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Figure 1: Our method is able to track fingertip and detect finger tapping in real-time using an RGB-D camera, allowing us to develop a
virtual piano application. (a) Experiment setup with a DepthSenser 325 sensor. (b) Hand segmentation and fingertip tracking. (c) Hand
pose estimation by inverse kinematics. (d) Virtual piano application with tapping detection.

Abstract

This paper presents an efficient data-driven approach to track fin-
gertip and detect finger tapping for virtual piano using an RGB-D
camera. We collect 7200 depth images covering the most common
finger articulation for playing piano, and train a random regression
forest using depth context features of randomly sampled pixels in
training images. In the online tracking stage, we firstly segment the
hand from the plane in contact by fusing the information from both
color and depth images. Then we use the trained random forest
to estimate the 3D position of fingertips and wrist in each frame,
and predict finger tapping based on the estimated fingertip motion.
Finally, we build a kinematic chain and recover the articulation pa-
rameters for each finger. In contrast to the existing hand tracking
algorithms that often require hands are in the air and cannot interact
with physical objects, our method is designed for hand interaction
with planar objects, which is desired for the virtual piano applica-
tion. Using our prototype system, users can put their hands on a
desk, move them sideways and then tap fingers on the desk, like
playing a real piano. Preliminary results show that our method can
recognize most of the beginner’s piano-playing gestures in realtime
for soothing rhythms.
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1 Introduction

Recent years have witnessed rapid progress of hand pose tracking
and hand motion analysis using consumer depth sensors. State-of-
the-art techniques [Tagliasacchi et al. 2015][Sun et al. 2015] are
able to accurately track hand motion and handle intricate geomet-
ric configurations with complex contact patterns among fingers in
real-time. However, most of them require that hands are in the air
and cannot interact with physical objects. Such a requirement di-
minishes their utility for virtual instrument applications due to two
reasons: First, users can quickly get tired when hands are not sup-
ported by some physical object. Second, mid-air interactions do
not provide user any feedback, hence users may feel difficult to po-
sition their fingers and map them to the keys or strings of virtual
instrument.

This paper aims at developing a virtual piano application, which al-
lows users to put their hands on a desk, move them sideways and
then tap fingers on the desk, like playing a real piano. There are
two major technical challenges in this application. First, the system
must track the positions of fingertips and detect their status, i.e.,
whether a finger is tapping or not. Due to frequent interaction be-
tween fingers and desk, the existing hand tracking algorithms often
fail. Second, piano-playing gestures are usually fast and complex,
involving highly flexible hand articulation and causing severe hand
self-occlusion.

To tackle these challenges, we propose a virtual-piano tailored
method to track fingertip and detect finger tapping using an RGB-D
camera in real-time. We first collect a training dataset with 7200
RGB-D images, covering the most common finger articulation for
playing piano. After manually labelling the positions of seven hand
joints including five fingertips, thumb MCP joint and wrist center,
we train a random regression forest to predict them using depth
context features of spatial-voting pixels randomly sampled over the
training images. During online testing, we first predict the posi-
tions of the hand joints from raw RGB-D images with the trained
random forest. Then we use the trajectories of these joints to de-
tect and locate finger tapping using support vector machine (SVM)
classification. The virtual piano is registered onto the desk surface
using pre-detected normal vector and centroid of the desk surface.
Based on the locations of fingertips and the finger tapping status,
the system can hereby determine which piano key is pressed and
play the corresponding sound. Preliminary results show that our



method can recognize the basic piano-playing gestures in realtime
for soothing rhythms. Figure 1 illustrates our virtual piano appli-
cation with a DepthSenser 325 sensor on top of the desk and in
front of the user. We render the hand and the piano based on the
coordinates of the desk surface and the detected hand pose from the
RGB-D images.

2 Related Work

Hand pose tracking and analysis is a fundamental problem in com-
puter graphics and vision, and is central for many human-computer
interfaces. Early gesture recognition applications resort to the use
of data gloves or uniquely colored gloves/markers on hands or
fingers [Aristidou and Lasenby 2010]. In recent years there has
been a growing interest in non-invasive setup using a single com-
modity RGB-D sensor, such as Microsoft Kinect, Intel RealSense,
or purpose-designed hardware, e.g., the Leap Motion Controller.
Such single-camera acquisition does not impede user movements,
hereby is particularly advantageous to VR applications. This sec-
tion briefly reviews related work on hand pose tracking, finger ac-
tion recognition and virtual musical instrument.

