in
key frameIl is described as a feature vectorφl(u) = [u,h],
where vectoru is its spatial location in the frame, and
high-dimensional vectorh encodes the visual appearance
of this feature. Then, a key frameIl is represented by a
set of visual featuresIl = {φl(u1), ..., φl(up)}. Clustering
algorithms, such ask-means, group the features in all
T frames {Il}

T
l=1 according to the similarity between

their appearance vectors, yieldingV visual wordsΠ =
{w1, w2, ..., wV }.

To consider the spatial information of visual objects, each
key-frame is segmented multiple times using normalized
cut to generate segments at different resolution levels. Then
each segment is represented by its corresponding visual
words and denoted byw = {wn}

N
n=1, which is considered

as one document. All segments of one video are collected
as a corpus denoted byD = {wm}M

m=1. In the following,
we also used to represent one specific document.

Before describing the proposed model, we first briefly
introduce the original LDA model [7]1. LDA shown in Fig-
ure 2(a) assumes that in the corpus, each documentd arises

1Here we consider the un-smoothed version of LDA model for expla-
nation convenience.

from a mixture distribution over latent topics [7]. Each word
wdn is associated with a latent topiczdn according to the
document specific topic proportion vectorθd, whose prior is
Dirichlet with parameterα. The wordwdn is sampled from
the topic word distribution parameterized by aK×V matrix
β, where each rowβi, 1 ≤ i ≤ K, satisfies the constraint
∑V

j=1 βij = 1. HereK andV denote the number of topics
and the vocabulary size, respectively.

The generative process for the original LDA is as fol-
lows:

1. For each documentd, θd ∼ Dirichlet(α);
2. For each of theNd word in documentd:

Choose a topiczdn ∼ Multinomial(θd);
Choose a wordwdn ∼ Multinomial(βzdn

).

For each documentd, the joint distribution of a topic
mixture θd, a set ofNd topicsz, and a set ofNd wordsw

is given by

p(θd, z,w|α, β) = p(θd|α)

Nd
∏

n=1

p(zdn|θd)p(wdn|zdn, β),

where p(zdn|θd) is simply θdi for an uniquei such that
zi
dn = 1. Integrating overθd and summing overz, the

marginal distribution of documentd, is obtained as

p(w|α, β) =

∫

p(θd|α)(

Nd
∏

n=1

∑

zdn

p(zdn|θd)p(wdn|zdn, β))dθd.

Finally, taking the product of the marginal probabilities of
all documents, we obtain the probability of a corpus [7]

p(D|α, β) =
M
∏

d=1

∫

p(θd|α)





Nd
∏

n=1

∑

zdn

p(zdn|θd)p(wdn|zdn, β)



 dθd.

LDA model is computationally efficient which can also
capture the local words co-occurrences via the document-
word information. However, the video level feature co-
occurrence information is not considered in LDA model.
Take the video data as an example, a topical object
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may contain unique patterns composed of multiple co-
occurrence features. Besides, the video objects may be
small and hidden in the cluttered background, these co-
occurrence features can provide highly discriminative in-
formation to differentiate the topical object from the back-
ground clutter.

B. LDA-WCP Model

The above consideration motivates us to propose LDA-
WCP model, which imposea priori constraints on different
visual words to encourage co-occurrence visual words in
the same topic, as shown in Figure 2(b). This is technically
achieved by placing a Markovian smoothness priorp(β)
over the topic-word distributionsβ, which encourages two
words to be categorized into the same topic if there is
a strong co-occurrence between them. In video object
discovery, the visual words belonging to the same object
co-occur frequently in the video. With the help of prior
p(β), these words are more likely to be clustered to the
same topic. Therefore, more instances of this object will
be categorized to the same topic even when some instances
contain the noisy visual words from other objects or the
background.

A typical example of priorp(β) is the Gauss-Markov
random field prior [40], expressed by

p(β|σ) =

K
∏

i=1

σ−V
i exp

[

− 1
2

∑V
j=1

E(βij)

σ2

i

]

, (1)

E(βij) =
∑

h∈Ξj

Ejh(βij − βih)2, (2)

whereΞj represents the words which have co-occurrence
with word wj and Ejh is the co-occurrence weight be-
tween wordwh and wordwj . E(βij) is the co-occurrence
evidence for wordj within topic i. The parameterσi

captures the global word co-occurrence smoothness of topic
i and enforces different degrees of smoothness in each
topic in order to better adapt the model to the data. The
larger the parameterσi is, the stronger word co-occurrence
is incorporated in topici. Considering the Gauss-Markov
random field prior, the probability of a corpus becomes

p(D|α, β, σ) = p(β|σ)p(D|α, β). (3)

In this way, the prior term incorporates the interaction of
different co-occur words and forces them to co-occur in the
same topic.

