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Adobe Boxes: Locating Object Proposals
Using Object Adobes

Zhiwen Fang, Zhiguo Cao, Yang Xiao, Lei Zhu, and Junsong Yuan, Senior Member, IEEE

Abstract— Despite the previous efforts of object proposals, the
detection rates of the existing approaches are still not satisfactory
enough. To address this, we propose Adobe Boxes to efficiently
locate the potential objects with fewer proposals, in terms of
searching the object adobes that are the salient object parts easy
to be perceived. Because of the visual difference between the
object and its surroundings, an object adobe obtained from the
local region has a high probability to be a part of an object, which
is capable of depicting the locative information of the proto-
object. Our approach comprises of three main procedures. First,
the coarse object proposals are acquired by employing randomly
sampled windows. Then, based on local-contrast analysis, the
object adobes are identified within the enlarged bounding boxes
that correspond to the coarse proposals. The final object pro-
posals are obtained by converging the bounding boxes to tightly
surround the object adobes. Meanwhile, our object adobes can
also refine the detection rate of most state-of-the-art methods
as a refinement approach. The extensive experiments on four
challenging datasets (PASCAL VOC2007, VOC2010, VOC2012,
and ILSVRC2014) demonstrate that the detection rate of our
approach generally outperforms the state-of-the-art methods,
especially with relatively small number of proposals. The average
time consumed on one image is about 48 ms, which nearly meets
the real-time requirement.

Index Terms— Object proposal, Adobe Boxes, object adobes,
adobe compactness, objectness.
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I. INTRODUCTION

DURING the past decades, a lot of efforts have been spent
towards the efficient and robust object detection [1]–[3]

and tracking-by-detection [4]–[6]. To accurately locate the
target object in the cluttered scene, most of the previous
object detection methods rely on the sliding window searching
scheme. However, usually millions of subwindows need to
be evaluated, thus resulting in the high computational cost.
To overcome this issue, the object proposals [3] have shown
the promising results to help efficiently localize the potential
object regions first, via objectness estimation [7]–[12]. Thanks
to the object proposal procedure, the object detection task
can be narrowed down to a much smaller searching space
of subwindows (e.g., thousands of subwindows), while still
ensuring the detection performance. To locate the object
proposals, some existing works focus on designing or learning
the good object descriptive visual features [7], [11], [12].
Although they are often computationally efficient, the obtained
features are not descriptive enough to characterize the generic
objects well. This leads to the high false positive rate in the top
scored proposals. On the other hand, using the rich information
of superpixels, several other methods [10], [13] pay more
attention to proposing the superpixel merging mechanisms for
object proposal generation. Despite the high time consumption
paid, they do not always achieve high detection rate, especially
within the top scored proposals. The reason seems that, these
methods do not define the effective objectness measures to
evaluate the merged regions for ranking. While, objectness
measure indeed plays a vital role to ensure the availability
of the yielded object proposals [8]. Obviously, efficiently
generating a small number of proposals with the high detection
rate is indeed preferred by the practical applications [7], [12].
However, the aforementioned two kinds of object proposal
approaches cannot fully satisfy this demand.

In this paper, we propose Adobe Boxes–a novel object
proposal method–able to achieve high detection rate (DR)
with a few number of proposals. Meanwhile, it can also
improve DR of other approaches. Our main research idea is
shown in Fig. 1. First, according to [15], the bridge between
looking at an image and seeing an object is the regions of
interest (ROI). Without any prior knowledge, ROI may contain
a whole object or parts of it [16]. Thus, we define a new
element, object adobes, for discovering the potential objects.
In Fig. 1, different from searching all the superpixels of the
train [10], our method pays attention to the salient “parts”,
i.e., superpixels of objects using the contrast analysis in the
local region. We call these salient “parts” as the object adobes.
Next, inspired by the visual organization rule [17], which

1057-7149 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



FANG et al.: LOCATING OBJECT PROPOSALS USING OBJECT ADOBES 4117

Fig. 1. Our main research idea. From left to right, after acquiring the superpixels using the image segmentation methods in [14], the adobes will be extracted.
Adobe Boxes are then fixed according to the principle of the adobe compactness, to locate the object proposals. This figure is best viewed in color.

implies that spatially scattered parts are not likely to form an
object, we introduce a new measure of objectness named adobe
compactness to rank the proposals and restrain the redundant
proposals. Several proposal samples of the different adobe
compactness values are shown in Fig. 1, respectively.

Our approach declares three main contributions. First, the
concept of object adobes is proposed to extract the salient
object “parts”. Using the object adobes, the object proposals
(i.e., Adobe Boxes) can be located without knowing the
whole objects. Secondly, adobe compactness is introduced as
a new objectness measure, to answer the question “What is
an object?” [8] from the perspective of object adobe spatial
distribution. Last, Adobe Boxes can also be reemployed as the
refinement tool to enhance the detection rate of other object
proposal approaches (e.g., [7], [10], [12], [18]).

