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Shape matching and retrieval have been some of the fundamental topics in computer vision. Object shape

is a meaningful and informative cue in object recognition, where an effective shape descriptor plays an

important role. To capture the invariant features of both local shape details and visual parts, we propose

a novel invariant multi-scale descriptor for shape matching and retrieval. In this work, we define three

types of invariants to capture the shape features from different aspects. Each type of the invariants is

used in multiple scales from a local range to a semi-global part. An adaptive discrete contour evolution

method is also proposed to extract the salient feature points of a shape contour for compact representa-

tion. Shape matching is performed using the dynamic programming algorithm. The proposed method is

invariant to rotation, scale variation, intra-class variation, articulated deformation and partial occlusion.

Our method is robust to noise as well. To validate the invariance and robustness of our proposed method,

we perform experiments on multiple benchmark datasets, including MPEG-7, Kimia and articulated shape

datasets. The competitive results indicate the effectiveness of our proposed method for shape matching

and retrieval.

© 2016 Elsevier Inc. All rights reserved.
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. Introduction

The shape of an object contour is a compact clue for object

ecognition. Shape matching is an essential problem in computer

ision as it has been widely studied for various applications, e.g.,

haracter recognition [1], biomedical image analysis [2], hand ges-

ure recognition [3], robot navigation [4], human gait recognition

5], etc. To capture the salient shape feature for matching, an ef-

ective descriptor is necessary. In recent years, there has been a

ast set of literatures in shape matching and retrieval algorithms,

hich report promising results [6–10]. The geometric transforma-

ions (translation, rotation, scaling, etc.) have been handled by dif-

erent methods in the literature. However, it is still a challeng-

ng problem to match shapes with intra-class variations and non-

inear deformations (noise, articulation and occlusion). The intra-

lass variation here specifically indicates the varying shapes of the
✩ This paper has been recommended for acceptance by P. Thomas Fletcher.
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nstances from the same class as shown in Fig. 1, rather than

he nonlinear deformations. The shapes with intra-class variations

an be easily classified to the same class by humans, while they

re very different in shape matching. The nonlinear deformations

re more challenging especially when multiple deformations are

ombined simultaneously with intra-class variations and geometric

ransformations. Therefore, it is critical to extract a shape descrip-

or which is representative, discriminative and robust for shape

atching and retrieval. The desired descriptor should not only tol-

rate geometric transformations, nonlinear deformations and intra-

lass variations, but also efficient to discriminate shapes from dif-

erent classes.

Most of the traditional descriptors use local or global informa-

ion of shapes, which cannot solve the problems of shape deforma-

ions or intra-class variations with sufficient expertise. The local

escriptors [9,11–13] are capable of representing the local shape

eatures well, but they do not consider the global shape struc-

ure. On the other hand, the global descriptors [8,14–16] are robust

o local noise and deformations, but they fail to capture the de-

ailed local shape features and cannot deal with occlusion. To sat-

sfy all these contrasting requirements together, it is desirable to

ombine the advantages of both the global descriptors and local
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Fig. 1. Two pairs of same-class shapes with large intra-class variations. (a) and (b) are shapes from the “beetle” class in different types. (c) and (d) belong to the “cat” class

with different poses.

Fig. 2. The pipeline of our method. The raw shape contour is processed by ADCE first, and then the raw contour and the processed contour are used together to obtain the

multi-scale description. Finally, pairwise similarity is calculated via the dynamic programming algorithm.
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descriptors within a single framework for an exhaustive and

discriminative representation scheme. Moreover, the descriptor

should be invariant for geometric transformations. A number of re-

cent works [10,17,18] combine the global and local shape features

and achieve good shape matching performances on the popular

benchmark dataset, MPEG-7 dataset [19]. Besides a series of dis-

tance learning based methods [20–22] report the state-of-the-art

results. However, these methods still rely on the effective descrip-

tor to achieve a good performance.

In this paper, we propose an invariant multi-scale descriptor for

shape representation, matching and retrieval. The descriptor is de-

fined with three types of invariants in multiple scales. Inspired by

the characteristics of both global descriptors and local descriptors,

we use smaller scales to capture shape details and larger scales to

represent semi-global features, e.g., limbs, to obtain “rich” shape

information. To make the descriptor discriminative, we use three

types of invariants to capture salient shape features from different

aspects, including: area, arc length and local central distance.

These three shape features are combined to characterize shapes

from different classes. The three types of invariants are normalized

parameters between 0 and 1 to adaptively capture the inconsistent

variations within one shape, e.g., only part of a shape is scaled.

The dimension of the extracted feature descriptor for a contour

point is between 9 and 15, which is much less than that of most

of the previous descriptors. To extract the salient points of shape

contour and improve the representativeness of shapes, we modify

the discrete contour evolution (DCE) [23] algorithm in an adaptive

way to preprocess a closed shape contour. We show that the con-

tours processed by the adaptive discrete contour evolution (ADCE)

is more compact. The similarity between shapes is calculated in

term of the pairwise distance, and the dynamic programming

(DP) [24] algorithm is employed to find the best correspondence

between shapes. The pipeline of our method is shown in Fig. 2.