C. Inference and Learning in LDA-WCP

The Gauss-Markov prior couples the parameterσ
and β, which makes direct estimation of them in-
tractable. Therefore we propose a new variational
expectation-maximization (EM) algorithm to solve LDA-
WCP model. The E-step approximates posterior distribution
p(θ, z|w, α, β) using variational inference similar to the one
for LDA. The M-step estimates the parameters in a closed
form by maximizing the lower bound of the log likelihood.

1) Variational Inference: The inference problem for
LDA-WCP is to compute the posteriorp(θ, z|w, α, β),
which is intractable due to the coupling betweenθ andβ, as
shown in Figure 2. The basic idea of variational inference
is to use a tractable distributionq to approximate the
true posterior distributionp, by minimizing the Kullback-
Leibler divergence between the two distributions. Here we
approximate the posteriorp(θ, z|w, α, β) by q(θ, z|γ, φ) =
q(θ|γ)

∑N
n=1 q(zn|φn), where the Dirichlet parameterγ

and the multinomial parametersφ1, ..., φN are free vari-
ational parameters. Since the Gauss-Markov random field
prior does not couple with other variables, we directly use
p(β). After this approximation, the lower bound of log
likelihood of the corpus (Eq.3) is obtained

L(γ, φ;α, β, σ) ≤ log p(D|α, β, σ). (4)

The values of variational parametersφ and γ can be
obtained by maximizing this lower bound with respect to
φ andγ

(γ∗, φ∗) = arg max
γ,φ

L(γ, φ;α, β, σ). (5)

This maximization can be achieved via an iterative fixed-
point method. For learning with LDA-WCP over multiple
documents, the variational updates ofφ andγ are iterated
until the convergence for each document. This section is
presented to make the description complete. Further details
can be found in the supplementary material.

2) Parameter Learning: The influence of word co-
occurrence prior is adjusted through the strength parameter
σ when estimating values ofβ. Considering the lower
bound of log likelihood with respect toβ

L|β| = L
′

|β| +
K
∑

i=1

V
∑

j=1

(

− log(σV
i )−

1

2

E(βij)

σ2
i

)

, (6)

whereL
′

|β| is the lower bound of log likelihood without the
Gauss-Markov random field prior

L
′

|β| = Φ(β) +
k
∑

i=1

λi(
V
∑

j=1

βij − 1), (7)

whereΦ(β) =
∑M

d=1

∑Nd

n=1

∑K
i=1

∑V
j=1 φdniw

j
dn log βij ;

φdni is the topic i proportion for itemn in document
d; wj

dn indicates the occurrence of wordwj of item n
in documentd; and λi is the Lagrange multipliers for
constraint

∑V
j=1 βij = 1.
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Algorithm 1 The EM algorithm for LDA-WCP model
input : The corpusD and word co-occurrence priorE .
output : The topic document matrixγ and the topic word matrix

β.

repeat

/* E-step: variational inference */
for d = 1 to D do

(γ∗, φ∗) = arg maxγ,φ L(γ, φ; α, β, σ)
end

/* M-step: parameter learning */
estimateβ

′

using Eq.8
estimate topic smoothness parameterσ using Eq.9
updateβ with word co-occurrence prior by solving Eq.11
normalizeβ to satisfy the constraint

∑V

j=1
βij = 1

α∗ = arg maxα L(γ, φ; α, β)

until convergence ;

The word co-occurrence prior is included in the objective
function of Eq.6 and it is more challenging to solve this
problem. So we first obtain the solution ofβij by solving
L

′

|β|. Take the derivativeL
′

|β| with respect toβij , set it to
zero, and find

β
′

ij =

M
∑

d=1

Nd
∑

n=1

φdniw
j
dn. (8)

Then, the solution for parametersσ2
i is obtained by setting

∂L|β|/∂σ
2
i = 0

σ2
i =

1

V

V
∑

j=1

E(β
′

ij), (9)

whereE(β
′

ij) =
∑

h∈Ξj Ejh(β
′

ij−β
′

ih)2. After that, we add
the Gauss-Markov smooth information back by solving the
following problem

L|β| = Φ(β) +
k
∑

i=1

V
∑

j=1

(

− log(σV
i )−

1

2

E(β̂ij)

σ2
i

)

, (10)

where E(β̂ij) =
∑

h∈Ξj Ejh(βij − β
′

ih)2 and β
′

ih

is obtained by Eq.8. To simplify the formulation, we
will consider the constraint

∑V
j=1 βij = 1 later.

