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Abstract—In this paper, we propose a new method for de-
tecting primary objects in unconstrained videos in a completely
automatic setting. Here, we define the primary object in a video
as the object that presents saliently in most of the frames.
Unlike previous works only considering local saliency detection
or common pattern discovery, the proposed method integrates
the local visual/motion saliency extracted from each frame, global
appearance consistency throughout the video and spatio-temporal
smoothness constraint on object trajectories. We first identify
a temporal coherent salient region throughout the whole video
and then explicitly learn a discriminative model to represent the
global appearance of the primary object against the background
to distinguish the primary object from salient background. In
order to obtain high quality saliency estimations from both
appearance and motion cues, we propose a novel self-adaptive
saliency map fusion method by learning the reliability of saliency
maps from labelled data. As a whole, our method can robustly
localize and track primary objects in diverse video content,
and handle the challenges such as fast object and camera
motion, large scale and appearance variation, background clutter
and pose deformation. Moreover, compared to some existing
approaches which assume the object is present in all the frames,
our approach can naturally handle the case where the object is
only present in part of the frames, e.g. , the object enters the
scene in the middle of the video or leaves the scene before the
video ends. We also propose a new video dataset containing 51
videos for primary object detection with per-frame ground truth
labeling. Quantitative experiments on several challenging video
datasets demonstrate the superiority of our method compared to
the recent state of the arts.

Index Terms—primary object, automatic object detection,
saliency fusion, appearance model.

I. INTRODUCTION

W ITH the prevalence of on-line social video sharing,
considerable amounts of videos are being created and

processed every day. In many of those videos, there exists
a primary object that we want to focus our attention on,
e.g. , a child or a pet in a “homemade” personal video.
We define the primary object in a video sequence as the
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Fig. 1. Examples of primary object discovery. Each row corresponds to one
video and the red rectangle highlights the primary object.

object that presents saliently in most of the frames and some
examples are shown in Figure 1. In this paper we address the
problem of automatically discovering the primary objects in
videos, which is an essential step for many applications such
as advertisement design [36] and video summarization [20],
[44], [28]. Traditional video object detection and localization
methods, however, are either too category specific (e.g. ,
face[47] and pedestrian detection[13]) or heavily rely on
manual initialization (e.g. , object tracking [19] and interactive
object segmentation [18]). They are suitable for targeted object
detection that is tailored to users’ interests, but are too limited
for many multimedia applications that require automatically
processing large volumes of video data with diverse content.
Throughout the paper, we will also use the term “foreground
object” or simply “foreground” interchangeably with the term
“primary object”.

One way to automatically discover the primary objects is
by resorting to saliency detection [35], [23], as the primary
objects are usually distinctive either in appearance or in
motion compared to the background. Regarding to the three
different saliency levels introduced in [16], we are referring to
high level salient object detection instead of visual attention
modeling or pixel wise salient object segmentation. Although,
different image and motion saliency cues are explored and
combined [31], [54], [34], these methods simply combine the
appearance and motion saliency maps by weighted average
where the weights are empirically determined. As a result,
the final saliency map can be inevitably affected by the
noise in each single map. Moreover, primary object detection
is not equivalent to salient object detection. Besides being
locally salient, the primary object also needs to be common
throughout the video sequence, i.e. , present in most of the
frames. Saliency is only one of the cues to determine where the
primary object is but there are more factors to consider, such
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Fig. 2. Work flow of the proposed detection framework by example.

as temporal smoothness and appearance consistency across
frames. In some pure saliency-based detection framework [31],
little appearance information of the video object is captured,
which may cause the detection to drift from the primary
object to other salient objects or background regions. On
the other hand, in order to model the object appearance for
automatic primary object discovery, common visual pattern
mining methods have been investigated [43], [29], [58], [53],
[11], [50], and significant progress has been made. However,
these unsupervised pattern mining methods require the object
to appear frequently and have consistent appearances across
the whole video sequence such that its visual pattern can
be discovered. Their performance would degrade if the pri-
mary object appears with large visual variation due to the
illumination, scale and viewpoint variation, partial occlusion
and deformation. Moreover, the static background with rich
features may be more common than the primary objects and
treated as common object incorrectly.

In summary, pure saliency-based detection can easily drift
among different salient objects or include salient background
regions due to the lack of explicit appearance modeling.
Hence, in order to tackle this problem we propose to first
use local saliency cues to automatically produce some weakly
supervised information about the foreground object by con-
sidering the temporal consistency of the salient regions. This
weak information is then used to explicitly learn a foreground
appearance model against the background regions in an itera-
tive and discriminative manner. The evaluation results using a
newly proposed dataset, NTU-Adobe primary object discovery
dataset, and two other challenging video datasets, i.e. , the
10-video-clip dataset [15] and some selected categories in the
UCF sports action dataset [37], demonstrate the efficacy of our
method. We briefly introduce our method in the following.

Firstly, in order to obtain more accurate saliency estima-
tions, we fuse different types of saliency cues including ap-
pearance based image saliency, motion saliency and semantic
saliency. Instead of simply combining these different saliency
cues empirically, we propose a novel learning-based saliency
fusion technique, SVM-Fusion that can judge the quality of
each saliency map and determine its combination weight in
an adaptive manner. Then in order to find spatio-temporally

coherent salient regions, we formulate the problem into the
framework of max path search [46].

Secondly, in order to ensure appearance consistency in
the detection process and better distinguish the foreground
object against the background, we use the pure saliency-based
detections as weakly supervised information to explicitly learn
the foreground object appearance in an iterative manner. Then
the learned model is used to produce a much cleaner and
appearance-consistent foreground detection map, based on
which much better detection results can be obtained.

In summary, the target of our work is to automatically
discover and localize the primary object in a given video
sequence without any human interaction. The overall work
flow of the proposed method is shown in Figure 2. The major
contributions of this work are:

1) We propose a unified framework for automatic pri-
mary object detection and localization by exploring
the local saliency cues and explicitly modeling the
foreground/background appearance in a discriminative
manner.

2) We propose a novel learning based saliency map fu-
sion technique which can adaptively fuse appearance
and motion saliency maps to make use of their strong
complementation.

3) We propose a new multi-category video object dataset
for automatic primary object detection with per-frame
ground truth bounding box labeling, which will be
shared with the research community.

II. RELATED WORKS

In this section, we will review two important cues for visual
object discovery in the literature: visual saliency detection and
appearance models of visual objects.