2.1 Hand Pose Tracking

Algorithms for vision-based hand pose tracking can be broadly cat-
egorized as generative model-fitting methods and discriminative
methods. Each class of algorithms have their own merits and draw-
backs. The model-fitting methods [Melax et al. 2013][Tagliasacchi
et al. 2015] reconstruct hand poses by fitting a 3D articulated hand
model to depth images. These methods work well in controlled
environments, however, they usually require calibration and their
results are sensitive to initialization. The discriminative methods
require an annotated dataset to learn a regressor offline, and then
use it to predict the hand pose online. Such methods are robust to
initialization, but their accuracy heavily depends on the size of the
training dataset. Therefore, the dataset must be reasonably large to
cover the possible hand and finger articulations for a specific appli-
cation.

The state-of-the-art methods (e.g.,[Tang et al. 2013; Sun et al. 2015;
Xu and Cheng 2013]) require that the hand is in the air and not in-
teracting with other objects. The reason is that, hand motion itself
is of high degrees-of-freedom and thus requires lots of training data
to represent such flexibility. Thus, if the hand is interacting with un-
known objects, there will be more unpredictable complexity, e.g.,
hand self-occlusion and occlusion between object and hand, and
the large appearance variations of both the hand and interacting ob-
jects. These difficulties hinder researches in this area. There are
some previous work that can support hand interacting with objects,
but they either assume that the geometrical details of the object
is known so that object and hand can complement each other to
improve pose estimation [Oikonomidis et al. 2011] via the physi-
cal constraints between them or confine the feasible hand articula-
tions to be within a small set of templates [Rogez et al. 2014]. In
[Oikonomidis et al. 2011] the type and exact size of the interacting
object are assumed to be known in advance. The poses of the object
and hand are jointly solved in a generative model-fitting framework
using a multi-camera setting to reduce prediction ambiguity, which
maximizes the models’ compatibility to the image inputs and mini-
mizes the intersection between hand and objects to find their pose.
In [Rogez et al. 2014] the hand is allowed to interact with other
objects, such as bottles, desk surfaces, etc., and the hand pose is
predicted in a discriminative manner by training a multi-class cas-
cade classifier on a dataset that covers many interacting examples
between hand and objects. However, in their hand pose estimation
framework, the hand posture is only assumed to belong to a small

set of pre-defined templates. This is far from our need to play the
piano in the proposed application, in which we need to track the
accurate articulated fingertip positions and wrist positions, so that
the system can detect whether a finger tap is performed by the per-
former or not.

Among the discriminative methods, random regression forest and
its variants have proven effective to capture hand pose in depth im-
ages [Xu and Cheng 2013; Tang et al. 2013; Liang et al. 2015; Sun
et al. 2015]. In [Xu and Cheng 2013], it is used to regress for hand
joint angles directly. With a pre-trained forest, a set of voting pixels
cast their votes for each joint angle, which are fused into several
candidate hand poses. An extra model-matching stage is needed to
find the optimal pose. In [Tang et al. 2013] a transductive regres-
sion forest is proposed to alleviate the discrepancy between synthe-
sis and real-world data to improve prediction accuracy. In [Liang
et al. 2015] a multi-modal prediction fusion algorithm is proposed
to utilize hand motion constraints to resolve the ambiguous pose
predictions from random regression forest, so that infeasible hand
postures can be avoided. In [Sun et al. 2015], a hierarchical re-
gression scheme is built upon the regression forest for hand pose
estimation, in which the root joints of hand skeleton are predicted
first and other joints are predicted subsequently based on the root
joints, which proves to improve prediction accuracy largely. While
these methods work only for in-air hands, we propose to utilize the
regression forest for hand in interaction with planar objects.