We test Adobe Boxes on four challenging datasets
(PASCAL VOC2007 [19], VOC2010 [20], VOC2012 [21]
and ILSVRC2014 [22]). The experimental results demonstrate
that, compared to the state-of-the-arts object proposal gener-
ation approaches (e.g., BING [7], EdgeBoxs [12], SEL [10],
OBJ [18], MTSE [23]), our method outperforms all of them
on DR. Especially, Adobe Boxes achieve higher DR with fewer
windows, e.g. over 90% DR with 200 proposals. Our model is
also efficient. The average time that consumed on one image
is 48ms, which is almost in real-time. Next, the object adobe
and adobe compactness are used for [7], [10], [12], and [18]
as a DR refinement mechanism. For example, by equipping
BING [7] with our object adobes, denoted as Adobe BoxesB ,
it achieves over 97% DR with 1000 proposals and effectively
promotes DR with the 1st proposal.

The source code of this work is published online.1

The remaining of this paper is organized as follows. The
related work is discussed in Sec. II. Then Adobe Boxes
and the generation of the initial window are illustrated in
Sec. III and IV respectively. Experiments and discussions are
conducted in Sec. V. Sec. VI concludes the whole paper.

1http://pan.baidu.com/s/1jHABDD8 (baiduPan), https://github.com/fzw310/
AdobeBoxes-v1.0-.git (GitHub)

II. RELATED WORK

Generally, the existing methods of object proposals can
be categorized into three main groups: patch-based model,
superpixel-based model, and part-based model.

A. Patch-Based Model

Under this paradigm, the proposed approaches [7], [8], [11],
[12], [23], [24] mainly focus on extracting the discriminative
visual features able to distinguish the objects and background
well within the local image patches. After calculating the
objectness score, the patches of high scores will be pushed
up as the object proposals by a ranking procedure. In par-
ticular, various of visual cues (e.g., edge density, contrast,
etc.) are integrated under the Bayesian framework for object-
ness estimation in [8]. The gradient information is employed
by [7] and [11] as the generic object representative feature
for predicting the objectness score, in the supervised manner.
That is, a classifier (i.e., SVM) will be trained with the gra-
dient feature for objectness estimation. Rather than gradient,
edge [25] is further regarded as a more informative and robust
objectness clue by Zitnick and Dollár [12]. Based on the sparse
information of edges, the probability of whether a local patch
contains the object is consequently calculated [12]. Some other
works also investigate the usage of object position information
to leverage the performance. For instance, the hottest object
positions are mined from the training samples in [24]. Being
constrained with this prior information, the detection rate of
the first 10 candidate windows can be significantly boosted.
In [23], the multi-thresholding straddling expansion (MTSE)
is proposed via superpixel-tightness analysis, to alleviate the
object localization bias of the patches. Although different
kinds of visual features have already been employed for object
proposal generation, it is still hard to judge which one is the
optimal choice. According to the reported experimental results,
they keep the similar performance.

B. Superpixel-Based Model

To generate the object proposals, another main tech-
nical stream [8]–[10], [13], [26]–[30] resorts to merging
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the superpixels, or executing saliency analysis on the super-
pixels. In this way, the essential concern is how to define the
similarity/dissimilarity measure among the superpixels.

To effectively merge the superpixles, Selective Search [10]
proposes various of complementary similarity measures to
conduct a hierarchical grouping. Global and local grouping
happen simultaneously in [13]. Hierarchical segmentation
and multi-scale regions combination are employed in [26].
Based on the randomized version of Prim’s algorithm [31],
Manen et al. [28] uses the connectivity graph of superpixels to
analyze the similarity of the neighboring superpixels. Random
Forest is adopted in [29] to learn the grouping rules for the
superpixels. After selecting the seeds from all the superpixels,
a signed geodesic distance transform is computed for each
mask, and the critical level sets are identified to produce object
proposals in [30]. The superpixel merging based approaches
can achieve high object proposal quality. However, their com-
putational cost is indeed expensive. This somewhat limits their
usage for practical applications.

Locating the salient objects via saliency analysis on
the superpixels recently draws the researchers’ attention.
Jiang et al. [27] integrate regional contrast, regional property
and regional backgroundness to indicate the salient objects.
Feng et al. [9] propose several rules (i.e., appearance prox-
imity, spatial proximity, non-reusability and non-scale-bias) to
measure the saliency score of an image region. However, for
the non-salient objects these methods fail to work.

These methods generally execute object proposals gener-
ation by dividing the whole objects from the background
directly. However, without any prior information it is challeng-
ing and computationally expensive, especially for the small,
non-salient and occluded objects.

C. Part-Based Model

Semantic part plays an important role in object detection,
and has achieved great success [2], [32]–[34]. Inspired by [34],
Felzenszwalb et al. [2], [33] propose a series of effective
frameworks for object detection using part-based model. Fur-
thermore, the sub-part-based description is introduced in [32],
and the semantic hierarchy is used to represent the objects.
These works indeed demonstrate the importance of the seman-
tic part for object category characterization. However, propos-
ing generic objects using part-based model is still not well
investigated. To our knowledge, Cho et al. [35] first pay
attention to the part-based object discovery without category
information. They tackle the object proposals via part-based
matching. Nevertheless, the computational cost of matching is
high. And, this approach tends to be confused by the “truncate”
objects.

Our work can be categorized into the part-based model.
That is, the object adobes are proposed to capture the local
salient object parts. And, the adobe compactness is introduced
to rank the proposals, from the perspective of part spatial
distribution.