Visual saliency has attracted wide attention of researchers
in different fields. As mentioned in the Introduction, we are
referring to the object level saliency estimation instead of
human eye fixations [16]. Many preliminary studies [5], [38],
[35], [23], [17] showed that several bottom-up factors (e.g.
, contrast in intensity, color or texture) are important for
image saliency detection. Later on, it was discovered that top-
down factors (e.g. , faces, cars, animals, and text) [25][41]
can be incorporated to complement bottom-up features and
obtain better image saliency results [59][33]. To detect the
salient regions in videos, motion information is further in-
corporated into the saliency model [27][54]. Recently, other
cues related to visual saliency have also been explored, e.g.
, prior knowledge [48][30][24], image segmentation results
[51][14], and sparse analysis [21]. More details about visual
saliency detection can be found in a recent evaluation study
[39]. Combining appearance and motion saliency cues has
also been explored in the literature. The primary motivation
is to leverage their strong complementation to produce high
quality spatio-temporal saliency map. These methods can be
divided into three categories based on their adaptability. The
first category of methods uses predefined fusion functions such
as mean, multiplication and maximization[34]. The second
category of methods uses some empirical measures, e.g. ,
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spatial variance[12] or motion variance [54], to assess the
quality of each saliency map and combine them based on the
quality measure. The last type of methods uses learning based
approach to learn the fusion process such as [39] and [32].
However, [39] works on human fixation estimations and [32]
only adapts to each saliency estimation method, i.e. , which
method is good or bad in general instead of which method is
good or bad for a particular image. The more adaptive version
of [32] heavily relies on the training data even during testing.
In contrast, our proposed method is dedicated to fuse object
level appearance and motion saliency. It is very fast, does
not require training data during testing and can be seamlessly
applied to any new object level saliency estimation techniques.
Besides visual saliency cues, visual pattern mining research
has shown that the object’s appearance also provides essential
information for object discovery [29][53]. Probabilistic topic
models were used to model the appearance of visual objects.
Russell et al. [42] discovered the visual object categories from
image collections using Latent Dirichlet Allocation (LDA) [4].
Liu et al. [28] and Zhao et al. [57] employed a LDA model
to discover the visual objects from videos.

The primary object discovery problem is also related to the
automatic foreground object segmentation in image collections
and videos [55][7]. Batra et al. [3] proposed a method
to interactively co-segment the foreground objects from a
group of related images. Li et al. [26] proposed to discover
co-salient objects from a group of images by fusing the
intra-image saliency map and the inter-image saliency map.
Papazoglou and Ferrari [40] estimated the foreground by
motion boundary detection and used two Gaussian mixtures
to model the appearance of foreground and background for
video object segmentation. In [56], object proposals are first
generated, and a layered Directed Acyclic Graph is constructed
to automatically discover and segment the primary object.

III. VIDEO SALIENCY DETECTION

As discussed in the related work section, visual saliency
has been extensively studied in the literature. For the primary
object discovery problem, however, any single saliency cue
cannot provide robust detections due to the diversity of video
content. For example, motion saliency cues are more suitable
for the case where the foreground object moves differently
from the background, while image saliency cues are more
suitable when the foreground object is visually very different
from the background. Moreover, current techniques in visual
saliency estimation are not always perfect and may produce
noisy and incorrect saliency maps. As each type of saliency
map only works for specific cases in identifying the primary
object, the incorporation of different saliency cues is essential
for robust object discovery. In this section, we first introduce
the individual saliency cues employed in our work, i.e. , static
image saliency, motion saliency and semantic saliency. The
fusion of saliency maps is subsequently described.

A. Saliency Cue Estimation

1) Image Saliency: Static image saliency is computed in-
dividually for each video frame. Image saliency generally

emphasizes local regions with distinct textures and colors com-
pared to the rest of the image. In this work, we use two state-
of-the-art image saliency measures: the PCA Image Saliency
proposed in [35] and the Absorbed Markov Chain Image
Saliency proposed in [23]. The PCA Image Saliency detects the
saliency of each image patch in a sliding window manner by
considering the global contrast of the local color and pattern,
while the Absorbed Markov Chain Image Saliency detects
the saliency of each superpixel as its absorbing time in an
Absorbed Markov Chain. These two methods can complement
each other as they use different underlying techniques. Other
image saliency measures such as [9] and [17] can certainly be
applied as well. Examples of these two types of saliency maps
are shown in the second and third row of Figure 7, respectively.

2) Motion Saliency: Similar to the static image saliency,
we measure the motion saliency as distinct motion patterns
based on dense optical flow. Two types of motion saliency are
used in this work. The first one is computed as the magnitude
of the “ω-flow” [22]. “ω-flow” emphasizes local motion by
compensating the global motion from the original dense flow
field. Similar to [22], the global motion here is estimated as a
6-parameter affine model using the Motion2D software1 which
is robust to complicated global motions like camera zooming
or rotation. However, it is sensitive to the global motion model
estimation. If the global motion is wrongly estimated, the
obtained saliency map will be totally corrupted (an example
is shown in the fifth row and the fifth column of Figure 7).
Hence, we use a second type of motion saliency based on
global motion contrast. We use a simple but effective voting
based approach to estimate this global motion contrast: we use
each pixel’s flow vector to vote in the quantized x-y parameter
space and then take the logarithm of the reciprocal of each
cell’s voting score as the global motion contrast score of those
pixels voting in that cell. Mathematically, the global motion
contrast saliency map of an image can be expressed as:

GCS(x, y) = V (f(x, y))

V (u, v) = log(
1

|P (u, v)|
)

P (u, v) = {(x, y) | f(x, y) = (u, v)}

(1)

where GCS(x, y) is the global motion contrast saliency score
at pixel location (x, y), f(x, y) gives the quantized bin of pixel
(x, y)’s optical flow, V (u, v) is the saliency score of bin (u, v)
on the quantized optical flow space, P (u, v) is the collection of
pixels whose optical flow values are quantized to bin (u, v) and
|P | is the cardinality of set P . Median and Gaussian filtering
are applied afterwards to both types of motion saliency maps
for abrupt noise rejection and smoothing. Examples of these
two types of saliency maps are shown at the fourth and fifth
row of Figure 7, respectively.

