
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 2, FEBRUARY 2016 503
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Abstract— Automatic segmentation of the primary object in a
video clip is a challenging problem as there is no prior knowledge
of the primary object. Most existing techniques thus adapt an
iterative approach for foreground and background appearance
modeling, i.e., fix the appearance model while optimizing the
segmentation and fix the segmentation while optimizing the
appearance model. However, these approaches may rely on
good initialization and can be easily trapped in local optimal.
In addition, they are usually time consuming for analyzing
videos. To address these limitations, we propose a novel and
efficient appearance modeling technique for automatic primary
video object segmentation in the Markov random field (MRF)
framework. It embeds the appearance constraint as auxiliary
nodes and edges in the MRF structure, and can optimize both the
segmentation and appearance model parameters simultaneously
in one graph cut. The extensive experimental evaluations validate
the superiority of the proposed approach over the state-of-the-art
methods, in both efficiency and effectiveness.

Index Terms— Automatic, primary, video, object,
segmentation, graph cut, appearance modeling.

I. INTRODUCTION

THE PRIMARY object in a video sequence can be
defined as the object that is locally salient and present

in most of the frames [42], [44]. The target of automatic
primary video object segmentation is to segment out the
primary object in a video sequence without any human
intervention. It has a wide range of applications includ-
ing video object recognition, action recognition and video
summarization. Some examples are shown in Fig. 1. The
existing works on video object segmentation can be divided
into two groups based on the amount of human interven-
tion required: interactive segmentation [4], [15] and fully
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Fig. 1. Illustration of primary object segmentation in videos. The top row is
the original video frames with the expected segmentation results rendered as
red contours. The bottom row is the same segmentation results after removing
the background.

automatic segmentation [18], [20], [29], [44]. Our method
belongs to the latter and does not assume the object is present
in all the frames.

Following the outstanding performance of Markov Random
Field (MRF) based methods in image object segmenta-
tion [9], [32], [35], many of the existing video object seg-
mentation approaches also build spatio-temporal MRF graphs
and show promising results [15], [29], [44]. These approaches
build a spatio-temporal graph by connecting spatially or tem-
porally connected regions, e.g., pixels [35] or superpixels [29],
and cast the segmentation problem into a node labeling prob-
lem in a Markov Random Field. This process is illustrated
graphically in Fig. 2. Such automatic primary video object
segmentation methods usually have three major steps: initial
visual or motion saliency estimation, spatio-temporal graph
connection and foreground/background appearance modeling.
Automatic foreground/background appearance modeling is
important as the saliency estimation is usually noisy espe-
cially along object boundaries due to cluttered background
or background motions. However, it is challenging because
there is no prior knowledge about foreground and background
regions. Formally, with the presence of appearance constraints,
there are two groups of parameters in the optimization process,
i.e., segmentation labels x and appearance model �. For many
commonly used appearance models such as Gaussian Mixture
Models (GMM) [29] or Multiple Instance Learning [39], it is
intractable to solve both parameters simultaneously. Hence,
many existing methods adapt an iterative approach. They
use the segmentation result of the previous iteration to train
foreground and background appearance models which are then
used to refine the segmentation in the next iteration. However,
these methods can be easily trapped in local optimal and are
time consuming especially for video data.
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Fig. 2. The overall work flow of the proposed segmentation framework. 1. Superpixel segmentation; 2. Graph construction: the purple nodes and edges represent
the superpixels and the spatio-temporal neighborhood connections between them. They are used to encourage the spatio-temporal smoothness of the segmenta-
tion. The green nodes and edges represent the auxiliary nodes and connections for appearance modeling. They are used to encourage the appearance coherence
and disparity within and between the foreground and background regions, respectively; 3: Node labeling by MRF inference; 4: Final segmentation result.

Recently, [35] proposed an appearance modeling technique
in the graph based interactive image segmentation framework
which can solve both the segmentation labels and appearance
model parameters simultaneously without iteration. In their
approach, they model each pixel as a node and quantize it
into a bin in the RGB histogram space. It shows that when the
foreground and background appearance are represented non-
parametrically in the RGB histogram space, the appearance
constraint is equivalent to adding auxiliary nodes and edges to
the original MRF structure. However, due to the fundamental
difference between image data and video data, the original
approach in [35] is not practically applicable to video because
it requires each node to be described by a single bin in the
histogram space. For video object segmentation, superpixels
are generally used due to the large data volume and more
robust features like SIFT [23] or Textons are beneficial to
better capture the viewpoint and lighting variations between
different frames. As a result, each pixel will now have multiple
features and each node will correspond to multiple pixels.
Hence, in this paper, we extend the efficient appearance mod-
eling technique in [35] to primary video object segmentation
by addressing these challenges. The proposed appearance
modeling technique is more general than [35] and can handle
all the above mentioned difficulties. The resultant auxiliary
connections are also different from [35] because in [35] each
pixel node is connected to one auxiliary node, while in our
approach each superpixel node can be connected to multiple
auxiliary nodes. Experimental evaluations validate the superi-
ority of the proposed approach over directly applying [35] for
automatic primary video object segmentation.

In summary, the major contribution of this paper is that
we propose an efficient and effective appearance modeling
technique in the MRF based segmentation framework for
primary video object segmentation. It embeds the appear-
ance constraint directly into the graph by adding auxiliary
nodes/connections, and the resultant graph-partition problem
can be solved efficiently by one graph cut. Although inspired
by the idea of [35], we have made the non-trivial extension
from static images to videos, and we generalize the framework
in more complicated cases.