Let ψij
w =

∑M
d=1

∑Nd

n=1 φdniw
j
dn and by chang-

ing the order of summation, we obtainL|β| =
∑K

i=1

∑V
j=1

(

ψij
w log βij− log σV

i − 1
2

E(β̂ij)

σ2

i

)

. To compute
parameter βij , we have to maximizeL|β| with re-
spect to βij , that is, to compute its partial derivative
and set it to zero. Considering a neighborhoodΞj and
setting ∂L|β|/∂βij = 0, we obtain a second degree
polynomial equation with respect toβij , i.e. ψij

w
1

βij
−

∑

h∈Ξj Ejhβij−
∑

h∈Ξj Ejhβ
′

ih

σ2

i

= 0. Multiply both sides with

βij and σ2
i , we obtain the following second degree poly-

nomial equation
(

∑

h∈Ξj

Ejh

)

β2
ij −

(

∑

h∈Ξj

Ejhβ
′

ih

)

βij − ψij
wσ

2
i = 0. (11)

This equation has two solutions forβij .

It is easy to check that there is only one non-negative
solution for theβij and we select it as the final solution. As
β

′

ih is initialized by solving Eq.8 without using the Gauss-
Markov prior, we apply a fixed point iteration to estimate
βij . We can see that parameterσ controls the weight of
smooth.

After obtaining the solutions for allβij , β is nor-
malized such that

∑V
j=1 βij = 1. The estimation for

parameterα is the same as the basic LDA model by
maximizing the lower bound with respect toα, i.e. ,
α∗ = arg maxα L(γ, φ;α, β, σ). The overall algorithm is
summarized in algorithm 1.

As shown in the evaluation section, our model can
effectively incorporate the word co-occurrence to the LDA
model. A theoretical analysis of the convergence properties
of the EM algorithm is an interesting open problem for
the statistical and machine learning community. In addi-
tion, we does not consider the collapsed Gibbs sampling
inference [41] for LDA-WCP model due to its high com-
putational cost and its integration out of variableβ, which
are used for estimation of smoothness parameterσ.

D. Word Co-occurrence Prior Estimation

For video corpus, we can obtain the word co-occurrence
prior by considering the spatial-temporal co-occurrence of
words. In a typical video, a number of visual words may
have strong co-occurrence while others may have weak co-
occurrence. As shown in many vision tasks [23] [6] [21]
[42], the frequency of word co-occurrence is an important
criterion for estimating the affinity of visual words. How-
ever, due to the inherent complexity of a video object, the
co-occurrence frequency of a word pair does not always
suggest accurate and meaningful affinity relationship. Even
if a word pair co-occurs frequently, it is not clear whether
such co-occurrence is statistically significant or just by
chance. Therefore, inspired by mutual information criterion,
we employ the following criterion to estimate the co-
occurrence priorEjh of two wordswj andwh

Ejh =
P(wj , wh)

S(wj) × S(wh)
, (12)

where P(wj , wh) represents the effective co-occurrence
number of a pair of visual wordwj andwh, andS(wj)
is the effective occurrence number of visual wordwj . To
capture the most important word co-occurrence, for each
visual wordwj , we select its topC co-occur visual words
according to the estimated co-occurrence prior values. All
the selected co-occur visual words for wordwj is denoted
asΞj .
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Algorithm 2 Word Co-occurrence Prior Estimation
input : The video withV visual words andT frames.
output : The word co-occurrence priorE .

initialize S andP to zero
/* estimate the effective occurrence of words and word pairs */
for j = 1 to V do

for l = 1 to T do
S(wj) = S(wj) + Ωs(w

j

l )
end
for h = 1 to V do

for l = 1 to T do
if j and h co-occurs in frame l then

P(wj , wh) = P(wj , wh) + Ωp(w
j

l , w
h
l )

end
end

end
end
/* estimate the word co-occurrence prior */
for j = 1 to V do

for h = 1 to V do
Ejh = P(wj , wh)/(S(wj) × S(wh))

end
end

To estimate the effective co-occurrence frequency of
word pairs, we need to decide the co-occurrence of two
visual words in each frame is effective or not by checking
their repetitiveness in the whole video. Therefore, we find
the k nearest neighbors for each visual word instance
in each video frame according to the spatial distances,
as illustrated in Figure 3. Assume the instance number
of visual word wj in frame Il is M and wjm is the
mth instance of visual wordwj in frame Il. The nearest
neighbor set of all instances of wordwj in frame Il is
denoted asΠj

l = {πj1
l , π

j2
l , · · · , π

jM
l }, whereπjm

l is the
neighbors of visual word instancewjm . The repetitiveness
of word instancewjm is obtained by comparingπjm