2.2 Finger Action Recognition

To extract discriminative features and find effective learning mod-
els are the two key issues in every pattern recognition problem.
Actions are spatio-temporal patterns, which requires comprehen-
sive features gathering information from time domain as well as
space domain to define the problem. It’s generally known that ab-
solute 3D joints positions are helpful in detecting actions of human
body. Multi-camera motion capture (MoCap) systems[Campbell
and Bobick 1995] has been widely used to obtain accurate 3D joint
position of human body. Similar techniques include data glove
(http://www.5dt.com), which provides accurate tracking and haptic
feedback. Action recognition based on 3D joints positions retrieved
from such devices has been well-studied. There have been many
different temporal models in detecting human body actions. Lv
and Nevatia [2006] used Hidden Markov Model over pre-defined
relative positions obtained from the 3D joints. Han et al. [2010]
used conditional random field over 3D joint positions. For actions
with complex articulated structure, motions of individual joints are
sometimes correlated. Relative positions between joints can be
more discriminative features than the absolute position of individ-
ual joint [Zhu et al. 2008]. However, these techniques tracks human
body motion involving many intermediate joints, and the motions
are generally easily observant and has bigger differences in between
than finger motions. Besides, for tapping gesture, y coordinate,
namely moving direction of tapping finger, embeds more informa-
tion compared to the remaining two directions. Yi et al. [2015]
detected the falling edge of Y coordinate as a tap, and modified the
method in [Palshikar et al. 2009] to detect the peak value of changes
in Y coordinate. However, their techniques only consider the tap-
ping action as one instant motion instead of two separate actions:
up and down. Our approach makes use of the relative position of
pair-wise fingertip and individual joints motion trends as features
for tapping detection, and considers both up and down directions.

2.3 Virtual Musical Instruments

There are many research efforts to develop virtual and augmented
musical instruments in the past decades. Virtual reality and/or aug-
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Figure 2: Fingertip tracking and tapping detection for virtual piano playing.

mented reality techniques are utilized to increase instrument acces-
sibility, improve user’s psycho-pleasure and provide performance
guidance [Rogers et al. 2014][Dirkse 2009][Chow et al. 2013][Lin
and Liu 2006]. Broersen and Nijholt [2002] developed a virtual pi-
ano, which allows multi-agents to play and is useful for educational
purpose. However, it uses a real synthesizer or mouse/keyboard
as input device, making it non-intuitive to play. Other applica-
tions involve instrument-like gestural controllers, such as video
camera [Modler and Myatt 2008][Yeh et al. 2010], motion capture
[Nymoen et al. 2011], multi-touch device [Ren et al. 2012], data
glove [Mitchell et al. 2012], and more recently depth sensors.

Digito [Gillian and Paradiso 2012] is a gesturally controlled vir-
tual musical instrument which utilizes 3D depth sensor to recog-
nize hand gesture with machine learning algorithms and triggers
the note to be played by using a “tap” style gesture with the tip of
the index finger of the right hand. However, the user experience of
Digito is too much different from real playing piano with different
fingers. Some applications are developed using Leap Motion Con-
troller to construct virtual piano using 3D positioning of fingers to
detect the tapping [Heavers ], but in these applications user’s hands
are not allowed to interact with any object, which is unnatural and
uncomfortable for piano player. Han and Gold [2014] conducted
a detailed examination on Leap Motion as the tracking device and
algorithm for playing piano, which shows that although Leap Mo-
tion provide accurate tracking for free hand postures, when there
is no interaction of hand with any object, it’s difficult for player to
determine the position and height of the virtual keyboard without
prior practices. Our approach allows users to put their bare hand on
a planar object and tap on it, like playing on a real piano.

3 Overview

As discussed in Section 1, our goal is to predict both the motion
of the five fingers and the tapping action of each finger from the
input RGB-D image sequence to play the virtual piano. Let Φ =
{φk}Kk=1, K = 7, denote the seven joint positions of the hand
including five fingertips, thumb MCP joint and wrist center, and
L = {lk}5k=1, lk ∈ {0, 1} denote the tapping action of the five
fingers. lk = 1 means the kth finger tapping the desk and lk = 0
means no tapping. Let us also denote by I1:t the input RGB-D
sequence, where It = {Ict , Idt } are the tth RGB and depth images.
The problem of fingertip tracking and tapping detection can thus
be formulated as a joint regression and classification task, stated as
follows:

Φ∗1:t, L
∗
t = argmax

Φ1:t,Lt

P (Φ1:t, Lt|I1:t). (1)

