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Topical Video Object Discovery from Key
Frames by Modeling Word Co-occurrence Prior
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Abstract—A topical video object refers to an object that is  changes, and partial occlusion, etc. This makes the frequen
frequently highlighted in a video. It could be, e.g. , the product jtem set mining with video data to be very difficult with
logo and the leading actor/actress in a TV commercial. We the ambiguity of visual items and visual vocabularies.

propose a topic model that incorporates a word co-occurrence L .
prior for efficient discovery of topical video objects from a To mitigate this challenge, several methods have been

set of key frames. Previous work using topic models, such Proposed to discover topical objects in images and
as Latent Dirichelet Allocation (LDA), for video object dis-  videos [2] [3] [4] [5] [6]. Notwithstanding their demon-
covery often takes a bag-of-visual-words representation, whit  strated successes, these methods are limited in different
ignored important co-occurrence information among the local ways. For example, Zhao and Yuan [6] have proposed

features. We show that such data driven co-occurrence infor- to di topical obiects in vid b idering th
mation from bottom-up can conveniently be incorporated in 0 discover topical objects In videos Dy considering the

LDA with a Gaussian Markov prior, which combines top down ~ correlation of visual items via cohesive sub-graph mining.
probabilistic topic modeling with bottom up priors in a unified It has been shown to be effective in finding one topical

model. Our experiments on challenging videos demonstrate pbject, but it can only find multiple video objects one by
that the proposed approach can discover different types of one.

topical objects despite variations in scale, view-point, color and R llet al. h d to di biects f
lighting changes, or even partial occlusions. The efficacy of the usse - nhave proposed 1o discover objects from

co-occurrence prior is clearly demonstrated when comparing image collections by employing the Latent Dirichlet Al-

with topic models without such priors. location (LDA) [5] [7]. It can discover multiple objects
Index Terms—LDA, word co-occurrence prior, video object simultaneously while each object is one topic discovered
discovery, Gaussian Markov, Top-down, Bottom-up by the LDA model in a top-down manner. However, the

computational cost will be too high if the LDA model is
directly leveraged to discover video object, as one second
video contains dozens of frames. One possible mitigation is
ITH the prevalence of video recording devices angb discover the video object from selected key frames only.
the far reach of online social video sharing, wes a consequence, dense motion information can no longer
are now making more videos than ever before. The videpg exploited, and any model needs to address the problem
usually contain a number of topical objects, which refekith learning of limited number of training examples to
to objects that are frequently highlighted in the videavoid overfitting. In addition, the LDA model requires
e.g., the leading actor/actress in a film. It is of greab segment each image to acquire the word-document
interests to automatically discover topical objects ineasl representation. As a perfect image segmentation is not
efficiently as they are essential to the understanding agRvays achievable, the topical objects may be hidden in the
summarization of the video contents. segments of cluttered background. Therefore, the instance
One potential approach to automatically discover videsr topical objects may not be discovered if considering only
objects is using frequent pattern mining [1]. Althoughhe word-document information.
significant progress has been made along this path [2],To effectively address the issue of limited training sam-
it is still a challenge to automatically discover topicaples and the imperfect segment based representation, we
objects in videos using frequent pattern mining methodsropose a new topic model which explicitly incorporates
As a bottom-up approach, frequent pattern mining requirgsword co-occurrence prior using a Gauss-Markov network
the predefined items and vocabularies. However, differegifer the topic-word distribution in LDA. We call our model
instances of the same video object may endure significa LDA with Word Co-occurrence prior (LDA-WCP). This
variabilities due to viewpoint, illumination changes, I8ca data-driven word co-occurrence prior can effectively regu

. . . . . larize the topic model to learn from limited samples and
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briefly survey the visual object discovery. After giving the
overview for LDA model, we describe the proposed LDA
with word co-occurrence in Section 3. The temporal co-
occurrence of documents is presented in Section 4. Thor-
ough experiments are conducted in Section 5 for evaluation.
We conclude our paper in Section 6.

Il. RELATED WORKS

Over the past decade, visual object discovery has re-
ceived increasing attention in the computer vision commu-
nity. Most existing visual object discovery methods fatbin
one of two categories: bottom-up methods and top-down
methods [9]. The bottom-up object discovery methods start
with basic visual units (e.g., features and their nearest
neighbors [10]) and then merge these basic units until the
visual objects are found. In contrast, the top-down method
start with the modeling of visual objects (e.g., topic-word
distribution [5] or attributed relational graphs [11]) attén
infer the pattern discovery result for the given data. Iis thi
Fig. 1. lllustration of the importance of visual word co-occurrencgection, we first give an overview on the literature of visual

for video object discovery. (a) shows three keyframes of one Vide@bject discovery and then briefly introduce the variants of
Several visual words of the topic video object are showblire K)pic model techniques

color. (b) shows the topics of each visual word estimated by LD
model. Thegreen color represents the topic of video object while
thered color represents other topics. With the help of word coA. Bottom-up methods

occurrence prior, the proposed LDA-WCP model can adjust the o . .
topics of visual words, as shown in (c). Therefore, more instances':Or bottom-up methods, it is essential to estimate the

of one topical video object will be categorized to the same topit€Petitiveness of visual features. Different bottom-ugtme
ods use different ways to address this issue.

The first type of bottom-up methods discovers the visual
temporal word co-occurrence information. After that, thebject by directly matching the local features. Heath
topical objects are discovered by the proposed LDA-WC&. extract the visual objects by merging the corresponding
model. matched features between different images [12]. Chum and