3) Semantic Saliency: In order to model object-level
saliency, we use two types of higher level semantically mean-
ingful priors, face and human body. Other semantical priors
can also be added. Each prior will produce a separate saliency
map for each frame. Viola-Jones face detector [47] is used to
detect faces and the Latent SVM object detector [13] with

1http://www.irisa.fr/vista/Motion2D
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the human body model trained on the VOC 2007 dataset2

is used to detect human bodies. Since both detectors give
bounding boxes as detection results, we use a Butterworth
filter like smoothing function to re-weight the boxes to obtain
a smoother saliency map. We also perform a median filter
like approach to filter the bounding box detections along the
temporal axis to suppress the false detections without neighbor
support and recover missed detections with strong neighbor
support. Examples of these two types of saliency maps are
shown in the sixth and seventh row of Figure 7, respectively.

Finally, all saliency maps are normalized linearly to range
between 0 and 1.

B. Saliency Fusion

Although we have obtained 6 types of saliency maps per
video frame, using more than a single map does not neces-
sarily produce better results unless we have a proper fusion
technique. For example, if averaging is used, the overall map
quality can be significantly affected by even a single corrupted
map. On the other hand, if we can selectively reject or assign a
lower weight to those corrupted maps and only use or mainly
focus on the good ones, we will then have a higher chance
to obtain more robust saliency estimation. This is most useful
when the input maps can complement each other such as the
appearance and motion saliency maps. Hence, we propose a
novel SVM −Fusion technique which can adaptively judge
the quality of each saliency map and determine its combination
weight. In the following, we first discuss an experiment in
Section III-B1 to demonstrate the potential performance gain
achievable through adaptive maps fusion, which is also our
initial motivation to propose the SVM-Fusion technique. We
then elaborate the fusion technique and two post-processing
steps in detail in Section (III-B2) and (III-B3), respectively.

1) Best Fusion Weight: We have explicitly conducted an
experiment to explore the potential performance improvement
achievable with a proper map fusion technique by fusing the
maps linearly using the “best” possible weights. The “best”
weights are computed as follows.

Let’s first denote our 6 different types of saliency maps
as {Si : 1 ≤ i ≤ 6}. The ground truth saliency map, G, is
computed by filling the labeled bounding box with 1 and the
rest with 0. We then formulate the computation of the best
weights of each saliency map as the following least square
optimization problem with linear constraints:

w∗ = arg min
w

‖Aw − b‖2

s.t.
∑
i

wi = 1, wi > 0,
(2)

where A is a matrix of 6 columns and the ith column of A
is the vectorized version of Si, w is a 6 × 1 column vector
where wi is the combination weight of map Si and b is the
vectorized version of G. The objective function requires the
combined map to be as close as possible to the ground truth
map and the two linear constraints require the weights to be
non-negative and sum up to 1. Certainly such “best” weights

2http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/

can be hardly achieved without knowing the ground truth, but
its superior performance compared to the individual saliency
maps before fusion, as shown in Table I and III, motivates us
to seek a good fusion approach which does not require the
ground truth to estimate the fusion weights.

2) SVM-Fusion: To automatically measure the saliency
map quality, a Support Vector Machine is trained and used to
predict the quality of each saliency map. We design 13 features
to represent each saliency map and collect training samples
from an independent video dataset based on the bounding box
annotations on the primary object.

Based on our observation, a good saliency map will have the
majority of its saliency scores concentrated on the foreground
object region and thus exhibits a compact distribution, while a
bad saliency map will have most of its saliency scores spread
all over the frame. Hence, in order to reflect the quality of
a saliency map, we extract the following features from each
saliency map: (1) Distribution Measure of Saliency Value (4
features): this includes the mean, variance, skewness and kur-
tosis of the saliency scores on each map. (2) Spatial Pyramid
Entropy (4 features): we first partition the saliency map into
N regular grids, e.g. , N = 256 for a 16 × 16 partition. In
the following, we use the term “saliency energy” to denote
the summation of the saliency scores inside a grid/region. The
set of saliency energy {si} of all the grids in each partition
is normalized to be a discrete probability distribution and the
entropy is computed as E = −

∑N
k=1

sk∑N
p=1 sp

log sk∑N
p=1 sp

.
Essentially, this value will be low when most of the saliency
scores are concentrated at a few grids and vice versa. In our
experiment, we use four different partition levels to form the
spatial pyramid, i.e. , 8 × 8, 16 × 16, 24 × 24 and 32 × 32,
and each level contributes one feature. (3) Spatial Variance (2
features): we use the concept of spatial variance from [10],
[12]. It measures the variance of a distribution in which the
random variable is the spatial location of each pixel and the
probability is in proportional to its saliency score. We measure
the spatial variance along the vertical and horizontal directions
separately as two features. A small spatial variance implies
that most of the saliency scores are concentrated at a compact
region on the map. (4) Inter-Map Coherence (3 features): this
set of features aims to measure the coherency among different
saliency maps. For each map, we first threshold the saliency
scores to obtain a binary map in which ‘1’ represents salient
region and ‘0’ represents background region. We then compute
the percentage of the salient region on a map that are also
salient on each of the other maps and take the maximum value
as its inter-map support. We use three different values from
high to low to threshold the saliency map and obtain three
inter-map support features for each map. In total, a feature
vector of 13 dimensions is used to characterize each saliency
map.

In order to have enough training samples and avoid over-
fitting, we have collected a separate training dataset composed
of 24 video clips with manually labeled ground truth bounding
boxes on the foreground objects. This dataset is completely
independent with those used in experiments. We simply use it
to train the fusion model and the trained model will be fixed
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Fig. 3. Some selected saliency map training samples: the first row shows some
negative training samples (saliency maps with low quality) and the second row
shows some positive training samples (saliency maps with high quality).

throughout all the experiments. Each training sample {xi, yi}
corresponds to an actual saliency map Si where xi is the 13
dimensional feature vector extracted from Si and yi is the
binary label indicating the quality of Si. The value of yi is
determined by the percentage of Si’s saliency energy inside
the ground truth bounding box with respect to the saliency
energy of the whole map, i.e. , zi = Trace(Si

TGi)
1TSi1 where Gi is

the ground truth saliency map corresponding to Si which is
obtained by filling its ground truth bounding box with 1 and
the rest with 0. We then set yi = +1 if zi ≥ 0.8, yi = −1 if
zi ≤ 0.2 and discard the rest. In total, we have collected 2078
positive samples and 1982 negative samples. See Figure 3 for
some examples.