The invariance and robustness of the proposed descriptor is

evaluated through extensive experiments. The proposed method
s invariant to geometric transformations and nonlinear deforma-

ions, especially to articulated variations and partial occlusion.

he experimental results validate the invariance of our method

o these variations. Our method is also verified to be capable of

apturing the common shape features for shapes with large intra-

lass variations. We also validate the robustness of our method

o noise. The effectiveness in shape matching is evaluated in the

xperiments of shape retrieval on several benchmark datasets, in-

luding: MPEG-7 dataset [19], Articulated dataset [8], Kimia’s 99

ataset and Kimia’s 216 dataset [25]. The comparable results with

tate-of-the-art demonstrate that the proposed method is effective

or shape matching and retrieval. The distance learning method

s also applied on our method to further improve the retrieval

ate, and our method outperforms other distance learning based

ethods.

The remainder of this paper is organized as follows. We be-

in by reviewing the relevant works in the next section. The pro-

osed invariant multi-scale descriptor is presented in Section 3.

ection 4 describes the ADCE algorithm for shape preprocessing.

he DP based shape matching is detailed in Section 5. Section 6

ives the experimental evaluation of the invariance and robustness

f our method as well as the performances of shape retrieval on

he benchmark datasets. This paper is concluded in Section 7.

. Related work

There is a rich literature in shape matching that aims to im-

rove shape retrieval rate and object recognition accuracy in two

cenarios. One is to design representative and discriminative de-

criptors to capture the intra-class similarity as much as pos-

ible, while maintaining a larger inter-class distance. The other

s to learn an optimized similarity measurement utilizing the

re-knowledge of the pairwise distances of a dataset based on

he existing descriptors, called distance learning methods. In this
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ection, we mainly review the methods with different descriptions

f shapes which are most related to our work.

There are two main categories of shape descriptors:

lobal feature descriptors and local shape descriptors. Global

escriptors capture the spatial distribution of shape and the rela-

ionship among contour points. One type of global descriptors rep-

esents a shape with all the contour points (contour-based descrip-

or). The most typical contour-based global descriptor is the shape

ontext (SC) [14] descriptor proposed by Belongie et al. The SC de-

criptor uses the spatial relationship between one contour point to

ll other contour points to represent each contour point. For each

oint, the spatial distribution of all other points is summarized as a

0 dimensional histogram. After that, Ling and Jacobs [8] proposed

inner-distance shape context (IDSC) descriptor that modified

he Euclidean distance in SC with inner distance inside the shape,

hich is insensitive to articulated variations. The inner distance

s the shortest path between two related contour points within

shape silhouette. The triangle area representation (TAR) [7,15]

s another global descriptor which represents each contour point

ith the signed areas of triangles formed by the boundary points

t different scales. The curvature of corresponding contour points

s measured by the triangle area, and the convexity/concavity of

he contour is reflected by the sign of the area value. Grigorescu

nd Petkov [26] propose a shape descriptor based on distance sets

rom each contour point to all other contour points. The common

dea of the contour-based global shape descriptors is exploring the

ne-to-all spatial relationship to represent each contour point. An-

ther type of global shape descriptors use all the pixel information

ithin a shape region to derive shape description (region-based

escriptor). Souza and Marana [16] propose a shape descriptor via

ough transformation and its neighborhood based modification.

hang and Lu [27] propose the Fourier descriptor to transform the

olar raster sampled image into the spectral domain by 2D Fourier

ransformation. The Fourier descriptor captures shape features

t multiple resolutions in both the two dimensions of the polar

oordinates. Srestasathiern and Yilmaz [28] use the conic basis

o take the conic-section coefficients for shape representation.

he extracted projective parameters are invariant to projective

ransformation. Direkoglu and Nixon [6] design a multi-scale 2D

ourier descriptor based on the assumption that the shape parts

ar from the center of shape contribute more than the central

art. Then, the exterior parts of objects are emphasized in this

epresentation, while the central part is less weighted. In the

ork of Kim and Kim [29], a set of Zernike moments are used to

epresent shapes with regions, which is geometric invariant and

fficient in computing. The global descriptors represent a shape as

whole, so that the distribution of the shape or contour points is

aptured, while the local shape features are lost.

The local shape descriptors capture the local shape details of

he shape contour. The differential invariants based shape descrip-

ors [11,12] are sensitive to local noise, which require necessary

moothing on shape data. However, it is unavoidable to accept the

nfortunate side effect of smoothing that meaningful information

ill be lost as well. To solve this problem, Siddharth et al. [13]

ropose the distance and area integral invariants to represent local

hape features, where the area integral invariant is an approxima-

ion of the curvature of shape contour. The integral invariants are

obust to noise and invariant for geometric transformations, how-

ver, only the curvature is far from enough to represent complex

hapes. The curvature scale space (CSS) [30] method uses the lo-

ations of curvature zero crossing points to represent shapes. But

he scale is hard to determine and the convex shapes have no

urvature zero crossing points. The Riemannian optimization has

lso been employed in Elastic Shape Analysis [31,32], which solved

he shape matching and comparison jointly. The Biswas method

9] used a variety of simple invariants to represent shape features
or shape indexing and retrieval. Daliri and Torre [33] transformed

hape contour into a string of symbols and matched shapes via

ernel edit distance. As the symbols represent shape locally, this

ethod is invariant to similarity transforms and handles partial

cclusion. The local shape descriptors extract the local shape fea-

ures well, but the spatial structure and distribution of shape are

gnored, as well as the shape contour context.