By combining data-driven co-occurrence prior fronMatas rely on the min-Hash algorithm for fast detection
bottom-up with top-down topic modeling method, the bersf pairs of images with spatial overlap [13]. Yuah al.
efits of our method are three-fold. First, by using thpropose to detect visual object by speeding up the local
multiple segmentation and the bag-of-words represemiatideature matching through LSH-Hash [14] [15]. Chbal.
our method is able to cope with the variant shapes afith] propose a multi-layer match-growing method for visual
appearance of the topical video objects. Second, throughject discovery. The geometric relations between object
the proposed LDA-WCP model, our method can simulnastances are estimated through local feature matching and
taneously discover multiple topical objects. Last but noepresented by the object correspondence networks.
least, by incorporating the word co-occurrence prior, the The second type of bottom-up methods depends on the
proposed LDA-WCP model can successfully discover mofeequent pattern mining algorithms. These methods first
instances of the topical video objects. Experimental tesutranslate each image into a collection of visual words
on challenging video datasets demonstrated the efficacyamid then discover the visual object through frequently co-
the proposed unsupervised topical video object discovavgcurring words mining [10] [2]. To represent each image
method. using the transaction data, Sivic and Zisserman build apati
A preliminary version of this paper was described in [8]configurations of individual visual words on théirnearest
The current version described here differs from the formeeighbors in the image space [10]. Yuanal. consider
in several ways, including: the description of one new worithe spatialk-nearest neighbors of each local features as
co-occurrence prior estimation algorithm; the introdoeti a transaction record [2]. Wang al. [17] [18] integrate
of the temporal documents co-occurrence prior of adjaceahe transaction building and visual object discovery in a
frames; comprehensive evaluation of the method with mouaiform solution. However, it is difficult to select the size
datasets; further analysis and discussion of the whole dpef the nearest neighbors as there isaqwiori knowledge
proach; as well as the introduction of more related worlabout the visual object scale.
about visual object discovery. While the preliminary vensio  Another type of bottom-up methods formulates the visual
in [8] focuses on the incorporating of word co-occurrenc@pject discovery as a sub-graph mining problem. The graph
the current version will provide more details on the wordan be used to model the affinity relationship of visual
and document co-occurrence estimation techniques, toofeatures in the same image. With this kind of graph, @&ao
This paper is organized as follows. In Section 2, wal. propose a frequent sub-graph pattern mining algorithm
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to discover high-order geometric patterns which occur s one attributed relational graph of image segments while
a single image [19]. Chu and Tsai also employ the sukarth Movers Distance (EMD) is used to estimate the
graph mining algorithm to discover visual object [20]. Bysegment similarity [30]. Todorovic and Ahuja model the
building this kind of graph, Liu and Yan discover the visuaspatial layout of primitive regions in a tree structure tarte
objects by the maximum sub-graph mining algorithm [21pbbject category [4].
The similar affinity graph is used in [22]. To handle multiple In general, the top-down methods can capture the
images simultaneously, Zhao and Yuan propose anotlmerview of the visual objects. However, for most top-
kind of graph which describes the affinity relationship df adown methods, there are only approximated solutions for
visual features of one video and they find the video objettte inference and parameter estimation. This may affect the
by a cohesive sub-graph mining algorithm [6]. Recently, performance of top-down methods.
Liu and Y. Liu [23] propose a joint assignment algorithm
for visual object mining which considers visual words an§- Variants of Topic Models
instances of visual object simultaneously in the process ofAs our work most closely builds upon the topic model
sub-graph matching. based object discovery method [5], we further give a brief
In general, the bottom-up methods discover the visualerview on the variants of topic models. Among them,
objects by linking the basic visual units together. Howevethere are works related to exploring the order or the
the bottom-up methods do not provide a model of the visugpatial correlation of words in each document. Gruéter
object and it is also very difficult to incorporate the prioal. propose to model the topics of words in the document
knowledge of visual objects into them. as a Markov chain [31]. Wang and Grimson propose a
Spatial Latent Dirichlet Allocation (SLDA) model which
encodes the spatial structure among visual words [32].
B. Top-down methods The word-document assignment is not fixadpriori but
For top-down methods, it is essential to model th@epends on the generative procedure which assigns visual
visual objects. According to the modeling approaches, wgords into the same documents if they are close in space.
categorize the top-down methods to three types. Philbin et al. propose a Geometric Latent Dirichlet Allo-
The first type of top-down methods employs the topigation (gLDA) model for discovering a particular object
model for visual object discovery. The topic model, suci unordered image collections [33]. It is an extension of
as Latent Dirichlet Allocation (LDA) [7] and probabilistic LDA, with the affine homography geometric relation built
Latent Semantic Analysis (pLSA) [24], discovers semanti@ito the generative process. Cao and Li propose a spatially
topics from a corpus of documents. The bag of wordsoherent latent topic model for recognizing and segmenting
representation is used to model the documents. Siic object and scene classes [34]. Andreeadtal. propose a
al. introduce the topic model to discover the objects inew Affinity-Based Latent Dirichlet Allocation (A-LDA)
images [25]. Following this idea, Russellal. [5] discover which considers the affinities between pixels to improve
the visual object categories based on the LDA and pLS#ie segmentation performance [35].
models. They first segment the images multiple times andThe temporal properties of documents are also helpful
then discover object topics from a pool of segments. Tor several applications. Levest al. employs the temporal
discover the hierarchical structure of visual objects,icSivordering of the documents to discover the topic propagation
et al. investigate the hierarchical Latent Dirichlet Allocabetween different time segments [36]. Waeg al. use
tion (hLDA) model [26]. Liu and Chen show promisingthe temporal ordering to capture the causal relationship
video object discovery results by combining pLSA wittof social media event. Different with these applications,
Probabilistic Data Association (PDA) filter based motiomhe temporal ordering can not be applied for the topical
model [27]. video object discovery problem. This is because different
The second type of top-down methods uses sub-spaastances of one same topical object have no casual relation
projection for visual object discovery. Inspired by thehip. Therefore, we only model the temporal co-occurrence
success of topic model based visual object discovery, Tabgtween segments of adjacent frames and do not consider
and Lewis [28] propose to use non-negative matrix fathe temporal ordering of different segments.
torization (NMF) to approximate the semantic structure of As for Markov Random Field model, zhag al. de-
visual objects. The results of NMF are comparable witfines a Markov Random Field over hidden labels of an
that of LDA on the same dataset. Sun and Hamme [2Bhage to enforce the spatial coherence between topic labels
further integrate spectral cluster and NMF for visual objedor neighboring regions [37]. Verbeedt al. improve the
discovery. performance of PLSA by introducing an image-specific
The third type of top-down methods explicitly use aviarkov Random Field to enforce the spatial coherence on
graph or tree to model the spatial structure of visual objecthe labels of the fine-grained local patches [38]. Wallach
Hong and Huang [11] model the visual object as a mixt al. relaxes the bag of words assumption by assuming
ture of attributed relational graphs whose nodes represémat the topics generate words conditional on the previous
the basic primitives. They also propose an expectatioword [39]. Different with these methods, we define the
maximization (EM) algorithm to learn the parameters dflarkov word co-occurrence prior over the whole video for
visual object model. Tan and Ngo also represent each imape topical object discovery.
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Fig. 2. Graphical model representation for (a) the original LDA, and (b) tteppsed LDA-WCP. The curves between the items of
topic-word distributions in (b) imply the incorporation of word co-occurrence prior. Here wetlse number of words to be four for
illustration convenience.