To predict the quality of a given saliency map, a support
vector machine with RBF kernel is trained on the training
samples and the parameters are selected by cross validation.
We observe that our cross validation accuracy is about 97%
which implies that the 13 dimensional features can well reflect
the quality of the saliency map. We then use the learned SVM
model to predict the quality of a given saliency map. Since
the raw decision value d is unbounded, we use the probability
estimates [6] as the combination weight, e.g. a saliency map
with 90% probability of being a good map will have weight
0.9. Note that we only use the SVM model to predict the
combination weights of the four images and motion saliency
maps. The weights of the two semantic saliency maps are
always set to 1 because they are indeed smoothed bounding
boxes and always exhibit very compact distributions. Some
examples of the combined maps using this learned weight are
shown at the last row of Figure 7, which is significantly better
than averaging. Another advantage of the proposed method is
that it is very fast and convenient to use as only the trained
SVM model is required during testing and the trained model is
applicable to any new saliency estimation techniques without
retraining.

3) Post processing: In general, high quality motion saliency
cues are more reliable than image saliency cues in videos
as it is more robust to cluttered background [54]. This is
because, in an automatic setting without initialization, regions
moving together is more likely to correspond to an object
than regions with uniform appearance. Hence, we empirically
emphasize motion cue by suppressing the weights of the two
image saliency cues when the former is of good quality. More
specifically, if we use wp, wa, wg and wω to denote the weights

Fused
Maps

Warped 
Maps

Frame 92 Frame 94 Frame 105 Frame 106 Frame 116

Frames

Fig. 4. An example showing how map warping recovers missed saliency
detections. The top row is the original frames, the second row is the fused
saliency maps and the third row is the warped saliency maps.

of PCA Image Saliency, AMC Image saliency, GC Motion
Saliency and ω Motion Saliency, respectively, this nonlinear
adjustment can be expressed as:

(wp, wa, wg, wω) :=

{
(0, 0, wg, wω), wg or wω > η

(wp, wa, wg, wω), otherwise
(3)

where η is a threshold (set to 0.8 in the experiment) to
determine whether the quality of motion saliency is good
enough. The saliency maps are then fused linearly using the
adjusted weights and normalized to range from 0 to 1.

Temporal warping is also applied to the fused saliency
maps based on the optical flow directions to further enforce
the temporal consistency of the fused saliency maps. Similar
to [40], we apply both forward and backward warping. The
forward warping is formulated as:

Sf := wfSf + τwf−1Sf,f−1 (4)

where Sf is the saliency map of frame f and Sf,f−1 is the
warped saliency map from frame f − 1 to frame f , wf is
the SVM-Fusion quality measure on Sf and τ is a positive
decay weight smaller than one. Note that the warping is done
sequentially from the first frame to the last frame and the
warped version of Sf−1 is used to update Sf . This means
that we have implicitly used all the previous frames before
Sf while updating it. Similarly, the backward warping is
formulated as

Sf := wfSf + τwf+1Sf+1,f (5)

and is performed from the last frame to the first frame.
These two warping processes are performed separately and the
resultant maps are averaged to give the final warped saliency
map.

This temporal warping process is very useful in our ex-
periment. It can effectively reject noise and recover missed
detections by considering its neighbor frames. Figure 4 shows
an example in which the warping process successfully recovers
the missed saliency detections. However, in rare cases where
many adjacent frames are corrupted by consistent noise, this
warping process will also propagate this noise to nearby
frames.

IV. PRIMARY OBJECT DISCOVERY BY MAX PATH SEARCH

After we have obtained the fused saliency maps for all
the frames, each video is now represented as a collection of
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saliency maps, V = {Si} where Si denotes the saliency map
of the ith frame, and in the following sections we will use
S(t, x, y) to denote the saliency score at pixel location (x, y)
on frame t. The fused saliency maps, even when correctly
highlighting the primary object, may still contain other salient
objects or salient background regions. Therefore, we employ
the max path search algorithm [46] to detect temporally
consistent salient regions for our primary object detection. The
detection result is in the form of a spatial temporal path where
each node corresponds to a bounding box on a frame. In the
following sections, we will first give an overview of the max
path search algorithm and then discuss how we formulate our
detection problem in the max path search framework.

A. Overview of Max Path Search

Max path search algorithm [46] is an optimal path discovery
technique that searches for a global optimal spatio-temporal
path in the 3D volume or trellis. Suppose we have a 3D spatio-
temporal volume G composed of a set of nodes, ni ∈ G,
indexed by its location (xi, yi) and time, ti. A path p in G is
defined as a temporal sequence of nodes, p = {n1, n2, ..., nm},
which satisfies the path connectivity constraints between ad-
jacent nodes. For example, a temporal adjacent connectivity
constraint can be expressed as ti+1 = ti + 1 and a spa-
tial 8-neighbor connectivity constraints can be expressed as
xi − 1 ≤ xi+1 ≤ xi + 1, yi − 1 ≤ yi+1 ≤ yi + 1. Each ni
has an associated score si and we define the overall score of
a path p, M(p), as the accumulated scores of all its nodes:

M(p) =

N(p)∑
i=1

si, (6)

where N(p) is the length of path p. The max path search
algorithm can then be used to find the global optimal path
p∗ (with highest path score) in linear time complexity, i.e. ,
O(whn) where w, h and n denote the width, height and length
of the spatio-temporal volume, respectively:

p∗ = arg max
p∈path(G)

M(p), (7)

where path(G) denotes the set of all possible paths in G. The
detailed description of the algorithm and proof of the global
optimality and time complexity can be found in [46].

B. Salient Path Discovery via Max Path Search

Since our saliency map assigns per pixel saliency score, it
is natural to treat each pixel as a node. However, our detection
requires finding a path representing a spatio-temporal volume
instead of a spatio-temporal trajectory. Hence we want each
node on the path to correspond to a bounding box instead of
a pixel. We adapt a similar approach to [46] where each node
still corresponds to a pixel location but the score of the node
is the saliency energy of a window centered at that pixel. We
now use Ωp,n to denote the nth node of path p and its score
can be expressed as

sp,n =

i=bp,n∑
i=tp,n

j=rp,n∑
j=lp,n

S(kp,n, i, j), (8)

where bp,n, tp,n, lp,n and rp,n denotes the bottom, top, left and
right coordinates of the bounding box corresponding to node
Ωp,n and kp,n denotes the frame in which node Ωp,n resides.
In order to support scale variations in our detection, each pixel
location can correspond to more than one node differed by the
window size. The window size can be represented as two extra
parameters, scale and aspect ratio, which can be embedded
into the original 3D spatio-temporal trellis. For example, if
we allow s different scales and a different aspect ratios in
the detection, the original w×h×t 3D trellis will become a
w×h×t×s×a 5D trellis. Similarly, we can add connectivity
constraints to these new dimensions, e.g. , a connectivity
constraint requiring the two immediately connected nodes to
have the same or adjacent scale and aspect ratio levels can be
expressed as si−1 ≤ si+1 ≤ si+1 and ai−1 ≤ ai+1 ≤ ai+1,
where si and ai denote the scale and aspect ratio levels of node
ni, respectively. Mathematically, our object discovery problem
can be formulated as the following optimization problem
which can be solved by the max path search:

p∗ = arg max
p∈path(G)

N(p)∑
n=1

sp,n. (9)

In addition, due to the score summation operation in the
node and path score computation, the saliency score must
be discriminative, e.g. , positive score means salient region
and negative score means non-salient region. Otherwise the
optimal path will always span from the first frame to the
last frame and each node will correspond to the maximum
possible bounding box. Hence, we subtract a small positive
offset, γ, from the original saliency score such that both the
path and bounding box can exclude non-salient regions. We
will evaluate the selection of this small positive number in the
experimental section.