To obtain a “rich” representation of shape, some recent methods

ake use of both local and global features to derive a hierarchi-

al descriptor. McNeill and Vijayakumar [17] proposed a hierarchi-

al procrustes matching (HPM) method for shape matching based

n shape contour segmentation. The hierarchical representation

voids the problems associated with pure global or local descrip-

ors. Xu et al. [10] propose the contour flexibility method to extract

oth global and local features that depicts the deformable poten-

ial at contour points. Felzenszwalb and Schwartz [18] proposed

he shape tree method which segments a curve into two halves

n the middle, and the two halves are further segmented into re-

pective halves. Raftopoulos and Kollias [34] proposed a method

ased on global-local transformation to represent shape curvature

ith view area representation, which is robust to noise. Bai et al.

35] proposed the shape vocabulary representation with the idea

f bag of words (BoW), where the shape contours are segmented

nto fragments and represented as words of shape contours in dif-

erent scales.

In recent years, a series of distance learning based methods

20–22] have been reported promising results of shape retrieval on

enchmark datasets, e.g., the MPEG-7 dataset [19]. These methods

se distance learning algorithms on the previous descriptors to im-

rove the retrieval rates, e.g. the label propagation (LP) [20,21] and

he locally constrained diffusion process (LCDP) [22]. Here, the pre-

ious descriptors, e.g., SC [14] and IDSC [8], are used as the basic

n these methods to calculate the shape similarity, and then the

ank of retrieval results are optimized by distance learning. It is

ndeniable that the distance learning algorithms increase the re-

rieval rates significantly based on the descriptors. However, an ef-

ective shape descriptor still makes an important role in the shape

etrieval tasks. In this work, we aim to propose a representative

nd discriminative shape representation to obtain better retrieval

ates with and without distance learning.

In this paper, we use not only local shape features, but also

emi-global shape structure to make a “rich” representation of

hape. Different from the previous descriptors, the multi-scale in-

ariants are designed to combine both the advantages of global

nd local descriptors while eliminate the deficiency of them. For

ocal shape features, three types of invariants are proposed with

he idea of integral, which are robust to local noise. For global in-

ormation, the salient features of shape parts are included in the

nvariants, which is robust to intra-class variations and partial oc-

lusion. Moreover, with the proposed idea of major zone and major

egment, our method is insensitive to articulated variations. The

roposed ADCE method extracts the compact shape contour with

eaningful points, which intensify the capability of the proposed

escriptor for geometric transformations, nonlinear deformations

nd intra-class variations.

. Multi-scale shape descriptor

.1. Motivation: invariance, discrimination and robustness

For a shape matching and retrieval engine, a good performance

s significantly relevant to three properties of shape representa-

ion: invariance, discrimination and robustness. In the shape match-

ng, both small intra-class distances and large inter-class distances

re expected, which rely on the invariance and the discrimina-

ion of descriptor, respectively. The robustness is also necessary
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Fig. 3. Complex shapes.

Fig. 4. The four circles indicate three scales 1–4. The grey area in each circle rep-

resents the area invariant in respective scale. The contour segment in each circle

represents the arc length invariant. The central distance is from the weight-center

of the gray area to the circle center.
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for both large scale disturbance, e.g., partial occlusion, and small

scale disturbance, e.g., high-frequency noise, which are two critical

roadblocks for a good retrieval result. However, it is very hard to

well satisfy these properties simultaneously, especially for complex

shapes. As shown in Fig. 3, both the global structures and the local

details of the shapes are complex.

To represent a shape concerning these three properties, we con-

sider two aspects: (1) various forms of shape features representing

the salient shape information in the identical scale and (2) differ-

ent scales of shape features capturing both local and global shape

information. It is intuitive that a descriptor with multiple shape

features in various forms can capture more shape information than

a single feature, therefore, the merged multiple features is more

discriminative than a single feature. For complex shapes, besides

the detailed local shape feature, the global structure, e.g., the body

part information of a shape, should be considered as well. That is

the reason for which the part based shape decomposition meth-

ods [3,35,36] are more popular. In this sense, the invariance of a

descriptor depends on the invariants in different scales. The small

scale invariants can represent the invariant features of detailed lo-

cal shape, while the large scale invariants capture the invariant fea-

tures of body parts. The robustness of a descriptor also benefits

from the multi-scale features, e.g., the global feature is robust to

local noise while the local features is robust to occlusion, and an

appropriate utilization of both the advantages is preferred.