l with
the nearest neighbor set of wordwj in all other frames.
Take frameIt as an example and assume the instance
number of wordwj in frame It is M′. The repetitiveness
of visual word instancewjm at frame t is estimated by
sjm

t = max{|πjm

l ∩ π
jm′

t |}M
′

m′=1, which is the maximum
number of intersections betweenπjm

l and the nearest neigh-
bor setΠj

t of visual wordwj in frameIt.
With the help of the estimated repetitiveness of each

visual word, we can calculate the effective occurrence of
each word and each pair of words. Assume the instance
number of wordwh in frameIl isN . For two word instance
wjm

l andwhn

l , the pairwise repetitiveness is estimated as
R(wjm

l , whn

l ) =
∑T

t=1 min(sjm

t , shn

t ) whereT is the total
number of frames in one video. The final effective co-
occurrence of word pairwh andwj in frameIl is estimated
by

Ωp(w
j
l , w

h
l ) = max{R(wjm

l , whn

l )}Mm=1
N
n=1. (13)

The final occurrence of wordwj in frame Il is estimated
by selecting the maximum effective co-occurrence of word
wj

Ωs(w
j
l ) = max{Ωp(w

j
l , w

h
l )}V

h=1. (14)

The overall algorithm is summarized in algorithm 2.

Fig. 3. Illustration of nearest neighbors for two visual words.
Five nearest neighbors are shown for both word1 ( red circle)
and word2 ( greendiamond) in two frames.

Although the computational complexity of this algorithm is
proportional toV 2 × T , the algorithm is still efficient due
to the low frequency of words co-occurring in the same
frame.

IV. I NCORPORATETEMPORAL DOCUMENT

CO-OCCURRENCE TOLDA-WCP

The proposed LDA-WCP model can effectively incorpo-
rate the visual word co-occurrence prior for topical video
object discovery. However, the co-occurring phenomenon
exists not only among visual words. Because of the tempo-
ral dependence of video frames, the co-occurrence of seg-
ments of adjacent key frames might also provide beneficial
prior information for object discovery. As the video objects
may be small and hidden in the cluttered background, this
temporal co-occurrence can provide discriminative informa-
tion to differentiate the topical object from the background
clutter.

A. Temporal Document Co-occurrence Modeling

To incorporate the temporal co-occurrence to the LDA-
WCP model, we model the temporal co-occurrence between
segments of adjacent frames as variablesy1:M,1:M , where
yd,d′ represents the temporal co-occurrence prior between
documentd and documentd′, which are two segments of
adjacent key frames. Inspired by Relational Topic Model
(RTM) [43], we assume the distribution probability of
temporal co-occurrenceyd,d′ as

p(yd,d′ |η, ν) = exp(ηT (z̄d ◦ z̄d′) + ν), (15)

wherez̄d = 1
Nd

∑

n zd,n is the average topic assignment of
all Nd words in documentd; ◦ is the element-wise product
(Hadamard product);η and ν are two parameters of the
probability function. Different with Relational Topic Model
(RTM) [43] which uses binaryyd,d′ to describe the link
of network data, we assume0 ≤ yd,d′ ≤ 1 in order to
handle the temporal document co-occurrence of adjacent
key frames.

When considering the temporal co-occurrence and LDA-
WCP model simultaneously, the generative process for our
model is as follows:

1. For each documentd:
a. θd ∼ Dirichlet(α);
b. For each of theNd words in documentd:

Choose a topiczdn ∼ Multinomial(θd);
Choose a wordwdn ∼ Multinomial(βzdn

).
2. For each pair of documents of adjacent frames:
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Fig. 4. Graphical model representation for LDA-WCP with
temporal document co-occurrence. Here we show a single pair of
documents and set the number of words to be four for illustration
convenience.

Choose a temporal co-occurrenceyd,d′ ∼ p(yd,d′ |η, ν)
wherezd = zd,1, zd,2, . . . , zd,n

By comparing with the generative process of the original
LDA, it can be seen that the temporal co-occurrence is
generated for pairs of documents. Figure 4 illustrates this
process for a single pair of documents using the graphical
model. In this way, our model incorporates both the word
level co-occurrence and the document level co-occurrence.
The inference and parameter learning of this new model can
still be handled by the proposed EM algorithm, as shown
in the supplementary material. By modeling the temporal
dependence, the topic of each document depends on the
visual appearance of the document as well as that of its
adjacent document. Therefore, two documents which have
temporal co-occurrence will be more likely to be clustered
to the same topic.