V. ITERATIVE FOREGROUND MODELLING

Although our max path search over fused saliency maps
can apparently improve several baseline approaches as shown
in the experiment, it still lacks an explicit appearance model
among the nodes on a path. As a result, this can cause the
detected path to drift from the primary object to other salient
objects or salient background regions. In other words, the
pure saliency-based detection framework can only identify if
region A and region B are salient but is not able to identify
whether salient region A and salient region B correspond to
the same salient object. An appearance model to enforce the
inter-node consistency would largely alleviate this problem.
In this section, we will discuss how we explicitly model
the appearance of the foreground object using the initially
discovered salient path. In short, we use the initial foreground
and background detections based on the discovered salient
path as weakly supervised information to iteratively learn the
foreground and background appearance model.

We first represent each video sequence as a collection of
superpixels, T = {pi} and the saliency score of the ith

superpixel, si, is defined as the average saliency value of its
enclosing pixels. Three types of features are used to describe
each superpixel, i.e. , dilated dense SIFT histogram, dilated
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Fig. 5. Comparison between the saliency maps and the foreground maps for
several frames of an example video clip. In this video clip, the primary object
is the aerial vehicle which enters the scene at frame 31.

texton histogram and mean color in the RGB space. These
features have also been shown to be very useful in image
parsing [45]. The total feature vector dimension is 203 as
100 visual words are used for both the dilated dense SIFT
histogram and dilated texton histogram. Note that we don’t
use the color histogram and color thumbnail features as in
[45] because the size of our superpixel is quite small and its
color is very uniform. In the following, we use fi to denote
the feature vector of the ith superpixel.

To explicitly model the appearance of the foreground object,
we iteratively train a linear SVM classifier which treats the
background superpixels as negative samples and foreground
superpixels as positive samples. At the first iteration, we
select the foreground and background superpixels based on
the fused saliency map and the discovered salient path. A
superpixel will be selected as a positive training sample if it is
completely inside the salient path and its saliency score is high
enough while a superpixel will be selected as negative training
sample if it is completely outside the salient path. Then a
linear SVM is trained and used to assign each superpixel,
pi, a probability of being foreground, qi. Subsequently, the
positive and negative training samples are reselected for the
next iteration based on this probability. The iteration will
stop when the training samples in adjacent iterations does not
change much, i.e. , more than 99.5% of the training samples
are the same. This whole process is summarized in Algorithm
1 and we will discuss the selection of the involved parameters
in the experimental section. The final foreground probability
estimate, qi of each superpixel, si is then used to vote a pixel-
wise foreground map.

Although some related appearance modeling techniques
have been explored in videos and images (collections) such as
[8], [40], [18], our method has some unique properties: (1) it is
fully automatic and does not require any human interventions;
(2) it is a global model for the entire video; (3) it integrates
the foreground and background appearance in a single unified
discriminative model. A global model allows information
sharing between distant frames and a discriminative model
can better differentiate the foreground against background.
This is especially helpful for videos because many frames
share common background and the relative position of the
foreground object usually changes in the background across
frames, i.e. cover different portions of the background. An
example is shown in Figure 5 where the primary object only
enters the scene after frame 31. The pure saliency-based
detection will also include the salient regions around the

Algorithm 1 Iterative Foreground Modelling
1: Input: salient path P , the collection of superpixles T =
{pi} and their corresponding saliency score {si} and
feature vector {fi},

2: Parameters: θs is the threshold to select salient superpix-
els before the first iteration, θu and θl are the thresholds
to select foreground and background superpixels, respec-
tively in the following iterations

3: Output: foreground probability estimate, {qi}, of each
superpixel.

4: F = B = ∅
5: for each pi ∈ T do
6: if pi /∈ P then
7: B = B ∪ fi
8: else if si > θs then
9: F = F ∪ fi

10: end if
11: end for

12: while true do
13: M = TrainLinearSvm(F ,B)
14: for each pi ∈ T do
15: qi = PredictLinearSvm(M, fi)
16: end for

17: F = B = ∅
18: for each pi ∈ T do
19: if qi > θu then
20: F = F ∪ fi
21: else if qi < θl then
22: B = B ∪ fi
23: end if
24: end for
25: if B and F do not change then
26: break
27: end if
28: end while

trees in the beginning frames as shown in the second row.
However, these tree regions can be successfully suppressed
in our foreground modeling process because of the negative
(background) training samples selected around the tree regions
in the later frames where the detections are correct. The
foreground maps in the later frames after the object enters the
scene also look cleaner compared to the saliency map. Last
but not least, thanks to the efficient implementation of linear
SVM with bag of words like sparse features, the modeling
process is very efficient as shown in Table VI even with large
training sizes, i.e. , thousands of superpixels per frame.

After obtaining the foreground maps F , the max path search
is run to produce the final detection result. In addition, we also
convolve the detected path by a median and mean filter along
the temporal axis to get a smoother detection.
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VI. EXPERIMENTS

We have evaluated the performance of the proposed detec-
tion framework on the NTU-Adobe dataset and some existing
benchmark datasets, i.e. , the 10-video-clip dataset and some
selected categories from the UCF Sports Action dataset. We
first introduce the employed evaluation metrics in Section
(VI-A) and the new NTU-Adobe dataset in Section (VI-B).
Then we evaluate the proposed SVM-Fusion and iterative fore-
ground modeling in Section (VI-C) and (VI-D), respectively.
Finally we compare the proposed technique with two state-of-
the-art object discovery methods, [57] and [40], and one state-
of-the-art object tracking method, [19], using the NTU-Adobe
dataset in Section VI-E. We also compare with another video
salient object detection method [31] using the Ten-Video-Clip
dataset [15] and some selected categories of the UCF Sports
Action dataset [37]. The computational cost of the proposed
method is discussed in Section (VI-F).