In view of the above analysis, building a multi-scale shape

descriptor with various invariants is needed for a good perfor-

mance in shape matching and retrieval. Basically, the capability of

a descriptor depends largely on feature selection and descriptive

structure. In the following, we propose a novel invariant multi-

scale shape descriptor using three different types of invariants and

each type is used in different scales to represent local and semi-

global shape features, which can be used for shape matching and

retrieval.

3.2. Definition of The Invariant Multi-Scale Descriptor (IMD)

Since the raw data of a shape is a closed contour which is com-

posed of a series of sample points, the descriptor is used to repre-

sent the shape features of each sample point on the contour. De-

note S = {p(i)|i ∈ [1, n]} the closed planar shape contour with a se-

quence of sample points p(i), where n is the length of the contour.

The sample point p(i) is parameterized as p(i) = {u(i), v(i)}, where

u(i) and v(i) are coordinates in the image. The IMD descriptor M is

defined as follows:

M = {sk(i), lk(i), ck(i)|k ∈ [1, m], i ∈ [1, n]}, (1)

where sk, lk and ck are three invariants: normalized area s, arc

length l and central distance c in the scale k (as shown in Fig. 4). k

is the scale label, and m is the total scale number. These invariants

are defined separately in the following.

Definition 1. Consider a circle Ck(i) with radius rk centered at p(i),

one or more zones may be occupied by the shape (see Fig. 5 (b),

zone A and zone B). Zone A is so called the major zone to p(i)

because p(i) is on the edge of this zone (direct connection), while

the other zones have no connection to p(i) via the shape within

the circle. For convenience, here we indicate with Z (i) the major
k
one of p(i) in scale k. Denote the area of Zk(i) (Zone A in Fig. 5,

b)) by s∗
k
(i), the normalized area sk(i) is defined as the ratio of

∗
k
(i) to the area of Ck(i), as follows:

∗
k(i) =

∫
Ck(i)

B(Zk(i), x)dx, (2)

k(i) = s∗
k
(i)

(π r2
k
)
, (3)

where B(Zk(i), x) : R
2 × R

2 �−→ {0, 1} is define to be an indica-

or function on the interior of Zk(i),

(Zk(i), x) =
{

1, if x is inside Zk(i),

0, if x is outside Zk(i).
(4)

Since s∗
k
(i) is less than the area of Ck(i), the ratio sk(i) of them

anges from 0 to 1. In our method, only the major zone to the

enter p(i) is considered, while other zones without circle-inside

onnection to p(i) are not calculated, e.g., Zone B in Fig. 5. In the

ollowing definitions of lk and ck, only the major zone and major

egment are considered as well. The reason and benefit of this se-

ection is explained in Section 3.4.

efinition 2. In the same circle Ck(i), there are one or more con-

our segments of the shape contour that are segmented by Ck(i)

see Fig. 5, segment A, B and C in (c)). Similar to the major zone

n Definition 1, we only consider the major segment A. Denote the

rc length of the major segment (segment A in this case) by l∗
k
(i).

he normalized arc length lk(i) is defined as the ratio of l∗
k
(i) to

he circumference of Ck(i) and computed as follows:

k(i) = l∗
k
(i)

(2π rk)
. (5)

The length l∗
k
(i) is usually shorter than the circumference of

k(i) in most of the frequently seen object shapes and benchmark

atasets, e.g., the MPEG-7 [19] dataset used in our experiments.

herefore, the normalized lk(i) ranges from 0 to 1. If a bigger l∗
k
(i)

han the circumference of Ck(i) exists in a special dataset, the range

f lk(i) can be restricted to [0, 1] by dividing a bigger normalization

arameter.
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Fig. 5. Invariants in the articulated parts. The grey zones A and B on the rabbit ears in (b) are not directly connected within the circle, while the grey zone A in (c) is a

major zone. However, the two segments B and C in (c) are still not directly connected to p(i) thus only the blue segment A passing the circle center is used to calculate the

arc length invariant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Three circles at different positions of a shape contour segment. p(a) and p(b) have the same area invariant, but the arc length invariants of them are different. The

arc length of p(b) and p(c) are the same, while the areas and central distances of them are different.
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efinition 3. The central distance c∗
k
(i) is defined as the distance

etween p(i) and wk(i):

∗
k(i) = ||p(i) − wk(i)||, (6)

here

k(i) =
∫

Ck(i) B(Zk(i), x)xdx∫
Ck(i) B(Zk(i), x)dx

, (7)

s the weight-center of the major zone in Ck(i), which is calculated

y averaging the coordinates of all the pixels in the zone. Then,

k(i) is calculated by normalizing with rk:

k(i) = c∗
k
(i)

rk

= ||p(i) − wk(i)||
rk

. (8)

Since the weight-center must be inside the simply connected

one, c∗
k
(i) is less than rk, and ck(i) ranges from 0 to 1. As the meth-

ds of calculating area s∗
k
(i), arc length l∗

k
(i) and weight-center

k(i) are straight forward, and there are efficient implementations

n the tool box of Matlab and OpenCV, we do not specify the for-

ula here for brevity. The functions of these invariants of example

hapes are shown in Fig. 10.