B. Temporal Document Co-occurrence Estimation

The temporal co-occurrence prior of two segmentsd and
d′ of adjacent frames can be decided using the appearance
similarity obtained by matching the instances of visual
words between two frames. Denote the number of matched
word instances between two segmentsd and d′ asNd,d′ ,
the temporal co-occurrence is defined by

y(d, d′) =
Nd,d′

|wd ∪ wd′ |
, (16)

where |wd ∪ wd′ | is the number of all words of two
segments. If all word instances of segmentd and segment
d′ can match with their corresponding instances,y(d, d′) is
1. Otherwise,y(d, d′) is less than1.

To count the number of matched word instancesNd,d′ ,
we estimate the matching score of one word instance
in segmentd using its nearest neighbor. Denoteπjm

d as
the k neighbors for word instancewjm in segmentd,
and Πj

d′ = {πj1
d′ , π

j2
d′ , · · · , π

jM′

d′ } as the nearest neighbor
set of all M′ instances of visual wordwj in segment
d′. The matching score of visual wordwjm is sjm =
max{|πjm

d ∩π
jm′

d′ |}M
′

m′=1, which is the maximum number of
intersections betweenπjm

d and elements ofΠj
d′ . With the

estimated matching score of visual word, the word instance

wjm is considered as one matched word instance ifsjm is
larger than half ofk.

V. EVALUATION

To evaluate our approach, we test it on challenging
videos for topical object discovery. In addition, we com-
pare the proposed approach with the state-of-the-art meth-
ods [5][6][8][43].

A. Video Datasets and Experimental Setting

To evaluate the proposed method, two video datasets are
collected. Dataset 1 contains twenty-four video sequences
downloaded from YouTube.com. Most of the videos in
Dataset 1 are the commercial videos and and length of the
video in this dataset ranges from 20 seconds to 40 seconds.
Dataset 2 contains 101 videos from diverse categories such
as news, commercials, documentary, etc. The length of the
video in this dataset ranges from 20 seconds to 4 minutes.
Several videos are shared by both Dataset 1 and Dataset 2.

In the first experiment, we discover video objects using
Dataset 1 and Dataset 2. Most of the videos have the well-
defined primary topical objects, e.g., the product logo. We
test our method on the video sequences one by one, and
try to find one primary topical object from each video.
Besides a primary topical object, many videos contain a
number of other objects which have comparable importance
for video understanding. Such objects can be the objects
that are frequently highlighted in the video, or the persons
that appear frequently, e.g., the leading actor/actress inthe
commercial video. Therefore, in the second experiment, we
test our method on Dataset 1 to discover multiple video
objects from each video.

To obtain the segment representation for videos, we
first sample key-frames from each video at two frames
per second. SIFT features are extracted from each key-
frame. For each sequence, the local features are quantized
into V = 400 visual words by thek-means clustering.
The number of visual words is selected experimentally.
Then each key-frame is segmented at multiple levels using
normalized cut. In our implementation, each key-frame is
segmented into 3, 5, 7, 9, 11, 13 and 15 segments, respec-
tively. We perform normalized cut in both original key-
frames as well as the down-sampled key-frames of half size
of the original key-frames. After the segmentation, each
segment is described by the bag-of-words representation.
To employ LDA-WCP model, the word co-occurrence prior
is estimated by using the topC = 30 co-occurring words
for each word as shown in Sec. III-D. We use ten nearest
neighbors for each visual word for both word co-occurrence
prior and temporal document co-occurrence estimation.

We set the topic numberK = 8 for LDA-WCP model.
After obtaining a pool of segments from all key frames,
object topics are discovered using the proposed LDA-
WCP model. The most supportive topics are selected by
using the ground truth. The more instances of the ground
truth object in one topic, the higher the supportiveness
of this topic is. One topic is selected for single topical



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, NOV. 2013 9

object discovery, while two are selected for multiple topical
objects discovery. For the selected topic, all segments of the
same key frame are sorted based on the topic assignment
values. The segment with the highest rank is selected as
the instance of the topical object.

To quantify the performance of the proposed approach,
we manually labeled the ground truth bounding boxes of
the instances of topical objects in each video frame. The
bounding boxes locate2D sub-images in each key frame.
One segment is considered as discovered by our method
only when the overlap between the discovered segment and
the ground truth is larger than 50 pixels. LetDR andGT be
the discovered segments and the bounding boxes of ground
truth of one frame, respectively. The performance of each
object instance is measured by two criteria:precision and
recall. By combiningprecision andrecall, we obtainF -
measure as the metric for performance evaluation [4]. To
evaluate the performance of one video, theprecision and
recall is first estimated for each video by averaging the
results of all discovered instances. Then we normalize the
averageprecision and recall value by multiplying them
with the discovered instance number weightNc

Ng
, whereNg

is the ground truth instance number of topical objects and
Nc is the corrected detected instance number of topical
objects. After that, the averageF -measure value of one
video is estimated using the normalized averageprecision
andrecall. For each dataset, the performance is measured
by the average results obtained after running the LDA-WCP
algorithm 5 rounds.