A. Evaluation Metrics and Experimental Setup

Three metrics are used in the evaluation process: (1) CDR
(correct detection ratio): This metric measures the quality of
the detected path for each video. A frame is considered to
be correctly detected if the overlap over union ratio between
the detected bounding box and the ground truth bounding box
is greater than 0.5. The frames that are neither on the ground
truth path nor the detected path will not be considered; (2)FMS
(f-measure of saliency map): This metric directly measures the
quality of the saliency map compared with the ground truth
saliency map. We follow the standard definition of f-measure
in terms of precision and recall: f-measure = 2×precision×recall

precision+recall .
Let Sg and Sd denote the ground truth saliency map and
the estimated saliency map, respectively, the precision and
recall are computed as precision =

Trace(Sg
TSd)

1TSd1 and recall =
Trace(Sg

TSd)

1TSg1 , respectively; (3) FMP (f-measure of path): This
is the metric used in [31] and it measures the quality of a
detected path. It is defined as:

FMP =
(1 + α)× precision× recall
α× precision + recall

(10)

where precision =
|Mg∩Md|
|Md| and recall =

|Mg∩Md|
|Mg| . Mg and

Md are the mask on the ground truth and detected primary
object region, respectively. It is computed for each frame and
averaged for each video. We use it to compare with the results
reported in [31].

After obtaining the combined saliency maps, we subtract a
small positive number, 0.2, from the original saliency scores
to get discriminative values. We apply the immediate neighbor
connectivity constraint for all the dimensions, e.g. , ti+1 =
ti+1, xi−1 ≤ xi+1 ≤ xi+1, yi−1 ≤ yi+1 ≤ yi+1, si−1 ≤
si+1 ≤ si + 1 and ai − 1 ≤ ai+1 ≤ ai + 1 and, hence, each
node will have 34−1 = 80 neighbors. To support a wide range
of scale variations, we set the allowed bounding box scale
(width) as 40, 60, ..., 240 and the aspect ratio (width/height)
as 0.4, 0.8, 1.0, 1.4, 1.8, 2.0. In addition, we choose a step
size of 10 pixels vertically and horizontally in the two spatial
dimensions while scanning the 5-D trellis in the max path
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Fig. 6. The precision, recall and f-measure of the detected salient path while
different offset values, γ, are subtracted from the saliency maps.

search algorithm for efficiency. All the following experiments
will use the same parameter configurations. In addition, in
order to evaluate the effect of the empirically chosen small
offset γ subtracted from the saliency value, we run the saliency
based detection on the NTU-Adobe dataset without foreground
modeling using different γ values and the results in terms of
the path precision, recall and f-measure (computed based on
the definition of FMP with α = 1) are shown in Figure 6.
As expected, the larger the γ, the lower the recall and the
higher the precision. The highest detection accuracy in terms
of f-measure is achieved when γ is around 0.2 to 0.3 and the
detection result is quite stable around this range.

B. NTU-Adobe dataset

Most of the existing video object detection benchmark
datasets have focused on specific categories of objects such as
the UCF Sports Action dataset [37] for human action detection
and the UIUC-NTU Youtube Walking dataset [46] for walking
pedestrian detection. The huge Youtube Object dataset 3 is a
multi-category dataset but only weakly annotated. A densely-
annotated dataset for automatic primary object discovery with
diverse object categories is desirable. Hence we collect a
new multi-category dataset containing 51 video clips including
animals (11 videos), babies (19 videos), walking or standing
pedestrians (7 videos), cars (5 videos), motorcycles (3 videos),
helicopters (2 videos), toy cars (2 videos), boat (1 video) and
parachute (1 video). Example frames can be seen in Figure 1,
2, 4, 5, 7 and 9. This new dataset contains 18834 frames in
total and the resolution ranges from 320× 240 to 640× 360.
In this new dataset, 9 video clips are borrowed from the
Youtube Object Dataset, 3 video clips are borrowed from the
SegTrack dataset4, 3 videos are borrowed from the UIUC-
NTU Youtube walking dataset and the other 36 videos are
downloaded from YouTube. Most of the videos are “home-
made” videos without advanced video editing because we
are mainly targeting personal videos in this work instead of
professional ones like films or commercial advertisement. As
a result, there are few shot changes and the objects always
moves smoothly during its presence. The ground truths are
manually labeled in the form of bounding boxes on each frame
containing the primary object. Note that each video only has
one primary object. Since the primary object detection itself

3http://people.ee.ethz.ch/ presta/youtube-objects/website/
4http://cpl.cc.gatech.edu/projects/SegTrack/
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TABLE I
EVALUATION RESULTS OF DIFFERENT SALIENCY MAP FUSION

TECHNIQUES ON NTU-ADOBE DATASET.

CDR
PCA Saliency 35.93%
AMC Saliency 33.92%
GC Saliency 47.72%
W Saliency 36.26%

Max[34] 32.34%
Mean[34] 59.82%

Multiplication[34] 17.98%
Spatial Variance[12] 63.23%
Motion Variance[54] 63.71%

PW[32] 65.00%
SVM-Fusion(ours) 68.81%
Best (upper bound) 79.00%

is a subjective concept, we only include videos in which the
primary object is obvious to humans to avoid ambiguity and
bias. In addition, this dataset can also be used for primary
object discovery in a group of videos because some videos
share the same primary object. The dataset can be downloaded
from our project website5.

C. Saliency Fusion

In this section, we compare the performance of each individ-
ual saliency map and the different saliency fusion techniques
using CDR which measures the quality of the detected salient
path. We first compare our proposed SVM-Fusion technique
(without nonlinear weight adjustment and map warping) with
the individual saliency maps, the “best” fusion weight based on
Equation 2 and some other existing map fusion techniques in
the literature. These methods include Max [34], Multiplication
[34], Mean [34], Spatial Variance [12] Motion Variance [54]
and Pixel-wise Aggregation (PW) [32]. Please refer to the
respective papers for the technical details. The results are
summarized in Table I. As expected, the “best weight” has
the highest detection accuracy and can be regarded as an
upper bound of the best results achievable using weighted
combination. Note that PW is not using weighted combination
and, hence, its performance is not bounded by this “best
weight” theoretically. It can be seen that our proposed SVM-
Fusion technique outperforms the other techniques. We also
show some qualitative results in Figure 7 comparing the Mean
and SVM-Fusion technique to demonstrate the effectiveness
of the proposed learning based fusion approach. From the
result we can see that the proposed SVM-Fusion technique
can adaptively assign lower weights to the corrupted saliency
maps and emphasize the good ones.