For each point p(i), there are 3 × m invariants in the descrip-

or to represent the shape feature in different aspects (area, arc

ength and central distance) and different scales (semi-globally and

ocally). The combination of these invariants includes an exhaustive

hape information at p(i). The area can only represent the con-

avity and convexity of a simple shape, while the arc length can

nly represent the complexity of the local shape that a long arc

ength indicates a complex shape. However, if these two invariants

re combined, the representation is improved significantly in terms

f its discriminability, as shown in Fig. 6. Similarly, merging the in-

ariants in different scales increases the capability of the descriptor

s well.
.3. The setting of r and k

In representing a shape with IMD, the radius rk of the circle Ck

eeds to be set first. In our method, the radius rk in different scales

s set with respect to an initial radius R:

k = R

2k
, (9)

where rk is half of rk−1 in the prior scale. That is, r1 = R/2 is

he radius of C1 in the highest scale (k = 1), and the circles in the

ollowing scales (k = 2, 3, . . . , m) have their radii decreased half by

alf.

The setting of initial R is important for representing both the lo-

al and semi-global information. We use the invariants in the first

cale, i.e., s1, l1 and c1, to represent the semi-global information,

hile the invariants in the last scale, i.e., sm, lm and cm, to rep-

esent the local information. Consider that the points far from the

hape center need larger circles to cover and represent shape parts,

.g., in Fig. 5, the points at the top of the rabbit ears need a larger

ircle than the points at the middle of the ears to cover the part of

ars. Instead of using a fixed radius, we set the initial R(i) as half of

he distance from the contour point p(i) to the shape center pcenter:

= ||p(i) − pcenter||
2

, (10)

here

pcenter =
∫

shape xdx∫
shape dx

, (11)

is the weight-center of the whole shape. pcenter is calculated by

veraging the coordinates of all the pixels in the shape. The circle

1(i) in the first scale covers the meaningful body part near p(i),

nd the invariants in this scale capture the semi-global invariant

hape features in this part. In contrast, the circle in the last scale
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Fig. 7. The DCE revolution results under different evolution degrees. The evolution degree gets deeper from left to right.
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is very small, which covers so small an area that the invariants

can only represent the detailed yet simple shape features, e.g., the

curvature of the local shape. Therefore, the invariants in different

scales represent full information of the shape. In Fig. 4, an example

shape with circles from Scale 1 to Scale 4 are shown. As seen that

C1 covers a visual part of the cup, while the C4 covers only a local

shape pattern.

The scale number m influences the capability of the descriptor

as well, which needs to be carefully selected. A big scale number

is not always better than a small one. For simple shapes, e.g., a

regular square, the normalized area at the corner points are al-

ways 0.25 in different scales. Thus a bigger scale number does

not increase the discriminative power of the descriptor, and may

not benefit the shape matching performance. Moreover, the com-

putational cost is also increased by a bigger scale number. There-

fore, the scale number m should be set according to the complex-

ity of shapes. In the proposed descriptor, the bigger scales are al-

ways used regardless of the complexity, and the scale number m

determines only the smallest scale. Complex shapes include more

salient local features which need more scales to represent. Simple

shapes with few local features, however, need less scales to rep-

resent the shape. Therefore, we set the scale number m accord-

ing to the following convergence condition: if the average differ-

ence of the invariants between two neighbor scales m and m + 1

is less than a threshold, e.g., 1e-2, the invariants in scale m + 1 is

unnecessary.

3.4. Properties of IMD and differences from the integral invariants

Although the previous area integral invariant [13] and the pro-

posed area invariant sk are both normalized area inside the local

circle centered at p(i), our method is significantly different from

the integral invariants in the following aspects:

• The definitions are different. Our method only uses the sim-

ply connected zone Z, while the integral invariants use all the

zones within the circle. Our method is more robust for artic-

ulated variation: if a circle covers two articulated parts, addi-

tional area will be calculated in the integral invariants, which

increase the intra-class distance. This problem is demonstrated

by the rabbit ears in Fig. 5. As seen in the figure we can find

that the circle centered upper on the ears (Fig. 5, (b)) covers

two zones A and B, where only the A zone is calculated regard-

less the distance between ears. However, if the circle center is

near the roots of the ears as in Fig. 5, (c), the whole grey area

is calculated. Therefore, our method is more invariant to articu-

lated deformation. This problem also exists in another example

of the horse legs shown in Fig. 12. Using the simply connected

curve, the calculation of the normalized arc length lk benefits

for this problem as well.
• Siddharth et al. [13] indicates that the integral invariants has an

approximate relation with the curvature at p(i), however, this

property does not always hold for complex shapes in big scales

with serious variation of curvature, e.g., the circle zone in Fig. 5,

(c). From Fig. 5, (c), the shape within the circle cannot be repre-

sented by simply the curvature at p(i). Hence, the approximate

calculation of integral invariants is not reliable in the case in
(b). In contrast, the straight forward calculation of area in our

method is more intuitive.
• The integral invariants also use a multi-scale representation

with different radius, but the radius increases by arithmetic

progression, i.e., r/R = {0.1, 0.2, . . . , 0.5}. On the contrary, in our

method, the radius decreases by geometric progression, which

can converge fast. Hence, our method represents more shape

information by less scales. Furthermore, our method is not sen-

sitive to the initial R, since the invariants are normalized pa-

rameters, and the little variation of the radius in the same scale

will not significantly change the descriptor.