III. ADOBE BOXES

The Adobe Boxes are proposed as the object proposals
that tightly enclose the adobes. The proposition of the object

adobes is mainly inspired by the human visual attention
mechanism [15]. That is, to catch the object, human will
first capture several object parts of significant appearance
difference from the background quickly. Then, the whole
object can be effectively located according to these perceived
parts, without knowing all the object components. Following
this principium, the object adobe is generally defined as the
superpixel with high local color contrast to the background.
The spatial compactness of the adobes can essentially evaluate
the objectness of the Adobe Boxes. The higher the compact-
ness is, the more probable that the Adobe Boxes correspond
to the objects. In this section, we will introduce how to extract
the object adobes and Adobe Boxes respectively, and the
calculation of the adobe compactness is also illustrated.

A. Object Adobe Extraction

To extract the object adobes, image segmentation pro-
cedure [14] is first executed. The yielded superpixels
V = {sn, n ∈ {1, 2, . . . N}} are described by the normalized
HSV color histogram hn ∈ ℜ75 [10]. The histogram intersec-
tion distance [10] is used to measure the distance between the
superpixels as

distHI (sn, sm) = 1 −
75∑

k=1

min
(

hk
n, hk

m

)
. (1)

Let Bw
2 denote an initial window that may contain the

object. The object adobes can be extracted as illustrated in
Fig. 2. Corresponding to the local perspective of Bw, the
background superpixel subset Sb and the internal superpixel
subset Si are first extracted. The superpixels in Sb intersect
with Bw, and the superpixels in Si locate within Bw. It is
worth noting that, Si does not involve the superpixels that
touch the image boundary, to avoid the object-background
ambiguity. Using Sb and Si , the superpixels that correspond to
the object with high probability can be consequently extracted
to form the object seed superpixel subset Ss . To extract the
object adobes, we further define a candidate adobe subset Sc
to include the superpixels that indicate the potential object
adobes. The Sc superpixels also locate within Bw, but may
touch the image boundary. Compared to Si , more potential
object components can be involved in Sc. Obviously, Si ⊆ Sc
as shown in Fig. 4. By executing the local contrast analysis
among Sb, Ss and Sc, the object adobe subset So is finally
extracted from Sc as

So = {s ∈ Sc|C(s,Sb) ! C(s,Ss )} , (2)

where s represents the superpixel and C(∗, ∗) is the local
contrast calculation function given by

C(s,St ) = 1
NSt

∑

sk∈St

distHI (s, sk) ,

t ∈ {b, c, i, s} , (3)

where NSt denotes the number of the superpixels in St .
Generally, the more salient the object is, the more “parts” will

2 Bw can be obtained via the different approaches, such as the randomly
sampled windows, and the object proposal methods in [7], [10], [12], and [18].
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Fig. 2. The detailed object adobe extraction procedure.

Fig. 3. Examples of the extracted object adobes. (a) Dog. (b) Gog’s adobes.
(c) Train. (d) Train’s adobes.

be extracted from the object. Fig. 3 shows two examples of
object adobe extraction. It can be observed that, the “dog” is
more salient than the “train”. Consequently, more components
of the “dog” will be extracted as the object adobes than the
“train”.

Next, we will illustrate how to extract Sb, Si , Ss and Sc in
details, respectively. Fig. 2 shows the detailed adobe extraction
procedure for the “train” in Fig. 1.

1) Background Subset Sb: The superpixels in Sb correspond
to the background components. They locate around Bw, and
intersect with the boundary of Bw. As a consequence, Sb can
be defined as

Sb =
{
s ∈ V |s ∩ !Bw ̸= ∅

}
, (4)

where !Bw represents the boundary of Bw. The green region
in Fig. 2 (b) shows the example of Sb.

2) Internal Subset Si : The superpixels in Si locate
within Bw. Among them, we intend to find the ones that
belong to the object with high probability as the object seed
superpixels. Since the objects may be cropped by the image
boundary in some cases as shown in Fig. 4, it is difficult to
judge whether the superpixels near the image boundary belong
to the object or background. As a consequence, the superpixels

Fig. 4. Illustration of the relationship between Si and Sc. It can be observed
clearly that Si ⊆ Sc. (a) Initial window. (b) Internal subset (Si ). (c) Candidate
subset (Sc).

that locate within Bw but touch the image boundary will be
discarded from Si . According to this, Si can be obtained by

Si =
{

s ∈ V | |s ∩ Bw|
|s| = 1, s ∩ !Bw = ∅

}
, (5)

where | ∗ | indicates the cardinality of ∗. The yellow regions
in Fig. 2 (b) and Fig. 4 are the internal superpixel examples.

3) Seed Subset Ss : Finding the object seed superpixels from
Si comprises of two steps. First, for each superpixel s ∈ Si , its
local contrast to Sb is calculated to measure its probability of
belonging to the object. Then, after ranking all the superpixels
in descending order, the top ones will be chosen to form Ss .
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Meanwhile, the whole size of the selected Ss superpixels needs
to satisfy

∑

s∈Ss

|s| ! ρ × |Bw| , (6)

where ρ ∈ (0 1) is a tunable parameter. The red regions in
Fig. 2 (c) show the examples of object seed superpixels.

4) Candidate Subset Sc: In Si , the superpixels that
touch the image boundary are ignored to avoid the object-
background ambiguity. However, this may lead to the miss
of some essential object components. To address this, the
previously discarded superpixels around the image boundary
are appended to Si to form Sc, such that Si ⊆ Sc as shown
in Fig. 4. The blue regions in Fig. 2 (c) and Fig. 4 show the
examples of the candidate adobes.