I1l. LDA-WCP M ODEL from a mixture distribution over latent topics [7]. Each wor

To discover topical objects from videos, visual featurean 1S @ssociated with a latent topig, according to the
are extracted from key frames and clustered into visugPcument specific topic proportion vectbs, whose prior is
words first. Then each video frame is segmented at differdnirichlet with parameter. The wordwg, is sampled from
resolutions to obtain the bag-of-words representation f§t€ topic word distribution parameterized byka<1” matrix
each segment. After that we obtain the word co—occurren@ey"here each rows;, 1 < i < K, satisfies the constraint
prior by analyzing the spatial-temporal word co-occureenc-;—1/%i; = 1. Here K andV denote the number of topics
information. Finally, video objects are discovered by th@nd the vocabulary size, respectively.
proposed LDA-WCP model. This section describes details The generative process for the original LDA is as fol-

about LDA-WCP model and the word co-occurrence pridPWs:

estimation. 1. For each document, 6, ~ Dirichlet(c);
2. For each of theV,; word in documenti:
A. Preliminaries and LDA Model Choose a topic, ~ Multinomial(d,);

Our method first extracts a set of local visual features ~ Choose a wordug, ~ Multinomial(;.,,, ).
from key frames, e.g., SIFT feature. Each visual feature in For each document, the joint distribution of a topic
key framel, is described as a feature vectgfu) = [u,h], Mmixture 6,, a set of N, topicsz, and a set ofVy; wordsw
where vectoru is its spatial location in the frame, andiS given by
high-dimensional vectoh encodes the visual appearance Ny
of this feature. Then, a key framg is represented by a  p(64,2, wl|a, 3) = p(0a|c) H P(2dn|0a)p(Wan | Zdn, B),
set of visual feature$;, = {¢;(u1), ..., ¢;(u,)}. Clustering n=1
algorithms, such as--means, group the features in allyhere p(z,,|0,) is simply 64 for an uniquei such that

T frames {,},_, according to the similarity between.i — 1. Integrating overf, and summing over, the

their appearance vectors, yieldiig visual words// = marginal distribution of document, is obtained as

{wt,w?, ..., w"}. N,
To consujer the spatial mformatlon of wsugl objects, e.acg(wm’ 8) = /p(ﬁd\a)(H Zp(zdn|9d)p(wdn‘zdn7 3))db..

key-frame is segmented multiple times using normalized

cut to generate segments at different resolution levelsnTh_

each segment is represented by its corresponding visgﬁf

words and denoted bw = {w, }2_,, which is considered

as one document. All segments of one video are collected Mo Na

as a corpus denoted By = {w,, }*_, . In the following, P(Ple8) = ]I / p(0ale) (H Zp(zdn|9d)p(wdn|zdmﬂ)) dog.

we also usel to represent one specific document. = el
Before describing the proposed model, we first briefly

introduce the original LDA model [#] LDA shown in Fig-

ure 2(a) assumes that in the corpus, each documarises

n=1 z4,

ally, taking the product of the marginal probabilities o
documents, we obtain the probability of a corpus [7]

LDA model is computationally efficient which can also
capture the local words co-occurrences via the document-
word information. However, the video level feature co-
IHere we consider the un-smoothed version of LDA model for explapccurrence _mformatlon is not considered in LD_A mOd_eI'
nation convenience. Take the video data as an example, a topical object
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may contain unigue patterns composed of multiple co- 1) Variational Inference: The inference problem for
occurrence features. Besides, the video objects may IHBA-WCP is to compute the posteriop(,z|w,«, 3),
small and hidden in the cluttered background, these oahich is intractable due to the coupling betwekand s, as
occurrence features can provide highly discriminative irshown in Figure 2. The basic idea of variational inference
formation to differentiate the topical object from the backis to use a tractable distribution to approximate the

ground clutter. true posterior distributiop, by minimizing the Kullback-
Leibler divergence between the two distributions. Here we
B. LDA-WCP Model approximate the posterign(0, z|w, «, 3) by ¢(0, z|v, ) =

(017) SN 4(24]én), where the Dirichlet parametey

The above consideration motivates us to propose LDA; 4 the multinomial parameters,, ..., o are free vari-

WCP model, which impose priori constraints on different o¢ona| parameters. Since the Gauss-Markov random field
visual words to encourage co-occurrence visual words o does not couple with other variables, we directly use
the same topic, as shown in Figure 2(b). This is technical 3). After this approximation, the lower bound of log

achieved by placing a Markovian smoothness pp68) likelihood of the corpus (Eq.3) is obtained
over the topic-word distributiong, which encourages two

words to be categorized into the same topic if there is

a strong co-occurrence between them. In video object L(v,¢; ., 3,0) < logp(D|a, B, 0). 4)
discovery, the visual words belonging to the same object N

co-occur frequently in the video. With the help of prior

p(B), these words are more likely to be clustered to thene yalues of variational parameters and v can be

same topic. Therefore, more instances of this object Wilytained by maximizing this lower bound with respect to
be categorized to the same topic even when some instan ehd~

contain the noisy visual words from other objects or the
background.