In the following sections of this paper, we will first
discuss the related works in Section II. Then we will
present, in Section III, the entire graph structure for primary
video object segmentation and emphasize how we formulate
and optimize both the label and appearance model para-
meters simultaneously. The proposed method is evaluated
in Section IV on two benchmark datasets and compared with

the recent state of the art. The entire paper is concluded
at Section V.

II. RELATED WORK

A. Low Level Video Segmentation

Common low level video segmentation methods include
superpixel segmentation [1], [38] and supervoxel segmenta-
tion [14], [40]. Superpixel segmentation methods typically
over-segment the entire frame into visually coherent groups
or segments. Supervoxel segmentation is similar to superpixel
segmentation but also groups pixels temporally and, hence,
produces spatio-temporal segments. Note that in this paper we
are primarily interested in object level segmentation instead of
unsupervised low level pixel grouping. Actually, superpixels
and supervoxels are usually used as the primitive input in
place of pixels in the context of video object segmentation for
efficiency [15], [29], [39]. Another type of low level segmenta-
tion is object proposal segmentation [8], [11], [31]. It produces
a large set of candidate segments that are likely to contain
semantic objects. However, they aim at a high recall instead of
precision and are generally computationally expensive com-
pared with the superpixel or supervoxel methods. Many high
level video object segmentation methods use these proposals
as the primitive input [12], [18], [19], [26], [44], [45].

B. Object Level Video Segmentation

The existing works related to video object segmentation,
e.g., [12], [15], [28], [29], can be divided into 3 groups,
i.e., interactive video object segmentation, automatic video
object segmentation and video object co-segmentation.

As briefly described in the introduction section, interactive
video object segmentation requires human intervention in the
segmentation process. Some of these approaches require the
user to provide a pixel-wise segmentation on the first few
frames for initialization [3], [15], [30], [37], while others
require the user to continuously correct the segmentation
errors [4], [21]. These methods generally require a consid-
erable amount of human effort and, hence, are not scalable to
large video collections.

In contrast, automatic video object segmentation does
not require any human intervention and tries to automat-
ically infer where the primary object is from the various
cues including saliency, spatio-temporal smoothness and fore-
ground/background appearance coherency [5], [18], [19], [26],
[27], [29], [44]. The most related approach is [22] as it also
relies on saliency estimation and builds spatio-temporal graph
by connecting neighborhood superpixels. However, it uses
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color GMMs to model the local foreground and back-
ground appearance separately in an iterative manner. Sev-
eral papers [5], [18], [19], [26], [44] use object proposals
[11] as the primitive input which contribute significantly
to the inefficiency of these methods. The method in [18]
first uses spectral clustering to group proposals with coher-
ent appearance and then train foreground/background color
GMMs and object location priors. Pixel-wise graph cut is used
to produce the final segmentation mask for each individual
frame. Ma and Latecki [26] adapt a similar pipeline with
[18] but use constrained maximum weighted cliques to group
proposals. The method in [44] builds a spatial-temporal graph
by connecting proposals and uses dynamic programming to
find the most confident trajectory. It then uses pixel-wise
graph cut to refine the final segmentation mask for each
individual frame based on the found proposal trajectory. The
method in [5] produces multiple proposal chains by linking
local segments using long-range temporal constraints. It then
obtains the final segmentation result by pixel-wise per-frame
MRF smoothing using the appearance and location priors
learned from these initial chains. The method in [19] tracks the
proposals temporally using incremental regression and refines
the final segmentations by composite statistic inferences. The
method in [27] explores this problem in MPEG2 compressed
domain. On the P-Frames, it computes the motion saliency
priors by compensating camera motion. On the I-Frames,
it computes the color-based segmentation by morphological
approach. These two cues are then merged and followed by
a spatio-temporal filtering using quadric surfaces to give the
final segmentation result. The method in [25] first segments
the selected key frames into an over complete set of seg-
ments using image segmentation algorithms like [33] and then
employs the cohesive sub-graph mining technique to find the
salient segments with similar appearance and strong mutual
affinity. Zhao et al. [46], [47] adapt a similar pipeline but
use topic model to discover the coherent segments. Both
methods disregard the temporal smoothness of the object
region and only aim at the rough location instead of accurate
segmentation.

Video object co-segmentation is also automatic but tries to
seek supervision by assuming the primary object is present in
a batch of given videos [12], [39], [45]. Both [12] and [39]
formulate the segmentation as node selection or labeling in
spatio-temporal graph, while [45] finds the maximum weighted
clique in a completely connected graph. The method in [12]
does not have an explicit global appearance model, and [39]
adapts the iterative appearance modeling approach using
multiple instance learning.

C. Appearance Models in MRF Segmentation Framework

In the existing image or video object segmentation frame-
works using MRF structure, the most commonly used appear-
ance model is color GMM which models the foreground and
background appearances separately [5], [15], [18], [26], [29],
[32], [44]. Multiple instance learning on context features is
also used in [39] to model the foreground and background
appearance in a discriminative manner. However, all the afore-
mentioned works adapt an iterative approach to gradually

refine the appearance model and segmentation labels. Recently,
[35] proposed to use color histograms to model the appearance
non-parametrically for static image segmentation. Both the
appearance model and segmentation labels can be optimized
simultaneously without iteration.