Note that the action of finger tapping is highly correlated with the
hand joint motion, we thus propose to first infer the joint positions
from the RGB-D image inputs and then detect the finger tapping
based on the predicted 3D trajectories of the joints. Therefore, the

problem can be reformulated as:

Φ∗1:t, L
∗
t = argmax

Φ1:t,Lt

P (Φ1:t, Lt|I1:t)

= argmax
Φ1:t,Lt

P (Lt|Φ1:t, I1:t)P (Φ1:t|I1:t)

= argmax
Φ1:t,Lt

P (Lt|Φ1:t)P (Φ1:t|I1:t),

(2)

where we assume that finger tapping can be detected based on the
3D joints trajectories only. Therefore, the joint trajectories and the
finger tapping status can be estimated in a two-step manner. In the
first step, the optimal trajectories Φ∗1:t are estimated by maximizing
P (Φ1:t|I1:t), which can then be utilized to predict L∗t .

We develop a virtual piano application enabling fingertip tracking
and tapping gesture detection, which can let users play a virtual pi-
ano keyboard on any plane as a force feedback. We especially de-
sign the application for starter-level piano players, who start playing
with slow and simple practice songs. In such cases, the fingertip
motions can be accurately tracked, and tapping can be identified
relatively robustly based on hand joint trajectories only. Our appli-
cation is developed with DepthSenser 325 as the RGB-D sensor,
which consists of three components:

• Fingertip Tracking (see Sections 4 and 5) takes RGB-D im-
ages as inputs, extracts the hand from the reference plane, and
computes the positions of hand joints;

• Tapping Detection (see Section 6) converts five fingertip loca-
tions into global coordinate system, computes the height rel-
ative to the reference plane and the relative positions of each
pair-wise fingertip, and finally generates tapping event based
on the spatial-temporal features retrieved from motion trajec-
tory data.

• Rendering and Feedback takes the tapping event as input, trig-
gers virtual piano key event and sound system, and finally pro-
vides a visual and sound feedback to the user.

4 Hand Segmentation

To ensure high quality of hand pose estimation, the hand region
needs to be segmented accurately from the background in the depth
image. To find the hands, we perform per-pixel skin color detection
[Hammer and Beyerer 2013; Li and Kitani 2013]. However, the
detected skin mask is not always reliable and background pixels
can be misclassified into the hand region, as illustrated in Figure 3.
To improve the results, we propose to first fit a plane to the desk
surface using the RANSAC algorithm [Fischler and Bolles 1981]
in the depth image and then differentiate the points that do not fit
the plane as the hand region. However, as the hand occupies a large
portion of the foreground depth image, it introduces many outliers
for 3D plane fitting. This large number of outliers can affect the



RANSAC algorithm as it will need much more iterations to find the
best set of points that fit the plane. To address this problem, we find
the hand region in the depth image with the skin color detection
results, then use RANSAC to fit a plane with the remaining points.
Based on the detected plane, the hand can be better segmented in
depth images. In addition, we use the normal vector centered at the
desk as the origin of the coordinate to construct the virtual piano
for interaction.

The input RGB image is transformed into YCbCr space as it proves
more robust to illumination variation for skin detection. The Gaus-
sian Mixture Model is chosen to represent the distributions of skin
and non-skin pixels in the color space:

P (c|s) =
∑N

i=1
ρi,sN (µi,s, Ci,s), (3)

where c is a color value, s ∈ {1, 0} is the label of skin/non-skin
regions, N (µi,s, Ci,s) is a single Gaussian component with mean
µi,s and covariance Ci,s and ρi,s is the weight of each Gaussian
component. The parameters in (3) are estimated for both skin and
non-skin regions with the Expectation-Maximization algorithm us-
ing annotated skin mask training data. By assuming equal pri-
ors for the skin/non-skin regions, a pixel is classified as skin if
P (s = 1|c) = P (c|s = 1)/

∑
s∈{0,1} P (c|s) > 0.5. The de-

tected skin mask in RGB image is then mapped to the depth image
coordinates with camera calibration parameters, as shown in Figure
3 (d). The cropped hand region with this hand mask is illustrated
in 3 (e), which still contains many background pixels. Therefore,
we further utilize RANSAC based 3D plane fitting to remove such
pixels.