We have also evaluated the effectiveness of the two post
processing steps, i.e. , nonlinear weight adjustment and map
warping, and the results are shown in Table II. The results
show that the map warping process can apparently improve
the performance while the nonlinear weight adjustment seems
to degrade the performance when used alone. However, when
the nonlinear weight adjustment is used together with map
warping, it improves the performance.

5http://jiongsresearch.weebly.com/primary-video-object-discovery.html

TABLE II
EVALUATION RESULTS OF THE NONLINEAR FUSION WEIGHT ADJUSTMENT

AND MAP WARPING.

SVM-Fusion Nonlinear Adjustment Warping CDR
X 68.81%
X X 70.58%
X X 67.72%
X X X 72.92%

TABLE III
EVALUATION RESULTS OF DIFFERENT SALIENCY MAP FUSION

TECHNIQUES ON THE FT DATASET.

FMS
PCA Saliency 0.63
AMC Saliency 0.73

Global Contrast Saliency 0.71
GBMK Saliency 0.77

Max[34] 0.71
Mean[34] 0.75

Multiplication[34] 0.63
PW[32] 0.72

Spatial Variance[12] 0.76
SVM-Fusion(ours) 0.79
Best (upper bound) 0.80

Although our fusion method is proposed to fuse appearance
and motion cues, we conduct one more experiment to explore
its potential to fuse only image saliency cues. The FT dataset
[1] is used for evaluation. Four image saliency estimation
algorithms are used, i.e. , PCA Saliency [35], AMC Saliency
[23], GBMK(Graph Based Manifold Ranking) Saliency [52]
and Global Contrast Saliency [9]. We use the previously
trained SVM-Fusion model in this experiment since it is
independent of the saliency estimation methods. We sampled
1K images from the MSRA10K [9] dataset, i.e. , rank all
the 10K images in descending order and use the first 1K
images, to train the PW model since it requires the training
data and testing data to use the same set of saliency estimation
techniques. The saliency estimation accuracy is measured by
FMS. The experiment result is shown in Table III.

It can be seen that our fusion method can improve the
saliency accuracy from 0.77(best accuracy of individual map)
to 0.79 and all the other fusion method drop the performance.
Note that the best possible fusion accuracy according to
ground truth is only 0.80. This implies that the potential
performance gain of fusing different image saliency cues is
not very significant. This is easy to understand because if
one image saliency estimation algorithm performs badly on
a particular image, other image saliency algorithms are also
likely to perform badly on that image since all of them rely
on appearance cue at the first place. This further confirms that
it is more meaningful to fuse appearance and motion cues.

D. Foreground Modelling

In this experiment, we present the evaluation results on
the foreground modeling. We use the SLIC [2] algorithm
to segment each video frame into roughly 1500 superpixels.
The parameters for training samples selection are set as:
θs = 0.3 and (θl, θu) = (0.5, 0.5), respectively. The CDR
on the NTU-Adobe dataset without and with the appearance
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Fig. 7. Examples of the various types of saliency maps and the map fusion results by averaging and our proposed SVM-Fusion method without nonlinear
weight adjustment and warping. The first five examples are from the NTU-Adobe dataset and the last example is from the Camo and Hollywood2 dataset [39].

model are 72.92% and 81.19%, respectively. Note that our
detection framework without appearance model has already
done a good job in many videos. But there are still cases
where the saliency detection is distracted by the background
even after SVM-fusion or the primary object only appears in
part of the video. The adaption of the foreground modeling can
alleviate the distraction of the background and significantly
boost the performance in these cases. Some quantitative and
qualitative results are shown in Figure 9. The first row shows
an example in which the foreground object only enters the
video after frame 31 and the second row shows an example
in which the foreground object leaves the scene before the
video ends. In both cases, the explicit foreground modeling
can successfully exclude those irrelevant frames. The third
and fourth rows show examples where saliency maps are
noisy and the pure saliency-based detections include many
background regions or cannot cover the entire object. The
foreground modeling significantly improves the detections in
these cases. In addition, we have also evaluated the sensitivity
of our foreground modeling technique with respect to the
choice of θs, θl and θu. We first evaluate θs by fixing θl

and θu to be 0.3 and 0.7, respectively. The evaluation result
is shown in the left column of Figure 8. From the result
we can see that 0.3 is a reasonable choice as the detection
performance is very stable around 0.0 to 0.3 and starts to drop
apparently from 0.4 onwards. This is expected as the purpose
of θs is to reject the background regions around the boundary
of the bounding box and a relatively small value should be
appropriate. For θl and θu, we fix θs to be 0.3 and evaluate
them in pair, e.g. , (0.1, 0.9), (0.2, 0.8). The evaluation result
is shown in the right column of Figure 8. It can be seen that
the detection accuracy is the highest at (0.5, 0.5) and remains
very stable from (0.3, 0.7) to (0.7, 0.3). At first glance, it
may look unreasonable that the performance is still high at
θl = 0.7 and θu = 0.3 since this seems to include many
background superpixels into the positive training set and vice
versa. However, we have observed that during the iterations,
most of the superpixels are assigned near extreme values, i.e.
, approaching 0 or 1. Hence, adjusting this parameters within
the range from (0.3, 0.7) to (0.7, 0.3) will have a relatively
small impact on the sample selection during each iteration.
This also implies that our method is not sensitive to these two
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Fig. 8. Correct detection ratio with different θs and (θl, θu)values; the left
curve shows the effect of θs while fixing (θl, θu) = (0.3, 0.7) and the right
curve shows the effect of (θl, θu) while fixing θs = 0.3.

parameters and (0.5, 0.5) is a reasonable good choice. Note
that the detection accuracy is relatively low around (0.1, 0.9)
and (0.2, 0.8) because it may be too strict in selecting training
samples with this setting.