III. PROPOSED APPROACH

In this section, we introduce the proposed approach for
automatic primary video object segmentation. The input is
a plain video clip without any annotations and the output
is a pixel-wise spatio-temporal foreground v.s. background
segmentation of the entire sequence. Similar to many existing
image and video object segmentation approaches, we cast
the segmentation to a two-class node labeling problem in a
Markov Random Field. Within the MRF graph, each node
is modeled as a superpixel, and will be labeled as either
foreground or background in the segmentation process. The
overall work flow is shown in Fig. 2. In this work, we first
segment each video frame into a set of superpixels using the
SLIC algorithm [1] and then represent each node in the MRF
as a superpixel. We typically have around 2500 superpixels
per video frame. We choose not to use pixels because the
computational and memory cost will be high for video data in
our framework. Meanwhile superpixels produced by SLIC [1]
can preserve most of the boundaries, and over-segmentation is
not a critical concern.

In the following, we use s j
i to denote the j th superpixel of

the i th frame, N to denote the total number of frames and
Mi to denote the number of superpixels in the i th frame. The
segmentation target is to assign each superpixel s j

i a label x j
i

indicating if it is foreground, x j
i = 1, or background, x j

i = 0.
The overall optimization formulation in terms of the graph
energy minimization is expressed as

x∗ = arg min
x,�

E(s, x,�) (1)

where E(s, x,�) is defined as

E(s, x,�) = �u(s, x) + αp × �p(s, x) + αa × �a(s, x,�).

(2)

The vector x and � denote the {0, 1} labeling of all the
superpixels and the appearance model parameters, respectively,
s denotes the collection of all the superpixels and �u , �p

and �a denote the unary potential, pairwise potential and
appearance constraint potential, respectively. αp and αa are
two weight parameters for linear combination.

A. Unary Potentials

Since saliency has been proven to be effective in high-
lighting the primary object in a completely automatic set-
ting by simulating where human looks [2], [16], [24], [27],
[29], [43], we use it to model the unary potential of each
node. In order to capture different aspects of saliency, four
saliency estimations are employed including both appearance
and motion saliency, i.e., AMC image saliency [34], GBMR
image saliency, [41], GC motion saliency [42] and W motion
saliency [42]. To produce a single saliency estimation for
each frame, we combine these saliency maps by weighted
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linear combination where the weight of each saliency map
is determined by the SVM-Fusion technique proposed in [42].
The SVM-Fusion technique can adaptively predict the quality
of each saliency map without using ground truth, and thus
the weighted combination can adaptively reject noise and
emphasize the most proper saliency cues for each individual
frame. We also warp the saliency estimations along the optical
flow direction to encourage temporal smoothness. The saliency
value of a superpixel is then computed as the average saliency
value of the contained pixels. An alternative is to use the peak
saliency value instead of the average. However, we did not find
these two approaches are statistically different under the paired
t-test with a significance level of 0.05. Let A(s j

i ) denote the
saliency value of superpixel s j

i , its unary potential is given by:

φu(s j
i ) =

{
− log(A(s j

i )) if x j
i = 1

− log(1 − A(s j
i )) if x j

i = 0.
(3)

The total unary term in Eq.(2) can be computed as

�u(s, x) =
N∑
i

Mi∑
j

φu(s
j
i ). (4)

This definition implies that it is costly to label a highly salient
superpixel as background and vice versa.

B. Pairwise Potentials

There are two types of neighborhood relationships between
superpixels in videos, i.e., spatial neighborhoods and temporal
neighborhoods. Two superpixels are spatially connected if
they share a common edge and temporally connected if they
have pixels linked by optical flow. In the MRF graph, only
neighboring superpixels will have nonzero edge and the edge
weight represents the cost induced by assigning different labels
to the connected superpixels. Hence, the edge weight is usually
measured as the inverse likelihood of the existence of a
real edge between two superpixels. Apart from using local
similarity, we also use the high level edge detection in both the
appearance and motion domain to determine the edge weight.
More specifically, we use color and optical flow orientation
histogram to compute the local similarity and the structural
forest edge detector [10] to compute the edge strengths. Note
that, to detect motion boundaries for each frame, we first
convert the XY dense flow vector of each pixel to a color
representation using the method proposed in [22] and then
apply the edge detection in the color domain. The appearance
and motion edge maps are then combined by the maximum
operation. Overall, the spatial and temporal pairwise potentials
between neighboring superpixels are computed as

φs(s
j
i , sq

p) = (1 − e(s j
i , sq

p)) × (1 − δ(x j
i , xq

p))

× exp(−β−1
s ‖Fj

i − Fq
p‖2)

φt (s
j
i , sq

p) = c(s j
i , sq

p) × (1 − δ(x j
i , xq

p))

× exp(−β−1
t ‖Hj

i − Hq
p‖2). (5)

Here, e(s j
i , sq

p) denotes the average edge strength between
superpixel s j

i and sq
p , c(s j

i , sq
p) denotes the percentage of pixels

in sq
p that are linked to s j

i by optical flow, and δ is the
standard Kronecker delta function, i.e., δ(u, v) = 1 if u = v
and δ(u, v) = 0 if u �= v. Fj

i is the concatenation of color
and optical flow orientation histogram and Hj

i is the color
histogram. The motion feature is only included in the spa-
tial pairwise potentials because temporal pairs correspond to
superpixels in different frames. The overall pairwise potential
is then computed as the weighted summation of all the spatial
and temporal pairwise terms:

�p(s, x) = αs ×
∑

{s j
i ,sq

p}∈Ns

φs(s
j
i , sq

p)

+αt ×
∑

{s j
i ,sq

p}∈Nt

φt (s
j
i , sq

p) (6)

where Ns and Nt denote the collections of all the spatial and
temporal neighborhood pairs, respectively. αs and αt are two
weight parameters for linear combination.