A typical example of priorp(5) is the Gauss-Markov (v*,¢*) = argmax L(v, ¢; o, 3,0). (5)
random field prior [40], expressed by s
A > 71 B(Bij)
p(Blo) =[J oV exp [—%%} , () This maximization can be achieved via an iterative fixed-
=1 point method. For learning with LDA-WCP over multiple
documents, the variational updatesdofind~ are iterated
E(Bi;) = Ein(Bij — Bin)*, : . -
(Big) Z i (Big = Bin) (2)  until the convergence for each document. This section is

heET . .
o presented to make the description complete. Further detail

where =/ represents the words which have co-occurrenggn be found in the supplementary material.
with word w? and & 1s the co-occurrence weight be-

tween wordw” and wordw?. E(3;;) is the co-occurrence . :
evidence for wordj within topic i. The parameter, occurrence prior is adjusted through the strength paramete
when estimating values of.. Considering the lower

captures the global word co-occurrence smoothness of toﬁc S i
i and enforces different degrees of smoothness in e %und of log likelihood with respect t6

topic in order to better adapt the model to the data. The

larger the parameter; is, the stronger word co-occurrence Kk v

is incorporated in topia. Considering the Gauss-Markov Lyg = L\/ﬁl n ZZ <log(gi\/>1E(€ij)> . (6)
random field prior, the probability of a corpus becomes 2 o

p(Dle, 8,0) = p(Blo)p(Dla, B). ®)

In this way, the prior term incorporates the interaction oﬂhereL]m is the lower bound of log likelihood without the
different co-occur words and forces them to co-occur in th@auss-Markov random field prior
same topic.

2) Parameter Learning: The influence of word co-

i=1 j=1

k |4

C. Inference and Learning |r1 LDA-WCP Ly = ®(8) + ZMZ By — 1), @)
The Gauss-Markov prior couples the parameter i=1  j=1

and (8, which makes direct estimation of them in-

tractable. Therefore we propose a new variational '

expectation-maximization (EM) algorithm to solve LDA-where ®(3) = Y40, S0 oK E};l Ganiw?,, 1og Bij;

WCP model. The E-step approximates posterior distributi@y,; is the topici proportion for itemn in document

p(0,z|w, a, 3) using variational inference similar to the onef; w’,, indicates the occurrence of word’ of item n

for LDA. The M-step estimates the parameters in a closéu documentd; and )\; is the Lagrange multipliers for

form by maximizing the lower bound of the log Iikelihood.constraintZ;/:1 Bij = 1.
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Algorithm 1 The EM algorithm for LDA-WCP model It is easy to check that there is only one non-negative

input : The corpusD and word co-occurrence prigt. _ solution for the3;; and we select it as the final solution. As

output : The topic document matrix and the topic word matrix B;h is initialized by solving Eq.8 without using the Gauss-
p Markov prior, we apply a fixed point iteration to estimate

repeat Bij. We can see that parametercontrols the weight of
[* E-step: variational inference */ smooth.
for d=1toD do o ) )

(v*,¢*) = argmaxy,¢ L(7, ¢; o, 3, 0) After obtaining the solutions for all3;;, 3 is nor-

end malized such thatz;/':1 Bi; = 1. The estimation for
/* M-step: parameter learning */ parametera is the same as the basic LDA model by
estimateg using Eq.8 _ maximizing the lower bound with respect to, i.e. ,
estimate tOpIC smoothness parameiaﬂs”']g qu af = arg max, L(,77 (b’ a, ﬁ’ O—) The Overa" algorlthm |S

updates with word co-occurrence prior by solving Eq.11

normalizeg to satisfy the constrain‘g;/:1 Bij =1

a* = argmax, L(v, ¢; o, 3) As shown in the evaluation section, our model can
until  convergence ; effectively incorporate the word co-occurrence to the LDA

model. A theoretical analysis of the convergence propertie

f the EM algorithm is an interesting open problem for
e statistical and machine learning community. In addi-
on, we does not consider the collapsed Gibbs sampling
inference [41] for LDA-WCP model due to its high com-
putational cost and its integration out of variallewhich

are used for estimation of smoothness parameter

summarized in algorithm 1.

The word co-occurrence prior is included in the objectiv
function of Eq.6 and it is more challenging to solve thi{.
problem. So we first obtain the solution Gf; by solving :
L, . Take the derivativd. , with respect to3;;, set it to

18] . 18]
zero, and find

M Ng
By =" banith,. ®)
d=1n=1
Then, the solution for parameter$ is obtained by setting
8L\ﬁ\/30i2 =0 D. Word Co-occurrence Prior Estimation

|4
1 ’
2 . .
%=y E :E(ﬁij), 9) For video corpus, we can obtain the word co-occurrence
i=1 prior by considering the spatial-temporal co-occurrente o

whereE(B,,) = 3", .=, Ein(B.: — B3.,,)%. After that, we add words. In a typical video, a number of visual words may
w3/ EET YT 1] [ . '

the Gauss-Markov smooth information back by solving tH&2Ve strong co-occurrence while others may have weak co-
following problem occurrence. As shown in many vision tasks [23] [6] [21]

[42], the frequency of word co-occurrence is an important

P v 1E@Bi) criterion for estimating the affinity of visual words. How-
Lig = @(8) + Z — log(o; )_§ o2 » (10)  ever, due to the inherent complexity of a video object, the
==t ' co-occurrence frequency of a word pair does not always
where E(@j) = Yemi Ein(By — 5;;,)2 and ﬁ;h _suggest acc_urate and meaningful affin_ity relationshipnEve
is obtained by Eq.8. To simpli‘1>/ the formulation, welf @ word pair co-occurs frequgntly, it is ljc_)t clear V\{hether
will consider the constrainty.'_ 3, = 1 later. such co-occurrence |s.stat|st|cally S|.gn|f|cant. or Jgst_ by
Let il = Zfl\il ivil d)dm%n and by chang- chance. Therefore, inspired by mutual information criteyi

we employ the following criterion to estimate the co-

ing the order of summation, we obfaig = 0 enco prio€;;, of two wordsw’ andw”

PIND S (z/zfg' log (3;;— log ai"—%%;”). To compute

o

parameter 3;;, we have to maximizeL‘m with re-

spect to 3;;, that is, to compute its partial derivative P(wi, wh)

and set it to zero. Considering a neighborhd®dl and Ejn = S(wi) x Swh)’ (12)
setting 0L /0p;; = 0, we obtain a second degree

polynomial equation with respect t@;;, i.e. fj% —

Lnezt Einfi—Yne=i EnBin _ () Multiply both sides with Where P(w?,w") represents the effective co-occurrence