. Contour evolution for salient feature points

Most of the previous methods use all the sample points on the

hape contour, which have three limitations: (1) there are many

edundant points that do not capture salient shape features, but

hey have the same weight as the salient feature points, which

akes the descriptor not representative for the shape features; (2)

he redundant points are sensitive to noise so that the variations

f them increase the alignment error and affect shape matching;

3) the redundant points increase the computational cost in both

epresentation and matching.

To extract shape features and weed out redundant points, Late-

ki and Lakamper [23] proposed the discrete contour evolution

DCE) method. The DCE method deletes the redundant points

hile preserving the salient feature points. The main idea of DCE

s that, in each time evolution, the point with minimum contribu-

ion to target identification is deleted. The contribution of a point

(i) is defined by a relevant measure function K:

(i) = B(i) · b(i, i − 1) · b(i, i + 1)

(b(i, i − 1) + b(i, i + 1))
, (12)

where b(i, i − 1) is the segment length between p(i) and p(i −
), b(i, i + 1) is the segment length between p(i) and p(i + 1),

nd B(i) is the angle of these two segments. The length b is nor-

alized with respect to the contour perimeter. A higher K indi-

ates a bigger contribution to the shape. However, the deficiency

f this method is that it cannot evolve adaptively due to the local

alculation of K, which conducts insufficient evolution with bor-

er noises (Fig. 7, (b)), or over evolution into a convex polygon

Fig. 7, (f)).

In this work, we propose an adaptive discrete contour evolu-

ion (ADCE) method to overcome the above limitations by an adap-

ive ending of evolution. The ideal result is that all the visual

arts correspond exactly to all significant visual parts of the orig-

nal shape contour after evolution. Therefore, the evolved contour

hould maintain a certain similarity with the original contour. We

efine an area-based adaptive ending function F(t), called evolution

rea difference function (EADF), as follows:

(t) = n0

∑t
i=1 |Si − Si−1|

S0

, (13)

where S0 is the area of the original contour, St is the area after

times of evolution and n0 is the total point number of the orig-

nal contour. Note that we use the absolute difference between St
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Fig. 8. (a) is the EADF function F(t) of a sample shape and (b) is the derivative function of F(t). The threshold of F(t) is chosen at the point where the derivative function

significantly increases (the inflection point at 325 for this shape).

Fig. 9. (b) and (d) are the ADCE revolution results of the original shapes (a) and (c) under the threshold F = 0.5. The numbers aside the shapes are the point numbers of

respective contours.
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nd St−1 considering that both the convex and concave evolutions

ontribute to the total area difference. The contour evolution ends

hen F(t) is bigger than a given threshold. The function F(t) of a

ample shape is plotted in Fig. 8, (a). The derivative function of F(t)

s shown in Fig. 8, (b). The threshold for function F(t) is chosen at

he point where its derivative significantly increases. This point is

he inflection point at 325 for this shape in Fig. 8, (b). If the evo-

ution time is less than 325, there would be still redundant points.

therwise, the salient feature points are removed and the shape

nformation is lost. The evolution results of two sample shapes are

hown in Fig. 9 with the number of points of both the original and

volved contours. We can see that the evolved shapes preserve the

alient shape features of the original shapes with less redundant

oints.

We should note that, the proposed ADCE step is only used to

nd the representative feature points, while the IMD of the evolved

ontour is still calculated from the original image at these feature

oints. That is, the length of the contour sequence is decreased by

he ADCE, while the IMD values of the remained contour points

re the same as that in the original shape. This is to preserve the

riginal shape features of the salient feature points.

. Shape matching by dynamic programming

As the IMD of the evolved shape contour is obtained, we match

wo shapes by calculating their dissimilarity. An intuitive idea is to

ompare their invariant functions (the functions of the IMD invari-

nts) directly. However, the contour points of two shapes should be

ligned beforehand. In this work, the dynamic programming (DP)

24] is employed to find the best correspondence between two

hapes. Given two evolved shapes A and B, describe them with

oint sequences on their evolved contours: A = {p1, p2, . . . , pn }

A

nd B = {q1, q2, . . . , qnB
}. Without loss of generality, assume nA ≥

B. The matching cost of two points pi and qj is defined as the Eu-

lidean distance of their IMD invariants:

(pi, qj)

=
√

m∑
k=1

((sp

k
(i) − sq

k
( j))2 + (l p

k
(i) − lq

k
( j))2 + (cp

k
(i) − cq

k
( j))2),

(14)

nd the cost matrix D represents the set of costs between all pairs

f points:

(A, B) =

∣∣∣∣∣∣∣
d(p1, q1) d(p1, q2) ... d(p1, qnB

)
d(p2, q1) d(p2, q2) ... d(p2, qnB

)
... ... d(pi, qj) ...