C. Appearance Auxiliary Potential

In general, the appearance constraint �a(s, x,�) in Eq.(2)
can be written as �a(s, x,�) = f (s, x, g(s, x)) where f mea-
sures how consistent the current labeling x is with the appear-
ance model, and g computes the appearance model parameters
given the current labeling x. However it is impossible to
have an analytical expression to �a(s, x,�) for many popular
appearance models because the appearance model training
usually involves complicate optimization process, e.g., EM
optimization in GMM, so for such methods Eq.(1) cannot be
solved analytically. Hence, an alternative optimization scheme
is usually employed to solve Eq.(1), i.e., fix the appearance
model while solving x and fix x while optimizing the appear-
ance model. Inspired by [35], in this work we propose an
appearance model for video object segmentation in which
�a(s, x,�) can be expressed analytically in terms of x, and
Eq.(1) can be solved efficiently by one graph cut. In the
following, we first review the method of [35] on static image
segmentation and then discuss the challenges in adapting the
idea to videos and how we overcome them.

The method in [35] models each pixel as a node and repre-
sents each node as a single bin in the RGB histogram space for
appearance modeling. Let pi and xi denote the i th pixel and its
label, respectively, bi denote the assigned bin of pixel pi , H
denote the dimensionality of the histogram space and P denote
the total number of pixels. Furthermore we use �k

F and �k
B

to denote the number of pixels assigned to the kth bin in the
foreground and background regions, respectively, and �k to
denote the number of pixels assigned to the kth bin in the
entire image, i.e., �k

F = |{pi |xi = 1}|, �k
B = |{pi |xi = 0}|

and �k = �k
F + �k

B where |.| denotes the Cardinality of a
set. Then the foreground and background probability of the

kth histogram bin is given by p(F |k) = �k
F

�k and p(B|k) = �k
B

�k ,
respectively. Finally, the appearance constraint potential of
each pixel pi can be computed as

φa(pi) =
{

− ln p(F |bi) if xi = 1

− ln p(B|bi) if xi = 0.
(7)
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Then the total appearance constraint potential of all the pixels,
i.e., the last term in Eq.(2), can be computed as

�a =
P∑

i=1

φa(pi)

=
P∑

i=1

−δ(xi , 1) × ln p(F |bi) − δ(xi , 0) × ln p(B|bi)

= −
P∑

i=1

(δ(xi , 1) × ln
�

bi
F

�bi
+ δ(xi , 0) × ln

�
bi
B

�bi
)

= −(

H∑
k=1

�k
F × ln

�k
F

�k
+

H∑
k=1

�k
B × ln

�k
B

�k
)

= −
H∑

k=1

(�k
F × ln

�k
F

�k
+ �k

B × ln
�k

B

�k
). (8)

The inner part of the summation in Eq.(8) can be approximated
by

∣∣�k
F − �k

B

∣∣ since �k
F + �k

B = �k . Hence, �a(x,�) ≈
− ∑H

k=1

∣∣�k
F − �k

B

∣∣ = ∑H
k=1 2 min(�k

F ,�k
F )−�k. As we are

only interested in minimizing �a(x,�) instead of its absolute
value, we can drop the constant term �k and the multiplier 2.
Eventually, the appearance model is reduced to

�a(x,�) =
H∑

k=1

min(�k
F ,�k

B), (9)

and the inner part of this summation is the number of pixels
that are assigned to the kth bin taking the minority label.
Interestingly, this appearance term turns out to be equivalent
to adding some auxiliary nodes and edges to the MRF graph.
The addition procedure is simple: 1) add H auxiliary nodes
in which each node corresponds to a bin of the histogram,
and the unary potential of these newly added nodes are set
to − log(0.5); 2) Connect each pixel to the auxiliary node
that corresponds to its assigned bin. The rationality of this
equivalence is that the auxiliary nodes are guaranteed to be
labeled as the majority label of its connected pixels when the
graph energy is minimized and, hence, the cost incurred by
each auxiliary node is equal to the number of connected pixels
taking the minority label.

A naive extension of [35] to our superpixel based video
object segmentation is to take the mean RGB color of each
superpixel and assign it to one of the bins in the color
histogram space. However raw color features alone may not
be robust enough to accurately capture the viewpoint and
lighting variations between frames. Hence, we propose to use
more advanced features, i.e., SIFT and Texton, to measure the
similarity between image regions. The fusion of these features
has shown promising results in many vision problems such
as [36], [42], and [48]. It is worth noting that these features are
not computed only on the pixels within a superpixel, but rather
are computed in a larger window around a pixel. For example,
all SIFT features computed on all videos in our experiment
cover more than a single superpixel. This means that important
context information around the superpixels is contained in
these features. However, for video object segmentation, both
the original appearance modeling approach in [35] and its

naive extension are not readily applicable to these multi-
feature situations. This is because both SIFT and Texton are
key point based features and are not confined to any arbitrarily
shaped superpixel. Hence, we adapt a different approach to
extract and fuse these features. We first extract these features
around a set of key points defined by a dense grid, e.g., sample
a key point every 4 pixels horizontally and vertically. We then
use the bag of words approach to quantize each type of feature
to a particular bin and assign each key point to a single
bin by taking the Cartesian Product of the different types of
features. However, unlike the case of single pixels, each node
will now contain more than a single feature point, and the
original approach in [35] cannot handle this situation. Hence,
we propose a variation of the original technique to handle the
cases where each node is described by a set of bins, i.e., a
full histogram, instead of a single bin in the histogram. In the
following, we will introduce this new method and prove that
it can also be equated by adding auxiliary nodes and edges.