(o . . ; .
3;; and o2, we obtain the following second degree poly?Umber of a pair of visual wora’ and w', and S(w?)
nomial equation is the effective occurrence number of visual wavd. To
capture the most important word co-occurrence, for each
5 / o2 visual wordw?, we select its tog”' co-occur visual words
Z_ Ein | B — Z Einbin | Bij —woi = 0. (1) aecording to the estimated co-occurrence prior values. Al
he=’ he=’ the selected co-occur visual words for ward is denoted
This equation has two solutions fg¥;. as=’.
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Algorithm 2 Word Co-occurrence Prior Estimation

input : The video withV visual words andl” frames.
output : The word co-occurrence prid.

initialize S andP to zero
/* estimate the effective occurrence of words and word pairs */
for j=1toV do

for [ =1toT do

, _ ; Fig. 3. lllustration of nearest neighbors for two visual words.
S(w’) = S(w’) + Qs (wy]) Five nearest neighbors are shown for both word red circle)

end and word2 ( greendiamond) in two frames.
for h=1toV do

for [=1toT do

if jand h co-occurs in ffé}lﬁﬁl then ., Although the computational complexity of this algorithm is
P(w’, w") = Pw’,w") + Qp(w], w') proportional toV2? x T, the algorithm is still efficient due
ende”d to the low frequency of words co-occurring in the same
end frame.
end
/* estimate the word co-occurrence prior */ IV. INCORPORATETEMPORAL DOCUMENT
for j=1toV do CO-OCCURRENCE TOLDA-WCP
for h=1toV do . .
Ein = P(w’, w)/(S(w?) x S(w")) The proposed LDA-WCP model can effectively incorpo-
end rate the visual word co-occurrence prior for topical video
end object discovery. However, the co-occurring phenomenon

exists not only among visual words. Because of the tempo-

To estimate the effective co-occurrence frequency ohl dependence of video frames, the co-occurrence of seg-
word pairs, we need to decide the co-occurrence of twoents of adjacent key frames might also provide beneficial
visual words in each frame is effective or not by checkingrior information for object discovery. As the video obct
their repetitiveness in the whole video. Therefore, we finthay be small and hidden in the cluttered background, this
the k nearest neighbors for each visual word instandemporal co-occurrence can provide discriminative infarm
in each video frame according to the spatial distancd®n to differentiate the topical object from the backgrdun
as illustrated in Figure 3. Assume the instance numbelutter.
of visual word w’ in frame I; is M and w’» is the
m!" instance of visual wordy’ in frame I;. The nearest A Temporal Document Co-occurrence Modeling
neighbor set of all instances of word’ in frame I; is
denoted adl] = {#}',nj?,--- , 7™}, wheren/™ is the
neighbors of visual word instanag’. The repetitiveness
of word instancew’ is obtained by comparing;™ with
the nearest neighbor set of word in all other frames.
Take framel; as an example and assume the instan
number of wordw’ in frame I, is M’. The repetitiveness
of visual word instancew’= at framet is estimated by

To incorporate the temporal co-occurrence to the LDA-
WCP model, we model the temporal co-occurrence between
segments of adjacent frames as variablesy,i.as, Where
ya,ar represents the temporal co-occurrence prior between
documentd and document!’, which are two segments of
g%jacent key frames. Inspired by Relational Topic Model
(RTM) [43], we assume the distribution probability of
temporal co-occurrencg, o as

5] = max{|m/™ N M, which is the maximum
number of intersections betweefr" and the nearest neigh- pya,aln,v) = exp(n” (za 0 zar) + v), (15)

bor setIT/ of visual wordw? in frame I. _ 1 . . :
N : . wherez, = 5+ >, z4,» IS the average topic assignment of
With the help of the estimated repetitiveness of ea | N, words i document: o is the element-wise product

visual word, we can calculate the effective occurrenceng_@dama1rd productyy and v are two parameters of the

eachbwor;j angﬁa}c? pa|rIof_ vy\?r?:s. f\ssumedthetlnsta Fobability function. Different with Relational Topic Medl
number ot woraw™In irame; ISV . =Or tWo Word INStance pryyy 1431 which uses binaryy, . to describe the link

Jm I irwi iti i i
w;™ and w;'", the pairwise repetitiveness is estimated network data, we assune < v, < 1 in order to

jm hyp . T 3 Jm hn H
R(w)™ ,w™) = 52, min(s;", s, ) whereT is the total panqie the temporal document co-occurrence of adjacent
number of frames in one video. The final effective CORey frames.

O © | e
occurrence of word paiw™ andw” in framel, is estimated  \yhen considering the temporal co-occurrence and LDA-

by WCP model simultaneously, the generative process for our
O, (w!, wl) = max{R(w™, wi WM N~ (13) modelis as follows:

1. For each documernt

a. 0, ~ Dirichlet(a);

b. For each of theV,; words in document:

O, (w) = max{Q, (w!, w)}V_,. (14) Choose a topicg, ~ Multinomial(6,);
S PAT L S h=1 Choose a wordsg, ~ Multinomial(3., ).
The overall algorithm is summarized in algorithm 2. 2. For each pair of documents of adjacent frames:

The final occurrence of word’ in frame I; is estimated
by selecting the maximum effective co-occurrence of word
w?
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wim is considered as one matched word instanceif is
larger than half of.

V. EVALUATION

To evaluate our approach, we test it on challenging
z z videos for topical object discovery. In addition, we com-
pare the proposed approach with the state-of-the-art meth-
ods [5][6][8][43].