B. Video Object Discovery using LDA-WCP

To demonstrate the advantage of the proposed LDA-
WCP model, we evaluate it with the challenging video
datasets for topical video object discovery.

Many videos in Dataset 1 contain a primary topical
object, e.g. , the Starbucks logo in a commercial video
of Starbucks coffee. Such a topical object usually appears
frequently. Figure 6 shows some sample results of video
object discovery by the LDA-WCP model. In the video
sequences, the topical objects are subject to variations in-
troduced by partial occlusions, scale, viewpoint and lighting
condition changes. It is possible that some frames contain
multiple instances of video objects and some frames do not
contain any video objects. On average, each video has 42
keyframes and the proposed method can correctly discover
19 instances from a total of 23 instances of topical object.
We further evaluate the proposed approach using Dataset
2. Figure 7 shows some sample results of video object
discovery using Dataset 2 by the LDA-WCP model.

Besides a primary topical object, many videos of Dataset
1 also contain several other objects which are important for
video understanding. The proposed approach can categorize
the instances of different topical objects to different topics,
even when some video frames contain multiple types of
topical objects. On average, the proposed method can
correctly discover 37 instances from a total of 44 instances
of two topical objects.

These results show that the proposed approach performs
well for discovering both single and multiple topical objects
from videos.

C. Comparison with LDA and sub-graph mining approach

We compare our video object discovery method (LDA-
WCP) with two state-of-the-arts methods: LDA based
approach (LDA) and sub-graph mining approach (Sub-
Graph). The LDA based approach (LDA) is one of the
state-of-the-art approaches for object discovery [5]. To find
the video object, each key frame is segmented multiple
times with varying number of segments and scales. After
obtaining a pool of segments from all key frames, object
topics are discovered using LDA following the work in [7].
The visual words and other settings are same as our method
for a fair comparison. In the second method, we use the sub-
graph mining approach (Sub-Graph) as described in [6]. To
find the topical object using sub-graph mining approach,
each key frame is again first segmented multiple times in
the same way as our method. Then the affinity graph is built
to represent the relationships of all segments. After that,by
cohesive sub-graph mining, the instances of topical object
are selected from the segments which have strong pair-
wise affinity relationships. As this method only obtains the
maximum sub-graph each time, we compare it with other
methods for single object discovery only.

To evaluate the effect of the word co-occurrence prior
and temporal document co-occurrence prior, we report
the results of three variants of our method: LDA-WCP-
Tempral method which incorporates the proposed temporal
document co-occurrence prior to LDA-WCP method; LDA-
Tempral method which incorporates the proposed tem-
poral document co-occurrence prior to LDA method [5].
LDA-Tempral can be considered as our implementation
of Relational Topic Model (RTM) [43] for topical video
object discovery; LDA-WCP-CVPR method which uses our
previous word co-occurrence prior estimation algorithm as
described in [8].

As shown in Figure 5(a) and Figure 9, our proposed
approach outperforms both LDA approach and sub-graph
mining approach in terms of theF-measure for single
topical object discovery, with an average score of 0.52
(LDA-WCP) compared to 0.44 (LDA) and 0.34 (Sub-
Graph), respectively. LDA approach does not consider the
co-occurrence prior of visual words and its results only
depend on the word occurrence frequency. The topics of
segments may be affected by the words of the background
as the segmentation is not always reliable. On the contrary,
the proposed method can achieve a much better result.
The same conclusions can be obtained for multiple objects
discovery, as shown in Figure 5(b).

By incorporating the word co-occurrence prior, LDA-
WCP model encourages the words to be categorized to
the same topic if there is a strong co-occurrence prior
between them. This implies that LDA-WCP model makes
the learned topics more interpretable by considering both
the word occurrence frequency and the word co-occurrence



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, NOV. 2013 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Performance of single object discovery

Recall

P
re

ci
si

on

 

 

F=0.1

F=0.2

F=0.3

F=0.4

F=0.5

F=0.6

F−measure

LDA
LDA−WCP
LDA−WCP−Temporal
LDA−Temporal
LDA−WCP−CVPR
Sub−Graph

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Performance of multiple objects discovery

Recall

P
re

ci
si

on

 

 

F=0.1

F=0.2

F=0.3

F=0.4

F=0.5

F=0.6

F−measure

LDA
LDA−WCP
LDA−WCP−Temporal
LDA−Temporal
LDA−WCP−CVPR

(b)

Fig. 5. Performance comparison of different methods using Dataset 1. (a)and (b) show the precision/recall results of different methods
for single and multiple video object discovery, respectively. The precision/recall values are the average results of all videos. The green
curves shows the corresponding precision/recall values of the sameF -measure value.