For consistency, we first redefine some of the terms used
in the description of the pixel wise approach in [35]. Let
b j,k

i denote the number of votes in the kth bin of super-
pixel s j

i ’s histogram, i.e., the number of feature points in
superpixel s j

i that are assigned to the kth bin, H denote
the total number of bins in the histogram feature space, �k

F
and �k

B denote the total number of votes in the kth bin of
the foreground and background superpixels, respectively and
�k denote the total number of votes in the kth bin in all
the superpixels, i.e., �k

F = ∑N
i

∑Mi
j δ(x j

i , 1)b j,k
i , �k

B =∑N
i

∑Mi
j δ(x j

i , 0)b j,k
i and �k = �k

F + �k
B . We can then

compute the foreground and background probability of the

kth bin as p(F |k) = �k
F

�k and p(B|k) = �k
B

�k , respectively.
With the Naive Bayes assumption on the feature points in a
superpixel, we can compute the foreground and background

probability of superpixel s j
i as p(F |s j

i ) = ∏H
k=1 p(F |k)b j,k

i

and p(B|s j
i ) = ∏H

k=1 p(B|k)b j,k
i , respectively. Then the last

term in Eq.(2) is computed as

�a(s, x,�) =
N∑
i

Mi∑
j

φa(s j
i ), (10)

where

φa(s j
i ) =

{
− ln p(F |s j

i ) if x j
i = 1

− ln p(B|s j
i ) if x j

i = 0

=
{

− ∑H
k=1 b j,k

i × ln p(F |k) if x j
i = 1

− ∑H
k=1 b j,k

i × ln p(B|k) if x j
i = 0.

(11)

An example is shown in Fig. 3 to illustrate how this term
can enforce the appearance constraints. From this figure, it
can be seen that minimizing the appearance term encourages
the appearance coherence and disparity within and between
the foreground and background regions, respectively. Note
that, the minimum value of the appearance term is achieved
when all the nodes are labeled as foreground or background,
i.e., [xA, xB, xc, xD] = [0, 0, 0, 0] or [1, 1, 1, 1]. However, this
rarely occurs in practice because this will cause a very high
unary potential, while the overall objective is to minimize
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Fig. 3. An example illustrating how the potential term defined in Eq.(10)
and Eq.(11) enforces the appearance constraints. The bar plots show the
histogram features of four example superpixel nodes, and the tables show
the cost incurred by labeling the four nodes differently.

the summation of all the three potential terms. The second
best labeling in Fig. 3, i.e., [0, 1, 0, 1] (or [1, 0, 1, 0]), implies
that the first two bins mainly correspond to the background
(or foreground), and the last two bins mainly correspond to
the foreground (or background).

By substituting Eq.(11) into Eq.(10) we have

�a(s, x,�) = −
N∑
i

Mi∑
j

H∑
k=1

δ(x j
i , 1) × b j,k

i × ln p(F |k)

+δ(x j
i , 0) × b j,k

i × ln p(B|k)

= −
H∑

k=1

N∑
i

Mi∑
j

δ(x j
i , 1) × b j,k

i × ln p(F |k)

+δ(x j
i , 0) × b j,k

i × ln p(B|k)

= −
H∑

k=1

[ln p(F |k) ×
N∑
i

Mi∑
j

δ(x j
i , 1) × b j,k

i

+ ln p(B|k) ×
N∑
i

Mi∑
j

δ(x j
i , 0) × b j,k

i ]

= −
H∑

k=1

(
�k

F × ln
�k

F

�k
+ �k

B × ln
�k

B

�k

)
. (12)

It can be seen that we arrive at similar conclusion as Eq.(8),
and the new appearance term can also be equated by adding
auxiliary nodes and edges to the original MRF structure. The
difference is that we now add edges to connect every pair
of superpixel and appearance auxiliary node, and the edge
weight is set to the corresponding bin’s vote. For example,
the weight of the auxiliary edge connecting superpixel node
s j

i and the kth auxiliary node is the number of feature points
in s j

i that are assigned to the kth bin. This process is illustrated
in Fig. 4. Compared with the original pixel wise approach, the
proposed method is applicable to more complicated features
besides color and can handle the cases where each node is
described by a full histogram instead of a single bin.

A potential concern of the proposed framework is that the
dimensionality of the histogram feature, i.e., the number of
auxiliary nodes need to be added, is extremely large due
to the effect of Cartesian Product. For example, if we use
64 bins for each RGB channel, 100 words for both the

Fig. 4. A toy example illustrating how the appearance auxiliary nodes
are connected to the superpixel nodes. In this example, there are only four
superpixel nodes indicated by the purple discs. Each superpixel node is
described by a 4-bin histogram which corresponds to the four green discs on
the top. The numbers on the green edges indicate the weights of the auxiliary
connections between the superpixel nodes and auxiliary nodes. Note that the
edges between the superpixel nodes are omitted for simplicity.