E. Comparison with state of the arts

We first compare the performance of the proposed frame-
work with [57], [19] and [40] on the NTU-Adobe dataset
using CDR. [57] employs the LDA model to discover the
primary video objects. In the experiment, we use the same
setting as [57] but do not incorporate the word co-occurrence
prior as it is not reliable in the employed videos. The output
of this method is a set of bounding boxes which localize
the objects in frames. [19] is one of the best video object
tracking methods evaluated in [49]. In the experiment, we
use the ground truth bounding box on the first frame (or the
nearest frame if the first frame does not contain the primary
object) of each video to manually initialize the tracking. The
output of this technique is a set of tracked bounding boxes on
the subsequent frames. [40] is the most recent state-of-the-art
automatic video foreground object segmentation method. The
output of this technique is per-frame segmentation masks. For
comparison, we fit a minimum bounding box on the largest
connected regions on the segmentation mask of each frame
as the detection result. We have summarized the CDR of
these methods as well as our proposed detection framework
in Table IV. Besides the overall comparison results, we also
list the results for each category in the dataset. Our method
performs better than the others on the “animals”, “babies”,
“cars”, “motorcycles” and “people walking” categories, and
worse than [40] on the “others” category. In the “others”
category, there is one video sequence in which the primary
object occupies the whole width of the frame throughout the
video and the max path search space does not cover that large
bounding box size for efficiency. In another video sequence,
the primary object becomes very small for a long duration and
both the two image saliency cues incorrectly focus on a very
compact background region which corrupts the fused saliency
map. [40] correctly identifies the primary object because it
does not rely on the image saliency cues. However, we cannot
simply abandon the image saliency cues because they are very
useful in many other videos as shown in the comparison in
Table I. On average, our method outperforms all the others,
e.g. , around 14% improvement compared to [40]. Note that

TABLE IV
COMPARISON WITH STATE OF THE ARTS ON NTU-ADOBE DATASET USING

THE CORRECT DETECTION RATIO.

[57] [19] [40] Ours
animals (11 videos) 26.54% 35.11% 71.11% 76.46%
babies (19 videos) 16.50% 47.05% 61.01% 84.31%

cars (5 videos) 52.00% 44.38% 86.79% 90.20%
motorcycles (3 videos) 34.00% 39.35% 63.50% 83.59%

people walking (7 videos) 32.39% 49.55% 57.29% 85.73%
others (6 videos) 20.33% 59.55% 83.08% 64.93%
all (51 videos) 25.79% 44.99% 67.95% 81.19%

TABLE V
COMPARISON WITH [31] USING THE FMP ON THE 10-VIDEO-CLIP

DATASET AND THREE CATEGORIES OF THE UCF SPORTS ACTION DATASET.

10-video-clip skate swing run
[31] 0.72 0.43 0.50 0.55
Ours 0.74 0.59 0.60 0.57

the tracking method [19] needs manual initialization and our
method is completely automatic in terms of user interaction.

We also compare with [31] using our detection framework
on the dataset used in their paper. [31] is a pure saliency-
based detection approach. It fuses two saliency maps, i.e. ,
image saliency and motion saliency, by average and uses the
max path search to find the primary object. In addition, it uses
the optical flow connectivity to model the edge score between
two temporally adjacent nodes in the trellis. In our approach,
we don’t model the edge score because in the max path
search framework, each edge score can only depend on its two
immediately connected nodes which limits its effectiveness,
while the incremental computational cost is significant. We run
our detection framework on the 10-video-clip dataset [15] and
the skate boarding (12 videos), swing side angle (13 videos)
and run side (13 videos) category of the UCF Sports Action
dataset [37]. In order to compare with their reported result,
we use the same metric as in [31] to evaluate the detection
accuracy. Note that the horse riding category is not chosen
because the ground truth labeling of many sequences are not
suitable for primary object detection, i.e. , both the horse and
person should be the primary object but only the person is
labeled. The results are summarized in Table V. From the
results we can see that our detection framework outperforms
[31] especially for the skate and swing dataset. The relatively
small improvement, 0.02, in the 10-video-clip and run dataset
is because there are several video clips where all our four
saliency maps miss the correct primary object and we are
unable to recover the detections by fusion and foreground
modeling. However, the performance on most of the other
videos are superior. For example, in the 10-video-clip dataset,
our method outperforms [31] for 8 out of the 10 clips. We
don’t have the per-video statistic for the run dataset as they
only provide the final score in their paper.

F. Computational Cost

We summarize the averaged per frame computational time
on the NTU-Adobe dataset in Table VI. We exclude the
computational time of the various saliency maps, optical flow,
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Frame 12 Frame 23 Frame 36 Frame 130

Video 39
w/o: 25.90%
with: 65.45%

Frame 1

Frame 31 Frame 50 Frame 57 Frame 87

Video 49
w/o: 37%

with: 69.81%

Frame 40

Frame 20 Frame 43 Frame 214 Frame 376

Video 22
w/o: 48.44%
with: 92.93%

Frame 6

Frame 30 Frame 157 Frame 232 Frame 246

Video 37
w/o: 43.60%
with: 62.98%

Frame 43

Fig. 9. Comparisons of the detection results with and without foreground modeling for some cases where the pure saliency-based detection fails. Each row
refers to one video and the first column shows the overall detection accuracy in CDR. In the subsequent columns, the red and green box indicate the detection
results before and after foreground modeling, respectively.

TABLE VI
THE AVERAGED (MEAN ± STANDARD DEVIATION) PER FRAME

COMPUTATIONAL TIME FOR THE VARIOUS MODULES.

Time (ms)
SVM-Fusion Feature Extraction 47 ± 11

Fusion Weight Computation 0.019 ± 0.002
Fused Saliency Map Warping 97 ± 28

Iterative Foreground Modelling 219 ± 127
Max Path Search 58 ± 16

SLIC superpixel, SIFT/Texton feature extraction as these are
not our main contributions and different implementations can
have different efficiency. Note that the proposed framework
needs to extract the SVM-Fusion features from 5 maps (the
4 saliency maps plus the fused saliency map) and run the
max path search twice (once on the warped saliency map
and once on the foreground map). The max path search
algorithm is implemented in C++ and the rest is implemented
in Matlab. The experiments were conducted on a normal
desktop computer with a quad-core i5 processor and 8GB of
RAM.

VII. CONCLUSION

In this work, we propose a novel approach for fully auto-
matic primary object discovery in videos. We first discovery
a smooth spatio-temporal salient path in the video and then
explicitly model the foreground and background appearance in
a global and discriminative manner. To make use of the strong
complementation between appearance and motion saliency
cues, we propose an effective fusion technique to adaptively
fuse these two types of cues. The proposed fusion method

is not only effective, but also very fast and easy to use
compared with similar methods in the literature. In addition,
a new dataset containing 51 videos with per-frame bound-
ing box labeling is proposed to better suit the performance
evaluation purpose of automatic primary object detection in
personal videos. Experimental evaluations validate the superior
performance of the proposed method compared to state-of-
the-art approaches on both the new dataset and some existing
benchmark datasets.
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