Fig. 4 gives several examples to illustrate the concept of
Si and Sc. It is worth noting that, the hand and waist of
“boy” are truncated by the image boundary. The corresponding
superpixels are ignored by Si . However, they are still remained
in Sc as the candidate adobes.

B. Adobe Box Extraction

After extracting the object adobes, Bw will be refined to
Bp that tightly encloses the adobes as the Adobe Box. There
remains a question that, whether the Adobe Boxes will miss
the objects, especially when not all the object components
are captured as the object adobes to localize the objects.
To answer this, Bw is first set as the ground truth box
Bgt of the object. Then, we investigate whether the Adobe
Box Bp extracted from Bgt possesses high intersection over
union (IoU) with Bgt . Intuitively, the higher the IoU is, the
better that Bp captures the object. IoU between Bp and Bgt
is given by

IoU
(
Bp, Bgt

)
= |Bp ∩ Bgt |

|Bp ∪ Bgt |
. (7)

The tests are carried out on VOC2007, VOC2010, VOC2012
and ILSVRC2014 respectively. The normalized IoU proba-
bility distribution on the four datasets is shown in Fig. 5.
It can be observed that, most of the IoUs are of high val-
ues (i.e., IoU ≥ 0.5). According to the PASCAL-overlap
0.5-criterion [7], [8], [10], [12], we draw the conclusion that
Adobe Boxes can generally capture the objects well.

C. Adobe Compactness

How to rank the object proposals is also an important issue.
For the extracted Adobe Boxes, the adobe compactness is
proposed as the objectness measure for ranking by us. Our
proposition is that, for the Adobe Box Bp, the more compactly
the object adobes spatially distribute, the more probably that
Bp captures the object. Based on this, the adobe compactness
for Bp is defined as

AC
(
Bp

)
=

∑

s∈So

|s|

|Bp|
. (8)

Fig. 6 gives some intuitive examples to demonstrate the
effectiveness of AC(Bp). It can be clearly observed that for

Fig. 5. IoU distribution between Bp and Bgt on the four test datasets.

Fig. 6. Adobe compactness examples that correspond to the different kinds
of Adobe Boxes. The blue dashed boxes are the Adobe Boxes, and the white
regions indicate the adobes.

“boy”, “dog” and “train”, the object adobes spatially distribute
more compactly within Bp, the higher AC(Bp) is and more
probably that Bp corresponds to the target objects.

Besides the intuitive examples above, more detailed investi-
gation is further conducted to support our claim on VOC2007,
VOC2010, VOC2012 and ILSVRC2014 datesets respectively.
That is, 2000 background boxes of IoU less than 0.5 with
the object ground truth boxes are randomly sampled from
each image. Then, the comparison on the normalized adobe
compactness probability distribution between the background
and object boxes are executed on each dataset. Fig. 7 shows
the comparison results. We can see that, on all the four test
datasets the object generally possesses higher adobe compact-
ness than the background. This phenonmenon demonstrates
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Fig. 7. Adobe compactness distribution comparison between the object and
background on the four test datasets.

that, adobe compactness is a feasible objectness measure that
can generally push the object forward.

In addition, for the Adobe Boxes of the same adobe
compactness, we further propose that the ones extracted from
the larger Bw should keep the higher objectness measure.
As aforementioned in Fig. 3, generally the more salient the
object is, the relatively more object “parts” will be captured
as the object adobes. Consequently, the higher adobe com-
pactness tends to be acquired. Hence, for the adobe boxes of
the same adobe compactness, larger Bw indicates the salient
characteristics from the more global perspective. Thus, the
Adobe Boxes with larger Bw should be emphasized. According
to this point, the adobe compactness based objectness measure
is defined as

O
(
Bp

)
= δ (|Bw|) ×

(
AC

(
Bp

))∗

= 1
1 − (log2|Bw|)∗ ×

(
AC

(
Bp

))∗
, (9)

where δ (|Bw|) is the weighting function that concerns to the
size of Bw (i.e., |Bw|),

(log2|Bw|)∗ = log2|Bw|
max {log2|Bw|} , (10)

and
(
AC

(
Bp

))∗ = AC
(
Bp

)

max
{
AC

(
Bp

)} , (11)

where max {log2|Bw|} and max
{
AC

(
Bp

)}
indicate the max-

imum value among all the log2|Bw| and AC
(
Bp

)
in each

image, respectively. The O(Bp) value that corresponds to
max {log2|Bw|} is set as the highest to avoid the infinitude
number computation issue. Indeed, O(Bp) is a monotonically
increasing function of |Bw|.

Using O
(
Bp

)
, the extracted Adobe Boxes will be ranked in

descending order. Then, Non-Maximal Suppression (NMS) is
executed to reduce the redundant object proposal boxes.

Fig. 8. Examples of Wr , Ws and Wi .

IV. INITIAL OBJECT PROPOSAL WINDOW GENERATION

As mentioned before, to extract the Adobe Box Bp , the
initial object proposal window Bw is required to coarsely
locate the object. In this section, we will explain how to
generate Bw. Actually, Bw can be acquired by different
ways, i.e., random sampling or using existing object proposal
approaches [7], [10], [12], [18]. In our experiments, we will
demonstrate that the yielded Adobe Boxes can improve the
performance for all of them.