Let dc and vc denote the normal vector and center of the 3D plane,
and (, ) the dot product. Denote by U the set of pixels outside skin
mask in the depth image. We define an indicator function to check
whether a point v is an outlier of the plane or not:

I(v|dc,vc) =
{

1 if |(v − vc,dc)| ≤ δ
0 otherwise

. (4)

In our implementation we set δ = 1.2cm to achieve both robust-
ness to noisy depth measurement and accurate hand segmentation.
The plane can then be estimated by the RANSAC algorithm. More
accurate hand segmentation Uh is then obtained by finding the pix-
els that do not fit the plane well. We outline the plane fitting and
hand segmentation in pseudocodes in Algorithm 1.

Algorithm 1 RANSAC based Plane Fitting & Hand Segmentation

1: i = 1, Nmax = −∞;
2: while i ≤ Nit do
3: Randomly sample a set Ur of 3 points from U ;
4: Calculate the plane fitted to Ur:

d∗c ,v
∗
c = argmax

dc,vc

∑
vi∈Ur

|(vi − vc,dc)|2

5: Get the consensus set Uc = {v|I(v|d∗c ,v∗c ) = 1,v ∈ U};
6: if |Uc| > Nmax then
7: Calculate the plane fitted to Uc:

d∗c ,v
∗
c = argmax

dc,vc

∑
vi∈Uc

|(vi − vc,dc)|2

8: Nmax = |Uc|;
9: end if

10: end while
11: Uh = {v|(v − v∗c ,d

∗
c)| > δ};

5 Hand Pose Tracking

Once the hand is segmented, we can then use the random regression
forest [Girshick et al. 2011] to predict the 3D positions of the seven

Figure 3: Hand segmentation. (a) and (b): input RGB-D images;
(c) skin mask in RGB image; (d) skin mask mapped to depth image;
(e) hand segmentation without 3D plane fitting; (f) fitted 3D plane
and final hand segmentation.

joints of the hand. The regression forest is an ensemble of several
random regression trees, each of which consists of a number of split
nodes and leaf nodes. Each split node contains one split function
learnt from the training data to branch to the child node based on
the feature values of the descriptor of an input pixel i. Each leaf
node contains the distributions over the 3D relative offsets to the
joint positions, which are collected from the training samples.

Let us consider a forest with T trees. The depth context descriptor
is adopted as the feature for regression [Liang et al. 2015]. Let it
be D. To train the regression forest, a set of pixels are randomly
sampled from each training image, and each sample pixel i is as-
sociated with the ground truth offsets between its 3D position and
the seven joints, i.e., ∆ik, k = 1, ...,K. Each split node of the tree
has two child nodes and is associated with a learned split function
to determine which branch the test sample goes into. It takes the
following form:

Dm ≤ τ , (5)

where Dm is the mth dimension of the depth context descriptor,
and τ is a threshold to determine the branch to one of the child
nodes, i.e., the left child for Dm ≤ τ and right child otherwise.
To learn the split function at the split nodes, a set of candidate split
functions {ψ} are generated by sampling m and τ . The optimal
split function is selected based on the following metric according to
the pose annotation distribution of the training samples that reach
the node:

ψ∗ = argmax
ψ

H(A)−
∑

s∈{l,r}

|As(ψ)|
|A| H(As(ψ))

 , (6)

where A is the samples reaching the current node and Al and Ar
are the two subsets of A split by ψ. To regress for the hand pose,
the function H(A) is defined as the sum of variances of the offsets
to the seven joints among the samples in A to measure the pose
uncertainty.

At the leaf nodes, the regression models for the relative votes to the
seven joints are learned from the training samples. We define the
regression model as a single relative vote (∆k, wk) for each joint,
where ∆k represents the possible prediction of the relative offset
based on the relative offsets {∆ik} from the training samples, and
wk represents the confidence of the prediction. As in [Girshick
et al. 2011], they can be obtained by mode-seeking with the ground
truth offsets of the training samples reaching the leaf node.