Fig. 6. Sample results of single object discovery using Dataset 1. Each row shows the discovery result of a single video. The
segment with normal color contains the discovered topical object, while thesegments overlaid by a transparent filter correspond to the
background region. Thered bounding boxes indicate the ground truth position of the topical objects and the frames without bounding
boxes do not contain any instances of topical objects.

prior. These comparisons clearly show the advantages of the
proposed video object discovery technique.

The comparison between LDA-WCP and LDA-WCP-
CVPR [8] demonstrates the advantages of the proposed
word co-occurrence prior estimation algorithm. In LDA-
WCP-CVPR, the word co-occurrence prior is estimated by
only considering the co-occurrence frequency between two
visual words as described in [8]. On the contrary, we first
estimate the repetitiveness of each visual word and then
use the mutual information criterion to obtain the word co-
occurrence prior for LDA-WCP.

We also observe that, by incorporating the temporal
document co-occurrence to LDA, LDA-Temporal model
outperforms LDA model for both single and multiple
objects discovery. Although incorporating the temporal
co-occurrence does not improve the overall performance
of LDA-WCP for all videos, the temporal co-occurrence
boosts the performance of LDA-WCP for about one third
videos. By analyzing the video contents, we find that the
temporal co-occurrence does not work for other two thirds

videos as these videos do not have a strong temporal
document co-occurrence due to the information loss in
the process of keyframe sampling. We expect that if the
key-frame is extracted more densely, then modeling the
temporal co-occurrence may show more benefits.

D. Comparison with the CNN (convolutional neural nets)
method

Since 2012, CNN (convolutional neural nets [44]) be-
comes the state-of-the-art methods in problems such as
object detection, face recognition. To using the CNN for
video object discovery, we employ the pretrained 1000
classes imagenet-caffe-alex model [44].

Specifically, for one image segments in keyframeI, its
circumscribed rectangle region is selected firstly. Then, this
rectangle region is used as input of the pretrained imagenet-
caffe-alex model [44] and the classC(s) of segments is
decided. After that, one segmentsmax with the largest
classification score is selected and its classC(smax) is
counted as one instance of classC(smax) in the video.
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Fig. 7. Sample results of single object discovery using Dataset 2. Each row shows the discovery result of a single video.
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Fig. 8. Precision/recall plots for our approach with different parameters using Dataset 1. (a) shows the performance of LDA-WCP model
when using different segmentations of each frame. (b) shows the performance of LDA-WCP model with different dictionary sizes.
(c) shows the performance of LDA-WCP model with different word co-occurrence priors. (d) shows the performance of LDA-WCP
model with different number of topics.

Finally, we select the top 3 classes by counting their
instance numbers in the whole video. Each selected class is
considered as one discovered topical video objects. Figure
10 shows the discovered results of CNN method for one
video.

From this evaluation, we can draw two conclusions. First,
sometimes CNN can assign the same class label to the
instances of the same ground truth topical video object,
e.g., the class ”plate rack”. However, only a very limited
number of topical object instances are assigned the same
class label as the topical object instances are subject to
variations introduced by partial occlusions, scale, viewpoint

and lighting condition changes. Second, the pretrained
CNN model describes the category-level information and it
classifies the image regions based on the learned category-
level features. Therefore, it may classify the instances of
the topical objects and the regions of the background to
the same topic, e.g., the class ”sweatshirt”. In summary,
the CNN method with the pretrained model is not able to
improve the topical video object discovery performance.
However, the CNN approach is still a promising research
direction as it can provide the semantic label for the
discovered object.
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Fig. 10. Sample results of CNN based topical video object discovery of one video. The discovered top 3 classes are shown. For each
discovered class, 4 input image regions are shown. Sometimes, CNN method can assign the same class label to the instances of the
same ground truth topical video object, e.g., the class ”plate rack”. However, it may classify the instances of the topical objects and
the regions of the background to the same topic, e.g., the class ”sweatshirt”.
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Fig. 9. Performance comparison of different methods using
Dataset 2. The precision/recall values are the average results of all
videos. The green curves shows the corresponding precision/recall
values of the sameF -measure value.

E. Evaluation of Parameter Selection

To further evaluate the proposed approach, we discuss the
influence of key-frame segmentation, dictionary size of bag-
of-words representation, size of co-occurring set of each
word and the number of topics.