d(pnA
, q1) d(pnA

, q2) ... d(pnA
, qnB

)

∣∣∣∣∣∣∣.
(15)

Then, the DP algorithm is used to find the best correspondence

of the two point sequences, where pj is mapped to qπ (i) if π (i) �=
, and pi is unmapped otherwise. π should minimize the matching

ost function fA, B(π ) of shapes:

fA,B(π ) =
nA∑

i=1

d(pi, qπ(i)). (16)

As there is an over fitting problem in the directly optimization,

penalty employed to π is defined as d(pi, qπ(i)) = τ if π(i) = 0,

here τ is the penalty factor for the points with no suitable

atches. The similarity sim(A, B) between shape A and B is the

inimum value of fA, B(π ):

im(A, B) = min fA,B(π ). (17)
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6. Experimental results

In this section, we evaluate the capability of the proposed

method in three aspects: (1) demonstrate the invariant proper-

ties of the proposed IMD descriptor for articulated deformation,

partial occlusion and intra-class variation including rotation and

scale variation; (2) evaluate the representative and discriminative

power by shape matching and retrieval experiments on bench-

mark datasets, including the MPEG-7 [19] dataset, Articulated [8]

dataset, Kimia’s 99 and Kimia’s 216 [25] datasets by an extensive

comparative study; (3) test the robustness to noise in shape de-

scription and retrieval.

6.1. Invariant properties of IMD

In this experiment we evaluate the invariant properties of

IMD to rotation, scale variation, articulated deformation, intra-class

variation, and partial occlusion. Since the rotation and scale vari-

ation often happens in most of object detection and recognition

applications, we combine these two variations with the intra-class

variation together to test our method first. In the test, we select

two images with salient intra-class variations from the same class

in the MPEG-7 dataset, and calculate their invariant functions as

shown in Fig. 10. In the first column of Fig. 10, row1 and row2

show the original images with salient intra-class variations, row3

and row4 are their corresponding rotated images, row5 and row6

are scaled images, and finally row7 and row8 have the rotated and

scaled images. Columns 2, 3, and 4 are the IMD functions corre-

sponding to the shapes. From the figures we can find significant

correspondences and similarities among the functions of different

shapes. We should note that, the plots in the figures are the func-

tions of the invariants of the original shapes with many redundant

points. After the revolution by ADCE, the invariants may extract the

shape information of the salient feature points more clearly, e.g.,

the peak values in the functions. The strong correspondence of the

function peaks among shapes in the plots indicates the invariance

of our method to intra-class variation. Fig. 11 visualizes the non-

linear matching maps between shapes with integrated variations,

from which we can get an intuitive perception about the properties

of our method. The correspondences between the ADCE contour

points are optimized by the DP algorithm. In spite of the salient

variations, we can still find the corresponding parts of the shapes

are well matched, which illustrates intra-class invariance, rotation

invariance and scale invariance. This result also verifies that the

DP algorithm is reasonable, and the calculated similarities among

shapes show a reliable quantitative evaluation for shape matching

and retrieval.

The articulated deformation is another challenging variation in

shape description. We use shape samples of two shape classes, rab-

bit and horses, in the MPEG-7 dataset to demonstrate the invari-

ance of our method. As mentioned in Section 3, the articulated

deformation invariance of the rabbit ears (in Fig. 5) is indicated

in the definition of the invariants using the major zones and seg-

ments. Here, we use another example, the horse legs, to evaluate

the articulation invariance as shown in Fig. 12. As seen that the

standing horse (the top image of the first column in Fig. 12) have

two front legs parallel together, and the circle centered on the left

leg covers both the two front legs. However, the circle centered at

the corresponding point on the running horse (the bottom image

of the first column in Fig. 12) covers only one leg. The functions of

their invariants in the first scale are shown in Columns 2, 3, and

4 with the labels (black circles on the functions) corresponding to

the circle centers on the horse legs. We can find the strong sim-

ilarities between the corresponding functions at the labels which

indicate the articulated deformation invariance of our method. The
ight front leg of the standing horse does not affect the calculation

f the invariants of the left front leg, although it is inside the circle.

he articulated dataset [8] includes shapes with various articulated

eformations, which is used to test the robustness of our method

n shape matching and retrieval described in Section 6.2. We only

how the functions in the first scale, because the first scale is af-

ected the most by the articulated deformation. The higher scales

ave smaller circles to cover a more local range which cannot be

ffected by the articulated parts seriously. Thus, if the method is

nvariant of articulated deformation in the first scale, it is also in-

ariant in the higher scales. The matching result of the two shapes

s shown in Fig. 13. To emphasize the matching result of the artic-

lated parts, the mapping of the common parts are not shown in

his figure. From the result we can see that the legs of the horses

re well matched, which demonstrates the articulated invariance

f our method.