Fig. 5. The statistics on the amount of auxiliary connections linked to
each superpixel node (left) and auxiliary node (right) on the bird_of_paradise
sequence in SegTrack v2. The left plot shows the histogram on the number
of auxiliary connections linked to each superpixel node. On the right plot, the
horizontal axis is the percentage of auxiliary nodes and the vertical axis is the
percentage of the total amount of auxiliary connections, e.g., point (0.3, 0.8)
means 30% of the auxiliary nodes with the highest connectivity contribute
80% of the auxiliary connections. Note that we choose not to simply plot the
histogram on the number of auxiliary connections linked to each auxiliary
node because the distribution is highly unbalanced.

dense SIFT and Texton bag of words features, there will be
643 × 100 × 100 ≈ 2.6 × 109 bins in total. However, in
practice, a superpixel node will be connected to an appearance
auxiliary node only if the corresponding bin is not empty
and an appearance auxiliary node will be added to the graph
only when it is connected to at least two different superpixels.
Hence, the actual number of auxiliary nodes and connections
added to the graph is much smaller than the theoretical upper
bound due to the sparsity of the histograms. For example,
in a 98 frame video sequence, there are 221,559 superpixel
nodes, 142,384 appearance auxiliary nodes and 1,105,807
connections between them. To show that the auxiliary con-
nections are meaningfully distributed among the nodes, the
statistics on the amount of auxiliary connections linked to
each superpixel and auxiliary nodes are shown in Fig. 5 for
the 98 frame video sequence. It can be seen that the auxiliary
connections distribute stably among the superpixel nodes while
highly unbalanced among the auxiliary nodes, e.g., the mostly
connected auxiliary node has around 21,570 connections while
the least connected auxiliary node has only 2 connections.
However, the mostly connected auxiliary node is far from
dominating the auxiliary connections as it only contributes
around 2% of the entire auxiliary connections.
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TABLE I

COMPARISON RESULTS ON SEGTRACK V2 DATASET

D. Optimization

We use the max flow algorithm proposed in [7] to solve for
the optimal labels. With the benefit of the proposed appearance
modeling technique, the optimization is a single round process
and it only takes seconds to optimize a video with hundreds
of frames. As also shown in the experiment, the addition of
the auxiliary nodes and edges only introduces negligible extra
computation cost.

IV. EXPERIMENT

A. Dataset and Experimental Setup

In order to evaluate the effectiveness of the proposed
appearance modelling technique, we run experiments on
several benchmark datasets including the SegTrack v21 and
10-video-clip dataset2 [13]. The videos in these two datasets
are quite challenging. Many of the videos contain cluttered
background and dynamic scenes due to camera motion or
moving background objects. Some videos even contain fast
motions such as the girl, monkey and monkeydog sequences
in the SegTrack v2 dataset and the VWC102T, DO02_001 and
DO01_055 sequences in ten video clip dataset. Some videos
also contain cluttered background motions such as the swaying
tree leaves and grass in the BR128T, BR130T and DO01_030
sequences in the ten video clip dataset. In some videos, the
primary objects are visually very similar to the background,
i.e., low contrast along object boundaries, such as the
birdfall, frog and worm sequences in the SegTrack v2 dataset.
We evaluate the proposed approach against several state-of-
the-art methods including both MRF based method [29] and
non-MRF based methods [18], [19], [44]. We also compare
with several baseline methods in order to separate the
contributions of the different components. Pixel-wise Jaccard
similarity coefficient, i.e., intersection over union ratio, is
used to evaluate the segmentation accuracy of each video.

The major parameters involved in the proposed method are
the weights associated with each potential term in Eq.(2) and
Eq.(6). In the experiment, we empirically set αpαs = 240,
αpαt = 160, and αa = 18, and these parameters are kept fixed
throughout all the experiments and videos unless otherwise
specified. The βs and βt in Eq.(5) are set to the double average

1http://www.cc.gatech.edu/∼fli/SegTrack2/dataset.html
2http://www.brl.ntt.co.jp/people/akisato/saliency3.html

TABLE II

COMPARISON RESULTS ON TEN-VIDEO-CLIP DATASET

of the L2 feature distance between all the spatial and temporal
pairs in a particular video, respectively, i.e., βs = 2〈‖Fj

i −
Fq

p‖2〉 and βt = 2〈‖Hj
i − Hq

p‖2〉 where 〈.〉 denotes averaging
over all pairs. In the appearance modeling, we use 64 bins for
each color channel and 100 words for both the dense SIFT
and Texton histograms.