In the testing phase, the trained forest is utilized to predict the hand
joint positions. Figure 4 illustrates the prediction pipeline for a
single joint, i.e., the middle fingertip, with one tree. First, a set



of voting pixels are sampled from the hand region Uh, and each
voting pixel i will recursively branch down the tree and reach one
leaf node in each regression tree in the forest based on its depth
context descriptor. Since the forest consists of T trees, each pixel
reaches in total T leaf nodes in the forest and thus retrieves T votes
{∆ijk, wijk}Tj=1 for a joint φk in total, where ∆ijk is the 3D rel-
ative offset between the 3D position of the pixel and the objective;
wijk is the weight of the vote. Given the 3D position vi of the
pixel i, the relative votes can be converted to the absolute votes
{vijk, wijk}Tj=1, where vijk = ∆ijk + vi. Similar to [Girshick
et al. 2011], we use the weighted Parzen density estimator with
Gaussian kernel to evaluate the single-frame posterior P (φk|I) for
each joint independently, and the overall posterior P (Φ|I) can thus
be formulated as:

P (Φ|I) =
K∏
k=1

P (φk|I)

=

K∏
k=1

 ∑
i∈Uh,j∈[1,...,T ]

wijkN (φk|vijk, δ2v)

, (7)

where we assume an isotropic variance δv in all three dimensions
for each joint in the Gaussian kernel. For single-frame prediction
we can assume a uniform prior for the hand pose Φ and thus the
likelihood function can be taken as P (It|Φt) ∝ P (Φt|It). We
utilize it to estimate Φ∗1:t in an iterative manner to approximate
the optimal solution for formula (2). That is, in each iteration the
optimal estimation Φ∗t for the current frame is predicted based on
the current image observation It and the past optimal estimation
Φ∗1:t−1. The task is formulated as:

Φ∗t = argmax
Φt

P (Φt,Φ
∗
1:t−1|I1:t)

= argmax
Φt

P (It|Φt)P (Φt|Φ∗t−1)P (Φ∗1:t−1|I1:t−1)

= argmax
Φt

P (It|Φt)P (Φt|Φ∗t−1),

(8)

where the state transition function P (Φt|Φ∗t−1) is defined as a
Gaussian distribution N (Φt|Φ∗t−1, C) with mean Φ∗t−1 and co-
variance matrix C. We take C as a block diagonal matrix. There-
fore, the above optimization problem can be solved for each hand
joint φk independently by combining (7) and (8):

φ∗k,t = argmax
φk,t

N (φk,t|φ∗k,t−1, Ck)
∑
i∈Uh,j

wijkN (φk,t|vijk, δ2v),

(9)
where Ck is a submatrix of C corresponding to joint k. Note that
the above formula is essentially sum of Gaussians, this problem can
thus be efficiently solved by the mean-shift algorithm [Comaniciu
and Meer 2002].

6 Finger Tapping Detection

With the hand joint positions estimated from previous sections, we
can detect the tapping event based on the motion trajectories of the
five fingertips. In most cases, a tapping action is only an instant
action when a finger moves down, reaches the local height mini-
mum and followed by moving up. In the case of playing piano, the
finger sometimes needs to stay at the plane for a period of time be-
fore moving up as a result of playing notes with different duration.
Therefore, in our application, we deal with two tapping events, i.e.,
tapping down and tapping up. A tapping down event will trigger
the press event of a piano key, while a tapping up event will trig-
ger the release event of a piano key. The sound duration of each

Figure 4: Hand pose prediction with the random forest. The red ar-
rows represent the votes of the relative offset pointing to the joint to
be predicted. The red circle in the left-bottom denoted the predicted
middle fingertip position.

key pressed is thus determined by the time difference between each
pair of tapping down and tapping up events.

For beginner’s level, single finger tapping is mostly performed in
practice. Therefore we trained 2 classifiers, namelyCdown andCup
to detect tapping down and tapping up separately, each of which has
6 classes including a non-action class and the tap-action classes for
the five fingers.