Without loosing the generality, random sampling is
employed to illustrate the proposed Bw generation method.
In total, 2000 windows are randomly sampled from the whole
image uniformly. The obtained window set is denoted as Wr .
Since the randomly sampled windows tends to miss the small
objects, after the image segmentation procedure [14], the
bounding boxes that tightly surround the individual superpixels
or two neighboring superpixels are also considered. The result-
ing window set is indicated as Ws . Additionally, the whole
image window Wi is appended simultaneously. Fig. 8 shows
the examples of Wr , Ws and Wi . Consequently, the coarse
initial object proposal window set comprises of three parts as

Wc = Wr ∪ Ws ∪ Wi . (12)

Let B∗
w denote an arbitrary window in Wc. To help better

capture the object, B∗
w will be refined to obtain the initial

object proposal window Bw as follows. First, B∗
w is enlarged

by the ratio η under the image size limitation. Then, we
check the superpixels that partially locate within B∗

w. For the

superpixel s, if the condition
|s ∩ B∗

w|
|s| ≥ 0.9 is satisfied,

it indicates that s should be the internal superpixel of B∗
w.

Consequently, B∗
w is further adjusted to fully include s tightly.

After doing this for all the concerned superpixles, the resulting
B∗

w is finally regarded as Bw.

V. EXPERIMENTS

In experiments, following [7], [12] we focus on investigating
Adobe Boxes’ detection rate (DR) and time consumption to
demonstrate its effectiveness and efficiency. Specifically, the
well known PASCAL-overlap 0.5-criterion [7], [8], [10], [12]
is employed to measure DR. Following the evaluation principle
in [7], the DR-#WIN curve is used to reveal the relationship
between DR and the number of the proposals. For each test
dataset, the average processing time consumption per image
is also reported.
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Four challenging datasets (i.e., PASCAL VOC2007 [19]
PASCAL VOC2010 [20], PASCAL VOC2012 [21] and
ILSVRC2014 [22]) are employed for test. For VOC2007,
4952 images in the test set are chosen for performance evalu-
ation. Since the ground truth bounding boxes for the test sets
are not released by VOC2010, VOC2012 and ILSVRC2014
(classification+localization task with 1000 categories), the cor-
responding validation sets are used for test instead. In particu-
lar, 6323, 11400 and 49032 images are employed respectively.
The objects annotated as “difficult” are excluded from the test
sets by us. The test images are required to be no larger than
1024 × 1024, in all the cases.

Since most of the objects in the test datasets contain
more than 256 pixels, for superpixel generation [14] 128 is
empirically chosen as the minimum superpixel size. There are
also two other tunable parameters for extracting Adobe Boxes.
They are, the foreground percentage parameter ρ in Sec. III-A,
and the amplification parameter η in Sec. IV. They are set
to 25% and 1

4 respectively, during the whole phase of the
experiments. Adobe Boxes’ performance sensitivity to them
will also be investigated.

The experimental results are organized as follows.
In Sec. V-A, the performance of Adobe Boxes is tested
in the case that the initial proposal windows are gen-
erated via random sampling. The other state-of-the-art
object proposal approaches: BING [7], EdgeBoxes [12],
SEL [10], SEL-Fast [10], OBJ [18] and MTSE [23] will
also be included for comparison. Then, we will demonstrate
that Adobe Boxes can also leverage the performance of the
other object proposal methods as a refinement procedure,
in Sec. V-B.

For the practical applications, Sec. V-C gives the recommen-
dation on how to use Adobe Boxes. That is, refining BING
with Adobe Boxes can achieve the relatively good balance
between the performance and time consumption.

Adobe Boxes are mainly derived from the image seg-
mentation results [14]. GrabCut [36] is another well known
image segmentation method that is able to separate the objects
from the background well. In Sec. V-D, we will compare
the performance of Adobe Boxes with the object proposal
approach using GrabCut, from the perspectives of effectiveness
and efficiency simultaneously.

The performance of Adobe Boxes using multi-scale super-
pixel will be analyzed in Sec. V-E. In Sec. V-F, Adobe Boxes
will be further compared with the other methods using the
DR-overlap criteria. And, the parameter sensitivity is investi-
gated in Sec. V-G.

All the experiments are conducted on the same PC with
i7-4770 CPU and 32G RAM.

A. Adobe Boxes With the Randomly Sampled
Initial Proposal Windows

In this section, two kinds of experiments are conducted
to evaluate the performance of Adobe Boxes. First, Adobe
Boxes are extracted solely from the randomly sampled object
proposal windows to verify the performance enhancement
yielded by them. Next, the additional initial proposal window

Fig. 9. The DR-#WIN curves of the randomly sampled proposal windows
and Adobe Boxes on PASCAL VOC2007. Randomi and AdobeBoxesi indicate
the DR-#WIN curves of the randomly sampled proposal windows and Adobe
Boxes for the ith round, respectively.