B. Experimental Results

The comparison results with some state-of-the-art meth-
ods for both datasets are shown in Table I and II. Some
qualitative comparisons are also shown in Fig. 6 and 7.
From the numerical comparisons, it can be seen that the
proposed method is not only faster but also more accurate
than the existing state-of-the-art approaches for both datasets.
The efficiency of the proposed method is because of its
simplicity, i.e., one graph cut on a sparsely connected graph
in which the unary, pairwise and appearance potentials can be
computed efficiently. The importance of appearance modeling
is also revealed by comparing to our baseline approach without
appearance constraint (the columns under “ours w/o App.”
in Table I and II). From the qualitative examples in Fig. 6,
it can be seen that our initial saliency estimation is usually
noisy and can only highlight the rough location of the primary
object without detailed shape and boundary. As a consequence,
our baseline approach without appearance constraint can only
improve the segmentation performance by smoothing around
the local edges. It is not able to correct those large regions
corrupted by saliency. Moreover, the two examples shown
in Fig. 7 imply that our method can handle the cases where the
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Fig. 6. Some qualitative results and comparisons.

primary object is absent in some frames. The method in [29]
applies appearance constraint by training color GMMs in the
local frames iteratively. It has shown better performance over
our baseline approach but still fails when there is color overlap
between foreground and background or the saliency estimation
is consistently corrupted in a sequence of frames. Compared
with [29], our appearance model is a global model across

all the frames and employs more powerful features besides
color. It consistently outperforms [29] in the shown exam-
ples. Furthermore, the addition of the appearance constraint
only introduces negligible extra computation cost due to its
efficiency.

Besides comparing with the state of the art, we also compare
with several baseline methods in order to show the importance
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Fig. 7. Two examples in which the object is absent in the beginning
(top example) or end (bottom example).

of the various components in the proposed method. The
compared baseline methods are:

1) Segmentation by unary potential. In this appraoch, we
exclude the pairwise and appearance terms. It directly
measures the quality of the initial saliency estimation.

2) Naive extension of [35] (1). This approach applies the
image based pixel wise segmentation method proposed
in [35] to each individual frame. In this method, we com-
pute the unary potential as in Section III-A, formulate
the spatial pairwise potential based on the description
in [32] and add the appearance constraint following [35].
The weights on the pairwise and appearance terms are
set to 4 by grid search to accommodate the changes of
the potential definitions.

3) Naive extension of [35] (2). In this approach, we use the
average RGB value of each superpixel to describe each
node. It directly applies the technique proposed in [35]
since each node only corresponds to one bin in the color
histogram space. The weight on the appearance term is
reset to 7 by grid search to accommodate this change.

4) Our method without SIFT/Texton features, i.e., ours with
only color features. This baseline approach removes
the dense SIFT and Texton features in the appearance
modeling process. The difference to baseline (3) is
that we still extract color features from sampled key
points instead of computing the average. The weight on
the appearance term are set to 2.7 by grid search to
accommodate this change.

The comparison results in terms of the average Jaccard sim-
ilarity coefficient for all the videos are shown in Fig. 8(a).
Note that we have also used HSV color space in place of
RGB in the baseline setting (3), (4) and the proposed full
method, and the weights on the appearance terms are re-tuned
for fair comparison. The paired t-tests with significance level
of 0.05 have also been conducted to show the statistical
meaningfulness of these comparisons. The p-values of these
tests are shown in Fig. 8(b). From Fig. 8(b), it can be seen
that the comparisons between baseline 1 and all the other
methods and the comparisons between the proposed methods
and all the baseline methods are statistically meaningful.
The comparisons among all the rest baseline methods are
not statistically meaningful. From the poor performance of
baseline (1), it can be seen that the initial saliency estimation
is far from a good segmentation. The comparison with

baseline (4) shows the benefits of adding the dense SIFT and
Texton feature by Cartesian Product. The comparisons with
baseline (2) and (3) show that it is not trivial to extend the
method proposed in [35] to videos and validate the necessity
of our superpixel based approach with rich features.

C. Parameter Analysis

The major parameters involved in this framework are the
three weights associated with the unary term, pairwise term
and appearance term, respectively. Since the unary and pair-
wise terms have been explored in most of the MRF seg-
mentation formulations, we evaluate the weight on the newly
proposed appearance term in this section. In order to do this,
we conduct experiment to compare the segmentation accuracy
by varying this weight and the results for both datasets are
shown in Fig. 9(a) and (b), respectively. It can be seen that,
although each video sequence has its own preferred optimal
weight, their trends are roughly consistent, i.e., segmentation
accuracy improves rapidly with increasing weights at the
beginning, gradually saturates around 50 to 100 and some
videos start to drop after 100. This implies that, within a wide
range, the framework is not very sensitive to the weight on this
newly proposed appearance term. We have also compared the
segmentation accuracy between using an universal weight for
all the videos as described in Section IV-A and individually
selecting the best weight for each video. The result is shown in
Fig. 9(c) and it can be seen that tunning the weight for each
individual video can produce more accurate segmentations.
However, the improvement is not very significant due to the
stableness of the proposed technique on different videos, and
an universal weight setting is generally more meaningful in
practice.

D. Error Analysis

Despite the good performance of the proposed approach,
segmentation errors are always inevitable and some typical
examples are shown in Fig. 10. The most common error is
the inclusion of background or exclusion of foreground along
low contrast object boundaries, such as the left leg of the frog
in the first column of Fig. 10, the right arm of the monkey in
the second column of Fig. 10 and the reflection of the monkey
on the water surface in the third column of Fig. 10. This is
the built-in difficulty of primary object segmentation as we
do not have prior knowledge of the object of interest and it
is challenging to generate an accurate boundary in these low
contrast regions. The second type of error is the inclusion
of background regions in the gap between the object parts
such as the grass between the two legs of the monkey in
the second column of Fig. 10. These regions are labeled as
foreground because they are blurred with high saliency value
by the saliency warping/smoothing process along imperfect
optical flows. The third type of error is the loss of thin
structures attached to the main body of the object such as
the legs of the bird in the last column of Fig. 10. These thin
parts are either missed by the initial saliency estimation or
smoothed away by the MRF smoothing. A common solution
in the static image segmentation literature is to employ higher
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Fig. 8. Comparisons with several baseline methods. (a) shows the average segmentation accuracy of the proposed methods and several baseline settings.
(b) shows the p-values of the paired t-tests conducted on the pairwise comparisons among the 8 methods listed in (a). A tick symbol means the p-value is
smaller than 0.05 and a cross symbol means the p-value is greater than 0.05. It can be seen that, the comparisons between the proposed methods (last two
bars in (a)) and the baseline methods (first 6 bars in (a)) are statistically meaningful.