A tapping down event TDi is defined as the moment after the finger
i moves down and finally reaches the table plane at frame Fk, and
we label frameFk and its previous 3 frames inCdown as TDi. Sim-
ilarly, a tapping up event TUi happens when the finger i just leaves
the table plane at frame Fk, and we label frame Fk and its following
3 frames inCup as TUi. For the rest cases, we label the frame in the
classifier asNT . As tapping is an action over time, we need motion
data over a time period to define a tapping event. We thus define a
sliding window of size N , and use motion data from the previous
N − 1 frames and the current frame to determine whether the cur-
rent frame triggers a tapping event or not. Based on experiments,
we find the tapping down duration, when the fingertip moves down
from its local maximum height till it reaches the minimum, is about
200ms. Given the FPS for depth camera is about 20, the number of
frames over a typical tapping duration is 4-5, so we set window size
N = 5 empirically. As there exist correlated movements between
fingers, that one finger will passively move due to an active finger’s
movement, we need to consider the motion data from all fingertips
in order to identify the tapping event for active finger. In our system,
two sets of features are used for tapping event classification. First,
as hands have complex articulated structure, relationship between
joints has more information compared to individual ones. Based
on the table normal vector estimate, we compute the heights of all
fingertips toward the table plane by projecting the fingertip position
to the normal vector. Then we compute the relative heights for all
fingertips to each other. For any pair of heights of fingertipsHi and
Hj , we define Hij = Hi-Hj as the relative heights of finger j to
finger i. For all five fingers, there are in total 25 pairs of relative
heights. With a sliding window of size N , all relative heights pairs
over the last N frames are set as the first feature set. Then we com-
pute the mean, variance, interquartile, the slope of linear regression
and peak range [Yi et al. 2015] of the relative heights over last N



Figure 5: Finger tapping detection: heights relative to table plane
for all finger tips and action labelled

Figure 6: Finger tap detection: filtering region based on height
slope.

frames for all the fingertips. We combine the two sets of features
together and train 5 SVM classifiers. We classify all the frames into
tapping-down, tapping-up or non-tapping.

As moving up and down are common finger actions, it is highly
possible that during one tapping action, multiple frames are identi-
fied as tapping up or down events. The fluctuating tapping events
detected will result in an unpleasant sound effect in virtual piano
application. Therefore we further implemented a filter on actions
detected for each finger. Observed that 0 ∼ 2 frames before the tap-
ping down event moment have significant small values in slope es-
timated over that window as a result of fast moving down as shown
in Figure 6, we capture the local minimum value less than a thresh-
old Thresslopei in slope estimated and conduct a vote among the
last N frames: if number of the tapping down event TDi is de-
tected more than Thresvotei times for finger i in the N frames, we
treat the current frame as a tapping down event. Once we detect
a tapping down event for a finger, we set a flag indicating that the
finger is down now and only capture tapping up events in the next
few frames. If there is no tapping up event detected, we release the
key and search for the next tapping down event.

7 Experiments & Discussions

Experiment Setup. We implemented the fingertip tracking and
tapping detection algorithm in C++/OpenCV and rendered the vir-
tual piano using OpenGL. We adopted a DepthSenser 325 sensor
on top of the desk and in front of the user. The system was tested
on a PC with an Intel i7 3.3GHz CPU and 16GB RAM. It is worth
noting that the time cost to process one frame is only 20ms, which
is efficient enough for realtime tracking. After training for 20 min-

Table 1: Precision and recall for individual tapping down class.

Precision Recall
Thumb 88.99% 97.00%
Index 100.00% 95.00%
Middle 96.77% 90.00%
Ring 85.34% 99.00%
Pinky 100.00% 87.00%

utes, a user with little musical playground can play a simple adagio
melody with our virtual piano. See the accompanying video.

Training. To validate the effectiveness of the proposed hand pose
tracking algorithm, we collect a dataset of real-world hand images
consisting of around 7.2k depth images of two subjects perform-
ing various finger tapping postures to play the virtual piano. The
resolution of these images is 320 × 240. The subjects can either
put their hand over or on the desk. The hand poses collected cover
the most frequent gestures for playing piano in the view of depth
camera, and the poses are music score independent. In each of the
image we manually annotate the 3D positions of the seven joints of
the hand. In this experiment we set the number of trees in the for-
est to be 3. During training, we randomly sample 150 pixels from
each training image and generated 6000 candidate split functions to
learn the tree structure. The tree stops growing if its depth exceeds
20 or the node sample is less than 50. During testing, a number of
500 voting pixels are randomly sampled from the segmented hand
region to predict the hand joint positions.

To collect the training data set for tapping, we manually label sev-
eral sequences of RGB images, including over 100 taps for each
finger. We label the tapping down moment frame and its previous 3
frames as TD frames, and label the tapping up moment frame and
its following 3 frames as TU frames. The other frames are labeled
as non-tapping frames. These annotated data are then used to train
the SVM classifier for tap detection.