TABLE I

THE AVERAGE DR (%) AND STANDARD DEVIATION (%) OF THE
RANDOMLY SAMPLED PROPOSAL WINDOWS AND ADOBE

BOXES, ON PASCAL VOC2007. THE RESULTS THAT
CORRESPOND TO THE FIRST 1, 10, 200 AND 1000
TOP SCORED PROPOSAL WINDOWS ARE LISTED,

RESPECTIVELY. STANDARD DEVIATIONS
ARE IN PARENTHESES

sets Ws and Wi are further appended as aforementioned in
Sec. IV. In this case, Adobe Boxes is fully running as an end-
to-end object proposal approach, and will be compared with
the other state-of-the-art object proposal approaches [7], [10],
[12], [18], [23].

In the first experimental setting, 2000 initial proposal win-
dows in all are randomly sampled per image for 5 rounds on
VOC2007. The DR-#WIN curves of the randomly sampled
proposal windows and Adobe Boxes are shown in Fig. 9,
corresponding to all the 5 rounds. To clearly depict the
DR-#WIN curves of the top scored proposals, the logarithmic
axes are used in Fig. 9(a). The average DR and standard
deviation of the 5-round test are also reported in Table I. From
them, we can observe that:

• Adobe Boxes can leverage the DR of the randomly sam-
pled proposal windows significantly. It is worth noting that,
using only 200 randomly sampled initial proposal windows,
Adobe Boxes can achieve DR near to 90%. These indeed
demonstrate the effectiveness of Adobe Boxes;

• For the 5-round test, the DR stand deviation of Adobe
Boxes is small. It means that Adobe Boxes can robustly work,
corresponding to the initial proposal windows generated in the
different conditions.

The second experimental setting is conducted on VOC2007,
VOC2010, VOC2012 and ILSVRC2014 simultaneously. The
DR-#WIN curves of Adobe Boxes and other methods are
shown in Fig. 10. And, the detailed results and average
time consumption per image are listed in Table II, Table III,
Table IV and Table V. It can be seen that:

• Even only using the randomly sampled initial proposal
windows, Adobe Boxes generally can achieve the comparable
or even better performance than the other methods;



FANG et al.: LOCATING OBJECT PROPOSALS USING OBJECT ADOBES 4123

Fig. 10. Comparison between Adobe Boxes with the randomly sampled
initial proposal windows and the other state-of-the-art methods on the four
test datasets.

• Adobe Boxes outperform most of the other methods when
the relatively small number (e.g., 200) of proposals are used.
This is an important property that implies that the objects can
be efficiently detected within a smaller searching space, using
Adobe Boxes;

• The average time consumption per image of Adobe Boxes
is around 48 ms, which nearly meets the real-time processing
requirement. BING is faster than our method. However, it is
inferior to Adobe Boxes on DR, in most of the cases.

B. Refining the Other Methods Using Adobe Boxes

Here, we will demonstrate that Adobe Boxes can also
refine the other methods [7], [10], [12], [18] by using their
object proposal results as the initial proposal windows. The
experiment is executed on PASCAL VOC2007. And, the
results are shown in Fig. 11 and Table VI. In particular,

TABLE II

THE DR (%) AND TIME CONSUMPTION (S) COMPARISON BETWEEN
ADOBE BOXES WITH THE RANDOMLY SAMPLED INITIAL

PROPOSAL WINDOWS AND THE OTHER METHODS,
ON VOC2007. THE APPROACHES WITH PARALLEL

PROCESSING ARE MARKED WITH ∗

TABLE III

THE DR (%) AND TIME CONSUMPTION (S) COMPARISON BETWEEN
ADOBE BOXES WITH THE RANDOMLY SAMPLED INITIAL

PROPOSAL WINDOWS AND THE OTHER METHODS,
ON VOC2010. THE APPROACHES WITH PARALLEL

PROCESSING ARE MARKED WITH ∗

TABLE IV

THE DR (%) AND TIME CONSUMPTION (S) COMPARISON BETWEEN
ADOBE BOXES WITH THE RANDOMLY SAMPLED INITIAL

PROPOSAL WINDOWS AND THE OTHER METHODS,
ON VOC2012. THE APPROACHES WITH PARALLEL

PROCESSING ARE MARKED WITH ∗

TABLE V

THE DR (%) AND TIME CONSUMPTION (S) COMPARISON BETWEEN
ADOBE BOXES WITH THE RANDOMLY SAMPLED INITIAL PROPOSAL

WINDOWS AND THE OTHER METHODS, ON ILSVRC2014.
THE APPROACHES WITH PARALLEL PROCESSING

ARE MARKED WITH ∗

the refined BING [7], EdgeBoxes [12], SEL [10] and OBJ [18]
are denoted as AdobeBoxesB, AdobeBoxesE , AdobeBoxesS
and AdobeBoxesO respectively. Another recently proposed
refinement approach named MTSE [23] is also included
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Fig. 11. DR-#WIN curve comparison between the object proposal
methods [7], [10], [12], [18] and the corresponding counterparts refined by
Adobe Boxes and MTSE on PASCAL VOC2007.

TABLE VI

DR (%) COMPARISON BETWEEN THE OBJECT PROPOSAL METHODS [7],
[10], [12], [18] AND THE CORRESPONDING COUNTERPARTS REFINED

BY ADOBE BOXES AND MTSE ON PASCAL VOC2007

for comparison. Its results on BING, EdgeBoxes, SEL and
OBJ are respectively denoted as MTSEB , MTSEE , MTSES
and MTSEO on counterpart. We can see that:

• Adobe Boxes can improve the performance of the other
approaches, almost in all the cases;

• With 200 object proposals, the DR of all the methods are
enhanced beyond 90% by Adobe Boxes.