Fig. 9. Evaluation results regarding the weight on the appearance term. The first two curves show the segmentation accuracy of the SegTrack v2 and
ten-video-clip dataset, respectively, by varying the weight from 0 to 200. The colorful thin lines indicate each individual video and the black thick lines
indicate the average of each dataset. The right most bar plot shows the comparison of segmentation accuracy between using a universal weight for all the
videos as described in Section IV-A and individually selecting the best weight for each video according to the first two curves. In the bar plot, horizontal
label 1-9 indicate the 9 videos in the SegTrack v2 dataset, 10 indicates the average of SegTrack v2 dataset, 11-20 indicate the 10 videos in the ten-video-clip
dataset and 21 indicates the average of the ten-video-clip dataset. Note that the vertical axis of the bar plot starts from 0.5 instead of 0.

Fig. 10. Some typical segmentation errors. The first row is the segmentation result, the second row is the ground truth segmentation and the last row is the
segmentation errors.

order potentials, such as Robust P(n) [17], to enforce the high
level structure of the object, and we leave this as our future
work. In addition, the segmentation error in the fourth column

of Fig. 10 is caused by severely corrupted saliency estimations.
The saliency consistently fails to highlight the lower part of the
flower due to the cluttered motion background, e.g., both the
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TABLE III

TIME USAGE OF THE VARIOUS COMPONENTS

flower and the leaves are swaying in the wind. Moreover, there
happens to be a strong edge between the heart and the upper
part of the flower and the MRF smoothing fails to prevent the
separation.

E. Computation Speed

As shown in Table I, our method is efficient compared with
the other approaches and the detailed time usage of the various
components is shown in Table III. All the experiments are
conducted on a Dual-Core i5 PC with 8GB of RAM, and the
time statistics in Table III are based on the bird_of_paradise
sequence in SegTrack v2 because it has the highest per-
frame resolution. For the AMC [34]3 and GBMR [41]4 image
saliency detection, SLIC [1]5 superpixel segmentation and
structured forests edge detection [10],6 we use the code
provided by the authors. For optical flow computation, Tex-
ton feature extraction and MRF inference, we use the code
provided with [7],7 [22],8 and [36],9 respectively. For SIFT
feature extraction, we use the VLFeat implementation.10 All
the other components are implemented by ourselves in Matlab.
The detailed parameter settings of the various components can
be found in Section IV-A. Due to the good architecture of our
method, we are able to parallelize many of the components.
For example, we could run the two image saliency detec-
tions, optical flow computation, SLIC superpixel segmentation,
and SIFT/Texton feature extraction concurrently in multiple
threads since they do not depend on each other. Similarly, we
can also compute the two motion saliency maps concurrently
in two threads after obtaining optical flows. In Table III, we
highlight the components that can run concurrently using the
same color. Overall, we can achieve 6.84 seconds11 per frame
with these two parallelization schemes.

3http://202.118.75.4/lu/Project/saliency_MC_iccv13/absorb_MC.html
4http://faculty.ucmerced.edu/mhyang/project/cvpr13_saliency/cvprsaliency.

htm
5http://ivrl.epfl.ch/research/superpixels
6https://github.com/pdollar/edges
7http://pub.ist.ac.at/∼vnk/software.html
8https://people.csail.mit.edu/celiu/OpticalFlow/
9http://www.cs.unc.edu/∼jtighe/Papers/ECCV10/
10http://www.vlfeat.org/overview/dsift.html
116.84 = max{0.22, 1.25, 4.82, 0.80, 1.15, 0.15}+max{1.08, 0.47}+0.34+

0.58 + 0.01 = 4.82 + 1.08 + 0.34 + 0.58 + 0.01. These numbers correspond
to the entries in Table III.

From Table III it can be seen that the efficiency bottle-
neck of our method is the optical flow computation, saliency
estimation and feature extraction. The graph construction
and inference only contribute 5% of the total computational
time. Hence, the efficiency of our method can be further
improved with the recent advancement in GPU accelerated
optical flow, e.g., 0.2 second per frame in [6]. In the compared
methods, [18], [19], [44] are significantly slower because
they employ the more advanced but time consuming region
proposals [8], [11] as the primitive input.

V. CONCLUSION

In this paper, we propose an efficient and effective appear-
ance modeling technique in the MRF framework for automatic
primary video object segmentation. The proposed method
uses histogram features to characterize the local regions
and embed the global appearance constraint into the graph
by auxiliary nodes and connections. Compared with many
existing appearance models, the optimization process of our
method is non-iterative. Experimental evaluations show that
our method is faster than many of the alternatives and the
segmentation accuracy is also better than or comparable with
the state-of-the-art methods.
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