Performance. We perform 4-fold cross validation on this dataset to
evaluate the performance of the proposed method. The prediction
performance of a joint is evaluated in terms of the percentage of its
predictions that are within a distance of DT centimeters from the
ground truth in the test images. This metric is averaged for all the
seven joints to obtain the overall evaluation. To better understand
the performance of the method, we present the results for different
DT so that the distribution of the predictions over different inter-
vals of DT can be observed, as shown in Figure 7. The average
error between the ground truth hand joint positions and the pre-
dicted positions is 1.3cm. Figure 8 shows the hand pose prediction
results on some sample frames in the dataset. We can see that the
proposed method can accurately recover the positions of the hand
joints, when fingers are in the air and on the reference plane. In
contrast, the commercial products, such as Leap Motion, Intel Re-
alSense and SoftKinetic, are not able to detect the hand joints for
those cases. To test tapping detection algorithm, we ask 2 users to
perform 100 taps totally on each finger with around 1 second time
difference in between. We consider a tapping down and tapping up
event classified successfully if the finger which performed the ac-
tion is correctly identified within 0.3 second. The result of tapping
down detection is shown in Table 1.

Comparison. We compare our method with two state-of-the-art
techniques, a model-based algorithm [Tagliasacchi et al. 2015] and
Leap Motion Controller – the leading commercial product for hand
tracking. These methods are able to accurately track (multiple)
hands when they are in the air, however, they fail when hands are in-
teracting with physical objects. In contrast, our algorithm is specif-
ically designed for hand interaction with planar objects, hereby has



Figure 8: Exemplar frames of hand pose prediction. Rows 1 & 2: input RGB and depth images overlaid with predicted 7 hand joints. Row
3: reconstructed hand skeleton via applying inverse kinematic to the joints. Row 4: playing virtual piano. Zoom in to see the details.

Figure 7: Average hand pose prediction accuracy with different
DT .

better performance and accuracy in the virtual piano application.

Limitations. Although our method can track most of the begin-
ner’s piano-playing gestures for soothing rhythms in realtime, our
virtual piano has several limitations compared with playing real pi-
ano. (1) The proposed tracking algorithm is not quite robust to
hand-shape variations, e.g., the prediction accuracy drops when the
shape and/or size of player’s hand are significantly different from
the ones in the training dataset. (2) Thumb under is a common ges-
ture, where the thumb is brought under the hand in order to pass
the 3rd or 4th finger for playing the scale. Due to severe occlusion,
the depth sensor is not able to capture the thumb and our tracking
algorithm cannot detect it either. (3) Our current implementation
is not efficient and accurate enough to detect the tapping event in a
fast tempo. (4) Our method supports two-hand tracking. However,
due to the limited viewing volume of the DepthSenser 325 sensor,
users can only play with a single hand for about 2 octaves.

8 Conclusion & Future Work

This paper presented a virtual piano application that allows users
to play with bare hands on or near a planar surface. Taking the

RGB-D images as input, our method uses an offline trained ran-
dom regression forest to track the fingertips and detect the finger
tapping. Compared with the existing hand tracking algorithms, our
method is designed for hand interaction with planar objects. Pre-
liminary results show that our method can recognize most of the
beginner’s piano-playing gestures for soothing rhythms in realtime.
The system can be further integrated with head-mounted display,
such as Oculus Rift, to provide with user an immersive visual and
audial environment, which may further support remote learning and
gamification in musical instrument learning. In a broader sense, our
work provides a pipeline to solve hand integration with planar ob-
jects and a general solution to such type of application, which draws
the community’s attention to the limitation of current mid-air hand
tracking techniques.

In the future, we will expand the gesture database for intermedi-
ate and advanced players and improve the accuracy of our tracking
algorithm for allegro rhythms. To detect self-occluded gestures,
some graphical machine learning model will be applied to predict
occluded finger position and tapping moment with the help of do-
main knowledge. We will also develop a hand normalization algo-
rithm so that players whose hands are significantly different from
those of the training dataset can use our system. Moreover, we will
conduct a formal user study to evaluate the efficacy of the proposed
system.
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