Ng Ba Bo Be Buk Ng A. Mideo Datasets and Experimental Setting

Fig. 4. Graphical model representation for LDA-WCP with To evaluate the proposed method, two video datasets are
temporal document co-occurrence. Here we show a single pair@fllected. Dataset 1 contains twenty-four video sequences
docum(_ents and set the number of words to be four for illustratijy,vnloaded from YouTube.com. Most of the videos in
convenience. . .
Dataset 1 are the commercial videos and and length of the
video in this dataset ranges from 20 seconds to 40 seconds.
Choose a temporal co-occurrenggy ~ p(yq.a|n,v) Dataset2 contains 101 videos from diverse categories such
wWherezy = z41, 24,2, - - - Zdun as news, commercials, documentary, etc. The length of the
. . . . ._Vvijdeo in this dataset ranges from 20 seconds to 4 minutes.
By comparing with the generative process of the Orlglnéeveral videos are shared by both Dataset 1 and Dataset 2.
LDA, it can be seen that the tempgral CO-OCCUITENCE 1S, e first experiment, we discover video objects using
generated for bairs of QOcuments. Flgure_4 illustrates t taset 1 and Dataset 2. Most of the videos have the well-
process for a single pair of doguments using the graphi fined primary topical objects, e.g., the product logo. We
model. In this way, our model incorporates both the wor, st our method on the video sequences one by one, and

level co-occurrence and the document level co-occurren to find one primary topical object from each video.
The inference and parameter learning of thi; new model Cg%sides a primary topical object, many videos contain a
.St'” be handled by the proppsed EM algquthm, as sho"\ﬂrhmber of other objects which have comparable importance
in the supplementary. material. By modeling the temporz%r video understanding. Such objects can be the objects
d_ependence, the topic of each document depends on 5t are frequently highlighted in the video, or the persons
V|s_ual appearance of the document as well as th_at of fsat appear frequently, e.g., the leading actor/actresisein
adjacent document. There_fore, two dqcuments which ha(YSmmerciaI video. Therefore, in the second experiment, we
temporal co-occurrence will be more likely to be clustereglq; o method on Dataset 1 to discover multiple video
to the same topic. objects from each video.
To obtain the segment representation for videos, we

B. Temporal Document Co-occurrence Estimation first sample key-frames from each video at two frames

The temporal co-occurrence prior of two segmehtsxd per second. SIFT features are extracted from each key-
d’ of adjacent frames can be decided using the appearafiégne. For each sequence, the local features are quantized
similarity obtained by matching the instances of visuahto V' = 400 visual words by thek-means clustering.
words between two frames. Denote the number of matchéfle number of visual words is selected experimentally.
word instances between two segmedtand @’ as N, o, Then each key-frame is segmented at multiple levels using

the temporal co-occurrence is defined by normalized cut. In our implementation, each key-frame is
N segmented into 3, 5, 7, 9, 11, 13 and 15 segments, respec-
y(d,d") = W, (16) tively. We perform normalized cut in both original key-
d d’

frames as well as the down-sampled key-frames of half size
where |wq Uwg| is the number of all words of two of the original key-frames. After the segmentation, each
segments. If all word instances of segmérind segment segment is described by the bag-of-words representation.
d’ can match with their corresponding instancgsl,d’) is  To employ LDA-WCP model, the word co-occurrence prior
1. Otherwisey(d,d’) is less thanl. is estimated by using the tof = 30 co-occurring words

To count the number of matched word instanéég;, for each word as shown in Sec. 1lI-D. We use ten nearest
we estimate the matching score of one word instaneeighbors for each visual word for both word co-occurrence
in segmentd using its nearest neighbor. Denoté™ as prior and temporal document co-occurrence estimation.
the k neighbors for word instances’™ in segmentd, We set the topic numbek” = 8 for LDA-WCP model.
andIl), = {mJ), @) --- @} as the nearest neighborAfter obtaining a pool of segments from all key frames,
set of all M’ instances of visual wordv? in segment object topics are discovered using the proposed LDA-
d’. The matching score of visual word/~ is s/ = WCP model. The most supportive topics are selected by
max{ |7y Nl \}%/:1:, which is the maximum number of using the ground truth. The more instances of the ground
intersections between and elements ofl/,. With the truth object in one topic, the higher the supportiveness
estimated matching score of visual word, the word instanoé this topic is. One topic is selected for single topical
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object discovery, while two are selected for multiple t@bic  These results show that the proposed approach performs
objects discovery. For the selected topic, all segmentseof twell for discovering both single and multiple topical oligec
same key frame are sorted based on the topic assignmfeom videos.

values. The segment with the highest rank is selected as

the instance of the topical object.

To quantify the performance of the proposed approa
we manually labeled the ground truth bounding boxes of We compare our video object discovery method (LDA-
the instances of topical objects in each video frame. TM¥CP) with two state-of-the-arts methods: LDA based
bounding boxes locateD sub-images in each key frameapproach (LDA) and sub-graph mining approach (Sub-
One segment is considered as discovered by our mettotaph). The LDA based approach (LDA) is one of the
only when the overlap between the discovered segment aiate-of-the-art approaches for object discovery [5]. id fi
the ground truth is larger than 50 pixels. LR andGT be the video object, each key frame is segmented multiple
the discovered segments and the bounding boxes of grodtfdes with varying number of segments and scales. After
truth of one frame, respectively. The performance of eaéptaining a pool of segments from all key frames, object
object instance is measured by two critegiaecision and  topics are discovered using LDA following the work in [7].
recall. By combiningprecision andrecall, we obtainF- The visual words and other settings are same as our method
measure as the metric for performance evaluation [4]. Tdor a fair comparison. In the second method, we use the sub-
evaluate the performance of one video, fhecision and graph mining approach (Sub-Graph) as described in [6]. To
recall is first estimated for each video by averaging théind the topical object using sub-graph mining approach,
results of all discovered instances. Then we normalize tBéch key frame is again first segmented multiple times in
averageprecision and recall value by multiplying them the same way as our method. Then the affinity graph is built
with the discovered instance number weight, whereN,  to represent the relationships of all segments. After that,
is the ground truth instance number of topical objects ag@hesive sub-graph mining, the instances of topical object
N, is the corrected detected instance number of topicale selected from the segments which have strong pair-
objects. After that, the averagBé-measure value of one wise affinity relationships. As this method only obtains the
video is estimated using the normalized average-ision ~Maximum sub-graph each time, we compare it with other
andrecall. For each dataset, the performance is measur@gthods for single object discovery only.
by the average results obtained after running the LDA-WCP To evaluate the effect of the word co-occurrence prior
algorithm 5 rounds. and temporal document co-occurrence prior, we report
the results of three variants of our method: LDA-WCP-