• Adobe Boxes is consistently superior to MTSE. The rea-
son seems that, MTSE ranks the object proposals by imposing
randomness to the objectness score like SEL. Nevertheless,
this may not reduce the proposal redundancy effectively. Thus,
DR increases relatively slowly.

The results above indeed verify that, besides being an end-
to-end object proposal method, Adobe Boxes can also be
regarded as an effective refinement tool to leverage the other
methods’ performance.

C. Practical Application Recommendation

BING [7] possesses the ultra fast computational speed
(i.e. 300fps) for object proposal. Towards the practical

Fig. 12. DR-#WIN curve comparison between the proposed AdobeBoxesB+
and the other methods on the four test datasets.

applications, we recommend that refining BING with Adobe
Boxes is the feasible choice that can achieve good balance
between effectiveness and efficiency. Besides replacing the
initial proposal windows with BING’s results, we also modify
the objectness score computation method accordingly. That
is, since the objectness score yielded by BING already takes
the proposal window size into consideration, we substitute the
weighting factor δ(|Bw|) in Eqn. 9 with BING’s score for
the adobe compactness based objectness measure calculation.
The newly refined BING via Adobe Boxes is denoted as
AdobeBoxesB+. And, it is compared with the other methods on
PASCAL VOC2007, VOC2010, VOC2012 and ILSVRC2014.
The experimental results are shown in Fig. 12, Table VII,
Table VIII, Table IX and Table X respectively. We can see
that:

• In almost all the cases, AdobeBoxesB+ consistently out-
performs the other methods, especially with the relatively
small number of proposals (i.e., less than 200);
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TABLE VII

THE DR (%) AND TIME CONSUMPTION (S) COMPARISON BETWEEN
ADOBEBOXESB+ AND THE OTHER METHODS ON VOC2007.

THE APPROACHES IMPLEMENTED WITH PARALLEL
PROCESSING ARE MARKED WITH ∗

TABLE VIII

THE DR (%) AND TIME CONSUMPTION (S) COMPARISON BETWEEN
ADOBEBOXESB+ AND THE OTHER METHODS ON VOC2010.

THE APPROACHES IMPLEMENTED WITH PARALLEL
PROCESSING ARE MARKED WITH ∗

TABLE IX

THE DR (%) AND TIME CONSUMPTION (S) COMPARISON BETWEEN
ADOBEBOXESB+ AND THE OTHER METHODS ON VOC2012.

THE APPROACHES IMPLEMENTED WITH PARALLEL
PROCESSING ARE MARKED WITH ∗

TABLE X

THE DR (%) AND TIME CONSUMPTION (S) COMPARISON BETWEEN
ADOBEBOXESB+ AND THE OTHER METHODS ON ILSVRC2014.

THE APPROACHES IMPLEMENTED WITH PARALLEL
PROCESSING ARE MARKED WITH ∗

• Besides the DR advantage, AdobeBoxesB+ is also effi-
cient. The average time consumption per image around 48ms
nearly meets the real-time processing requirement.

According to the experimental results above, BING and
EdgeBoxes are the two main competitors of AdobeBoxesB+,
when considering effectiveness and efficiency simultaneously.
Fig. 13 gives some intuitive examples to further compare them.

Fig. 13. Intuitive comparison among AdobeBoxesB+ , BING and EdgeBoxes.
For each method, 100 proposals are used. The ground truth windows are
labelled as red, and the best proposals of IoU ≥ 0.5 with the ground truth
windows are labelled as green to indicate the available object proposals.
(a) GT. (b) Ours. (c) Edge Boxes. (d) Bing.

It can be observed that, AdobeBoxesB+ can capture the objects
better within the cluttered scenes. The reason seems that,
BING and EdgeBoxes heavily rely on the object’s holistic
edge information. However, parts of the object’s edge may
be suppressed by the other strong edges that do not belong
to the object. It indeed leads to detection loss with the top
windows, such as the cars in the second row and the riders
in the third row. While, AdobeBoxesB+ captures the objects
by using the local salient parts, without requiring knowing the
holistic object characteristics. Hence, it can alleviate the object
edge loss issue above to some degree.

D. Comparison With Object Proposal
Approach via GrabCut

To further demonstrate the effectiveness and efficiency of
Adobe Boxes, we compare it with another image segmen-
tation based object proposal approach via the well known
GrabCut method [36]. In particular, given the initial pro-
posal windows, GrabCut can separate the objects from the
background, instead of object adobes. Then, the bounding
boxes that tightly surround the extracted proto-objects are
regarded as the object proposals. Concerning to efficiency and
consistency, BING is employed to yield the initial proposal
windows. Since GrabCut is actually time consuming, the
more efficient GrabCut in one cut [37] is adopted here.
Unfortunately, it still costs about 77 seconds per image to yield
the object proposals. The corresponding GrabCut based object
proposal approach is denoted as GrabCutB. The comparison
between GrabCutB and our recommended AdobeBoxesB+ on
PASCAL VOC2007 is shown in Fig. 14. It is obviously that,
AdobeBoxesB+ consistently outperforms GrabCutB, running
much faster as well. The reason for why GrabCutB is inferior
to AdobeBoxesB+ seems that the objects may be truncated by
the initial proposal windows, which leads to the unsatisfactory
GrabCut segmentation results.