1) Performance versus segmentation: The proposed ap-
proach requires to segment each image to acquire the
document-word representation. However, as a perfect image
segmentation is not always achievable, the topical objects
may be hidden in the segments of cluttered background.
Inspired by [5], we segment the frames multiple times and
expect that each object instance is correctly segmented
by at least one segmentation. We expect that the more
number of segmentation we perform for each frame, the
better the performance of our method will be. To verify this
intuition, we obtain nine segmentations of each frame using
normalized cut while each key-frame is segmented into 3,
5, 7, 9, 11, 13, 15, 17 and 19 segments, respectively. We
test our method several rounds by using different numbers
of segmentations for each frame. In the first round, only the
first segmentation of each frame is used. In the following
rounds, we gradually increase the number of segmentations
for each frame.

Figure 8 (a) shows the performance of our method in
different rounds. The averageF -measure value of all
video sequences is shown. We observe that the performance

of LDA-WCP gets better when more segmentations of each
frame are used. TheF -measure is 0.35 when using one
segmentation while theF -measure is 0.53 when using
all nine segmentations. We also observe that when more
than seven segmentations of each frame are used, the
performance does not change significantly. Therefore, seven
segmentations of each frame is used for our approach.

2) Performance versus dictionary size: Figure 8 (b)
illustrates the performance of LDA-WCP when the dictio-
nary size varies. We observe that the advantage is gained
by the dictionary size of 400 visual words. The overall
performance of LDA-WCP does not change significantly
when the dictionary size is between 100 and 700 visual
words. The appropriate number of visual words is helpful
to capture the repetitiveness of video objects and handle
the variabilities of topical video object due to viewpoint,
illumination changes, scale changes, and partial occlusion,
etc.

3) Performance versus number of co-occurrence visual
words: For the testing videos, we obtain the word co-
occurrence prior by considering the spatial-temporal co-
occurrence of words in the whole videos. The Gauss-
Markov random field priorp(β) is built using the co-
occurring set of each word as described by Eq.12. Figure 8
(c) shows the performance of our methods for tested videos
when using different numbers of co-occurring visual words.
It can be seen that the overall performance of LDA-WCP
does not change significantly with the size of co-occurring
word set, with a minor advantage being gained by using
the topC = 30 co-occurring visual words for each word.
This demonstrates that the small number of co-occurring
words is able to capture the important co-occurrence prior
information.

4) Performance versus number of topics: Figure 8 (d)
illustrates the performance of LDA-WCP when the number
of topics varies. We observe that the advantage is gained by
the smaller number of topics. The overall performance of
LDA-WCP did not change significantly when the number
of topics is between 4 and 8. However, the larger number
of topics reduces the performance of LDA-WCP as the
instances of one topical video objects might be clustered to
multiple topics.

These evaluation results demonstrate that it is convenient
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Fig. 11. Comparison of computational cost of LDA-WCP and
LDA using Dataset 1. For each video, it shows the convergence
time of EM based inference and learning algorithm.

to set the parameters of the proposed LDA-WCP model.

F. The Computational Cost of LDA-WCP

In this section, we report the computational cost of LDA-
WCP model. After obtaining the document-word represen-
tation and the word co-occurrence prior for video clips,
the un-optimized LDA-WCP implementation in Matlab
requires about 60 seconds on average to discover topical
video objects from one video using one CPU core on a
Xeon 2.67GHz PC. The convergence time of EM algorithm
for all videos of Dataset 1 are shown in Figure 11. Due
to the low frequency of words co-occurrence in the same
frames, the estimation of word co-occurrence prior requires
only about 10 more seconds on average for each video.
To process one video, the original LDA requires about 65
seconds on average.

VI. CONCLUSION

Video object discovery is a challenging problem due
to the potentially large object variations, the complicated
dependencies between visual items, and the prohibitive
computational cost to explore all the candidate set. We
first propose a novel Latent Dirichlet Allocation with Word
Co-occurrence Prior (LDA-WCP) model, which naturally
integrates the word co-occurrence prior and the bag-of-
words information in a unified way. Then we propose a
new variational expectation-maximization (EM) algorithm
to solve the LDA-WCP model. This EM algorithm makes
the problem tractable and allows for an elegant iterative
solution. Experiments on challenging video datasets show
that our method is superior to LDA for topical video object
discovery.

There are several directions that could be further explored
in the future. Currently, we estimate the word co-occurrence
prior by checking their effective co-occurrence frequency
in the whole video. An alternative approach that can be
pursued is leveraging the weakly supervised information
about the visual objects [45][46]. This is suitable for tar-
geted object discovery that is tailored to users’ interests. In
addition, our model can be combined with co-segmentation
algorithms [47] and visual saliency discovery [48].
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