) , . Tempral method which incorporates the proposed temporal
B. Video Object Discovery using LDA-WCP document co-occurrence prior to LDA-WCP method; LDA-

To demonstrate the advantage of the proposed LDAempral method which incorporates the proposed tem-
WCP model, we evaluate it with the challenging videporal document co-occurrence prior to LDA method [5].
datasets for topical video object discovery. LDA-Tempral can be considered as our implementation

Many videos in Dataset 1 contain a primary topicabf Relational Topic Model (RTM) [43] for topical video
object, e.g. , the Starbucks logo in a commercial videabject discovery; LDA-WCP-CVPR method which uses our
of Starbucks coffee. Such a topical object usually appegrevious word co-occurrence prior estimation algorithm as
frequently. Figure 6 shows some sample results of videlescribed in [8].
object discovery by the LDA-WCP model. In the video As shown in Figure 5(a) and Figure 9, our proposed
sequences, the topical objects are subject to variations approach outperforms both LDA approach and sub-graph
troduced by partial occlusions, scale, viewpoint and light mining approach in terms of th&-measure for single
condition changes. It is possible that some frames contaopical object discovery, with an average score of 0.52
multiple instances of video objects and some frames do (GDA-WCP) compared to 0.44 (LDA) and 0.34 (Sub-
contain any video objects. On average, each video has @Paph), respectively. LDA approach does not consider the
keyframes and the proposed method can correctly discoweroccurrence prior of visual words and its results only
19 instances from a total of 23 instances of topical objeatepend on the word occurrence frequency. The topics of
We further evaluate the proposed approach using Datasegments may be affected by the words of the background
2. Figure 7 shows some sample results of video objezs$ the segmentation is not always reliable. On the contrary,
discovery using Dataset 2 by the LDA-WCP model. the proposed method can achieve a much better result.

Besides a primary topical object, many videos of Datas&he same conclusions can be obtained for multiple objects
1 also contain several other objects which are important fdiscovery, as shown in Figure 5(b).
video understanding. The proposed approach can categorizBy incorporating the word co-occurrence prior, LDA-
the instances of different topical objects to differentitsp WCP model encourages the words to be categorized to
even when some video frames contain multiple types tfe same topic if there is a strong co-occurrence prior
topical objects. On average, the proposed method caetween them. This implies that LDA-WCP model makes
correctly discover 37 instances from a total of 44 instancése learned topics more interpretable by considering both
of two topical objects. the word occurrence frequency and the word co-occurrence

c%' Comparison with LDA and sub-graph mining approach
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Performance of single object discovery Performance of multiple objects discovery
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Fig. 5. Performance comparison of different methods using Dataset &n¢ajb) show the precision/recall results of different methods
for single and multiple video object discovery, respectively. The pi@viecall values are the average results of all videos. The green
curves shows the corresponding precision/recall values of the sameasure value.

Fig. 6. Sample results of single object discovery using Dataset 1. Each rowssti® discovery result of a single video. The
segment with normal color contains the discovered topical object, whilsepments overlaid by a transparent filter correspond to the
background region. Theed bounding boxes indicate the ground truth position of the topical objects anfilaimes without bounding
boxes do not contain any instances of topical objects.

prior. These comparisons clearly show the advantages of théeos as these videos do not have a strong temporal
proposed video object discovery technique. document co-occurrence due to the information loss in
The comparison between LDA-WCP and LDA-WCPthe process of keyframe sampling. We expect that if the
CVPR [8] demonstrates the advantages of the propodegy-frame is extracted more densely, then modeling the
word co-occurrence prior estimation algorithm. In LDAtemporal co-occurrence may show more benefits.
WCP-CVPR, the word co-occurrence prior is estimated by
only considering the co-occurrence frequency between tkb Comparison with the CNN (convolutional neural nets)
visual words as described in [8]. On the contrary, we firgeethod
estimate the repetitiveness of each visual word and thenSince 2012, CNN (convolutional neural nets [44]) be-
use the mutual information criterion to obtain the word cacomes the state-of-the-art methods in problems such as
occurrence prior for LDA-WCP. object detection, face recognition. To using the CNN for
We also observe that, by incorporating the temporaldeo object discovery, we employ the pretrained 1000
document co-occurrence to LDA, LDA-Temporal modetlasses imagenet-caffe-alex model [44].
outperforms LDA model for both single and multiple Specifically, for one image segmesin keyframe/, its
objects discovery. Although incorporating the temporalircumscribed rectangle region is selected firstly. Theis, t
co-occurrence does not improve the overall performanoectangle region is used as input of the pretrained imagenet
of LDA-WCP for all videos, the temporal co-occurrenceaffe-alex model [44] and the clag’(s) of segments is
boosts the performance of LDA-WCP for about one thirdecided. After that, one segmesf,,, with the largest
videos. By analyzing the video contents, we find that thelassification score is selected and its cld%,,..) IS
temporal co-occurrence does not work for other two thirdounted as one instance of cla§$s,,..) in the video.
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Fig. 8. Precision/recall plots for our approach with different parametergu3ataset 1. (a) shows the performance of LDA-WCP model
when using different segmentations of each frame. (b) shows tlierpence of LDA-WCP model with different dictionary sizes.
(c) shows the performance of LDA-WCP model with different wordoozurrence priors. (d) shows the performance of LDA-WCP
model with different number of topics.