E. Adobe Boxes With Multi-Scale Superpixel

In the previous experiments, for Adobe Boxes the mini-
mum superpixel size is only set as 128. This may lead to
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Fig. 14. DR-#WIN curve comparison between AdobeBoxesB+ and
GrabCutB on VOC2007.

Fig. 15. Illustration of trade-off between DR and #WIN with the enhance
strategy. This figure is best viewed in color.

some information loss. In this subsection, we will investigate
whether Adobe Boxes’s performance can be further leveraged
by the using multi-scale superpixel. That is, the minimum
superpixel size will be set as 32, 64, 128 and 256 to generate
the proposals respectively. All the yielded proposals are con-
sidered simultaneously to generate Adobe Boxes using non-
maximal suppression. Here, AdobeBoxes and AdobeBoxesB+

using the multi-scale superpixel are termed as AdobeBoxesM S

and AdobeBoxesM S
B+ . The comparison results on PASCAL

VOC2007 are shown in Fig. 15 and Table XI. It can be
observed that:

• With the increment of proposal amount, Adobe Boxes
using the multi-scale superpixel tend to outperform the single-
scale superpixel version. In particular, with 5000 propos-
als AdobeBoxesM S and AdobeBoxesM S

B+ achieve the DR of
99.49% and 99.31%. The reason seems that, more small
objects can be captured by the multi-scale superpixel;

• Using the multi-scale superpixel, the time consumption
of AdobeBoxes is obviously increased. Thus, concerning
the balance between effectiveness and efficiency, single-scale
superpixel is preferred.

F. DR-Overlap Evaluation

In this section, we will estimate Adobe Boxes from the
perspective of DR-overlap curve. In particular, “overlap” indi-
cates the IoU threshold with the ground truth that judges
whether an object proposal is available. Fig. 16 shows the
DR-overlap curves of the different methods, corresponding to

TABLE XI

THE DR (%) AND TIME CONSUMPTION (S) COMPARISON BETWEEN
ADOBE BOXES WITH MULTI-SCALE SUPERPIXEL AND SINGLE-SCALE

SUPERPIXEL ON VOC2007. THE APPROACHES IMPLEMENTED
WITH PARALLEL PROCESSING ARE MARKED WITH ∗

Fig. 16. Comparison of recall-overlap curves with different methods
on VOC2007.

the top 1, 10, 50 and 200 scored proposals respectively, on
PASCAL VOC2007. It can be observed that:

• Using the standard PASCAL-overlap 0.5-criterion, Adobe
Boxes outperforms the other methods in most cases;

• With the increment of overlap threshold, SEL [10]
and EdgeBoxs [12] are generally performing better than
our method. The reason may be that, they employ several
additional procedures to refine the proposal results, such as
the complex superpixel merging [10] and elaborate integral
image [12]. On the other hand, much higher time consumption
is required by SEL and EdgeBoxs.

• MTSEB performs better than our method with 200 pro-
posals, since it sets five expansion thresholds to reduce the
localization bias. Nevertheless, multi-thresholding expansion
also yields proposal redundancy. This leads DR to increase
relatively slowly as analyzed in Sec. V-B.

The phenomenons above indicate that the performance of
Adobe Boxes still need to be enhanced, if the high overlap is
required by the applications.

G. Parameter Sensitivity Investigation

As aforementioned, the foreground percentage ρ in
Sec. III-A, and the amplification parameter η in Sec. IV
are two tunable parameters within Adobe Boxes. Here, the
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TABLE XII

PARAMETER SENSITIVITY INVESTIGATION ON η. STANDARD
DEVIATIONS (%) ARE LISTED IN PARENTHESES

TABLE XIII

PARAMETER SENSITIVITY INVESTIGATION ON ρ . STANDARD
DEVIATIONS (%) ARE LISTED IN PARENTHESES

performance sensitivity of Adobe Boxes to ρ and η will
be investigated. We set ρ ∈ {5%, 10%, . . . 50%} with stride
size 5%, and η ∈ { 1

2 , 1
3 , 1

4 , 1
5 , 1

6 }. The cross-over experimental
results are listed in Table XII and Table XIII. For each row in
Table XII, the value of η is fixed, and the mean and standard
deviation of DR that correspond the different values of ρ are
listed, vice versa for Table XIII. It is obviously that, for both
ρ and η, the standard deviation on DR is small in all the cases.
This demonstrates that Adobe Boxes are not sensitive to them.
And, ρ and η are empirically set to 25% and 1

4 .

VI. CONCLUSION

In this paper, we propose a new object proposal method
termed Adobe Boxes. Based on the local contrast analysis,
the object adobes are first extracted to capture the generic
object components. Then, adobe compactness is proposed as
a new objectness measurement to rank the object proposals.
Adobe Boxes can not only work as an end-to-end object
proposal approach using the randomly sampled initial proposal
windows, but also refine the proposals generated by existing
methods. The experimental results on four challenging datasets
demonstrate the effectiveness and efficiency of Adobe Boxes.
For example, Adobe Boxes generally achieves 90% DR with
nearly the half number of proposals required by other state-of-
the-arts approaches, being close to the real-time processing.
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