Finally, we select the top 3 classes by counting theamd lighting condition changes. Second, the pretrained
instance numbers in the whole video. Each selected clas€NN model describes the category-level information and it
considered as one discovered topical video objects. Figulassifies the image regions based on the learned category-
10 shows the discovered results of CNN method for onevel features. Therefore, it may classify the instances of
video. the topical objects and the regions of the background to
the same topic, e.g., the class "sweatshirt”. In summary,
From this evaluation, we can draw two conclusions. Firgkhe CNN method with the pretrained model is not able to
sometimes CNN can assign the same class label to {ighrove the topical video object discovery performance.
instances of the same ground truth topical video obje¢jowever, the CNN approach is still a promising research

e.g., the class "plate rack”. However, only a very limite@jirection as it can provide the semantic label for the
number of topical object instances are assigned the sagigcovered object.

class label as the topical object instances are subject to
variations introduced by partial occlusions, scale, vieiwp
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"2

Fig. 10. Sample results of CNN based topical video object discovery of one ville® discovered top 3 classes are shown. For each
discovered class, 4 input image regions are shown. Sometimes, Chiidanean assign the same class label to the instances of the
same ground truth topical video object, e.g., the class "plate rack”.eMeryit may classify the instances of the topical objects and

Class : “plate rack” Class : “Windsor tie” Class : “sweatshirt”

the regions of the background to the same topic, e.g., the class "sweatsh

Performance of single object discovery

0.7 of LDA-WCP gets better when more segmentations of each

s e frame are used. Th&-measure is 0.35 when using one

' ‘ segmentation while thé-measure is 0.53 when using

05 o o all nine segmentations. We also observe that when more
S04 o e than seven segmentations of each frame are used, the
8 performance does not change significantly. Therefore rseve
a 03 F=04 segmentations of each frame is used for our approach.

0.2 4 Fe03 2) Performance versus dictionary size: Figure 8 (b)

015 o — 1 02 iIIustra_tes the_ performance of LDA-WCP when the_ dictip-

* R F=01 nary size varies. We observe that the advantage is gained

0
0 01

by the dictionary size of 400 visual words. The overall
‘ . ~ performance of LDA-WCP does not change significantly
Fig. 9. Performance comparison of different methods usingihen the dictionary size is between 100 and 700 visual
Dataset 2. The precision/recall values are the average results OWtHrds The appropriate number of visual words is helpful
videos. The green curves shows the corresponding precision/re%l ca .ture the repetitiveness of video obiects and handle
values of the samé-measure value. p e p ) > - ) ! ’

the variabilities of topical video object due to viewpoint,
illumination changes, scale changes, and partial ocalusio

E. Evaluation of Parameter Selection etc.

To further evaluate the proposed approach, we discuss the) Performance versus number of co-occurrence visual
influence of key-frame segmentation, dictionary size ofbafords: For the testing videos, we obtain the word co-
of-words representation, size of co-occurring set of ea@gcurrence prior by considering the spatial-temporal co-
word and the number of topics. occurrence of words in the whole videos. The Gauss-

1) Performance versus segmentation: The proposed ap- Markov random field priorp(3) is built using the co-
proach requires to segment each image to acquire PFUTING set of each word as described by Eq.12. F|gyre 8
document-word representation. However, as a perfect ima§é Shows the performance of our methods for tested videos
segmentation is not always achievable, the topical objec‘,’t’é‘e” using different numbers of co-occurring visual words.
may be hidden in the segments of cluttered backgrourlic@n be seen that the overall performance of LDA-WCP
Inspired by [5], we segment the frames multiple times arfipes not chgnge S|gn|f|cantly with the.5|ze 01_‘ co-occurring
expect that each object instance is correctly segment¥grd set, with a minor advantage being gained by using
by at least one segmentation. We expect that the mdhg toPC = 30 co-occurring visual words for each word.
number of segmentation we perform for each frame, tHdS demonstrates that the small number of co-occurring
better the performance of our method will be. To verify thi¥/Ords is able to capture the important co-occurrence prior
intuition, we obtain nine segmentations of each frame usifgformation.
normalized cut while each key-frame is segmented into 3,4) Performance versus number of topics. Figure 8 (d)
5,7,9, 11, 13, 15, 17 and 19 segments, respectively. \llgstrates the performance of LDA-WCP when the number
test our method several rounds by using different numbegktopics varies. We observe that the advantage is gained by
of segmentations for each frame. In the first round, only tilee smaller number of topics. The overall performance of
first segmentation of each frame is used. In the followingDA-WCP did not change significantly when the number
rounds, we gradually increase the number of segmentatigigopics is between 4 and 8. However, the larger number
for each frame. of topics reduces the performance of LDA-WCP as the

Figure 8 (a) shows the performance of our method ifstances of one topical video objects might be clustered to
different rounds. The averag&-measure value of all multiple topics.
video sequences is shown. We observe that the performanc&hese evaluation results demonstrate that it is convenient

02 03 04 05 06 07
Recall
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Fig. 11. Comparison of computational cost of LDA-WCP and [5]
LDA using Dataset 1. For each video, it shows the convergence
time of EM based inference and learning algorithm.

(6]
(7]
to set the parameters of the proposed LDA-WCP model. "
F. The Computational Cost of LDA-WCP [9]

In this section, we report the computational cost of LDA-
WCP model. After obtaining the document-word represefil
tation and the word co-occurrence prior for video clipﬁn]
the un-optimized LDA-WCP implementation in Matlab
requires about 60 seconds on average to discover topical
video objects from one video using one CPU core on &,
Xeon 2.67GHz PC. The convergence time of EM algorithm
for all videos of Dataset 1 are shown in Figure 11. Due
to the low frequency of words co-occurrence in the sante’!
frames, the estimation of word co-occurrence prior reguire
only about 10 more seconds on average for each vidét
To process one video, the original LDA requires about 65

seconds on average.
[15]

VI. CONCLUSION [16]

Video object discovery is a challenging problem dug7
to the potentially large object variations, the complicate
dependencies between visual items, and the prohibitive
computational cost to explore all the candidate set. We
first propose a novel Latent Dirichlet Allocation with Word
Co-occurrence Prior (LDA-WCP) model, which naturally1®]
integrates the word co-occurrence prior and the bag-of-
words information in a unified way. Then we propose o]
new variational expectation-maximization (EM) algorithm
to solve the LDA-WCP model. This EM algorithm make§21
the problem tractable and allows for an elegant iterative
solution. Experiments on challenging video datasets shd%#!
that our method is superior to LDA for topical video object
discovery.

There are several directions that could be further explor&d!
in the future. Currently, we estimate the word co-occureeng,y
prior by checking their effective co-occurrence frequency
in the whole video. An alternative approach that can 4é°!
pursued is leveraging the weakly supervised information
about the visual objects [45][46]. This is suitable for tarfe]
geted object discovery that is tailored to users’ interdsts
addition, our model can be combined with co-segmentati?g,]
algorithms [47] and visual saliency discovery [48].
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