Occlusion is unavoidable in the real applications of object

ecognition by shape matching due to the obstacles in tracking.

his experiment is to demonstrate the invariant property of the

MD descriptor on the partially occluded shapes. Sample shape of

he camel class from the MPEG-7 dataset is partially occluded in

ur test, where the IMD invariants of both the occluded and orig-

nal shapes are shown in Fig. 14. As seen, the camel head is oc-

luded, and the squares in the function plots (Column 2–4) cor-

esponds to the parts blocked by squares in the original and oc-

luded images (Column 1). The blocked part of the occluded camel

s a segment of line, and the functions inside the corresponding

quares are much simpler than that of the original image. Besides

he squares, the rest of the corresponding functions are similar,

hich indicates that our method is invariant for occlusion. The rea-

on for using only the first scale of the functions in Fig. 14 is the

ame as that in the experiment of articulated deformation invari-

nce. Fig. 15 shows the matching result of the two shapes. In this

gure, the contour points of shapes are well mapped except the

ccluded part. The matching of the occluded part does not affect

he matching of other parts, which verifies the occlusion invari-

nce of the proposed descriptor. Note that, a too heavy occlusion,

.g., the main part of shape is occluded, may result in ambigui-

ies in shape matching and retrieval due to losing too much shape

nformation.

.2. Shape retrieval

.2.1. Implementation setting

For shape representation, the scale number of the IMD descrip-

or is set to 4 for MPEG-7 dataset, while 3 for the Articulated

ataset and Kimia’s 99 dataset, according to the convergence con-

ition in our method. We use the proposed ADCE method to ex-

ract the salient feature points, where the threshold F is 0.4 and

he number of the extracted points ranges from 4 to 100. In the

ollowing we give the retrieval results and analysis on the bench-

ark datasets.

.2.2. MPEG-7 dataset

The MPEG-7 [19] is a standard dataset which is widely used

o test the capability of shape matching and retrieval methods.

t consists of 1400 binary images divided into 70 shape classes

hat each class contains 20 shapes. Fig. 16 shows some typical

hapes of MPEG-7 with two shapes from each class. From the

gure we can see that the shapes have considerable intra-class

ariations. Generally, the retrieval rate of a method is measured

y the so-called bull’s eye score. Every shape of the dataset is

sed as a query to compare with all other shapes retrieved by

hape matching. Among the 40 most similar shapes, the number

f shapes from the same class of the query shape is reported. The
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Fig. 10. In the first column, row1 and row2 are the original images with salient variations, row3 and row4 are the corresponding rotated images, row5 and row6 are scaled

images, row7 and row8 are rotated and scaled images. Column 2–4 are the invariant functions of s, l and c respectively, corresponding to the images in the left.
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Fig. 11. Nonlinear mapping of shape contour points via DP matching of IMD

description. Fig. 13. Nonlinear mapping of articulated shapes.

Table 1

Retrieval rates (Bulls-Eye) of different methods on

the MPEG-7 dataset without distance learning.

Method Retrieval rate (%)

Visual part [23] 76.45

SC [14] 76.51

Distance sets [26] 78.38

Gen. model [37] 80.03

SSC [38] 82.39

AISD [39] 84.26

IDSC [8] 85.40

HPM [17] 86.35

CDTW+SC [40] 86.73

TAR [15] 87.23

Shape tree [18] 87.70

ASC [41] 88.30

Contour flexibility [10] 89.31

Locally affine invariant [42] 89.62

Height functions [43] 89.66

Shape vocabulary [35] 90.41

Our method 91.25

t

t

b

d

bull’s eye retrieval rate is the ratio of the total number of shapes

from the same class to the highest possible number and the best

possible rate is 100%. We calculate the retrieval rate of all the

shapes in this dataset and divide the sum by 28000 (1400∗20).

The bull’s eye scores of our method compared with other meth-

ods are listed in Table 1, where our method has the best score

comparing with other methods (without distance learning) in this

table. The accuracy of our method is significantly higher than that

of the popular IDSC [8] method which is a classic algorithm in

the literature. The methods below the IDSC [8] in the table are

proposed to improve the shape matching performance and our

method shows better result than them. This validates the superier

representative and discriminative characteristics of the proposed

method for shape retrieval.

The retrieval rates of the 70 shape classes by our method are

displayed by a histogram in Fig. 17, which shows that the rates of

two classes, Class 29 and Class 32, are much lower than that of

other classes. The shapes of these two classes are shown in Fig. 18,

which are hard to retrieve for two reasons. (1) there are very

few feature points to represent the shapes, e.g., only the points

on the circle can represent the meaningful shape feature of Class

32. (2) there are too many interference points, e.g., the points of

the chaotic curve inside the circle. This affects the performance of

shape matching and increase the intra-class distances.
Fig. 12. The invariant functions of articulated shapes. The first column is two shapes wit

invariants s, l and c in the first scale. The small circles in the invariant functions correspo
We should note that, it is impossible for any descriptor to ex-

ract all the shape features to achieve a 100% retrieval rate. Fur-

hermore, considering two shapes in matching, some differences

etween them are more relevant for shape similarity, while some

ifferences are irrelevant for shape characterization. The pairwise
h articulated deformation at the horse legs. The 2–4 columns are functions of the

nd to the circle center positions on the original shape contours.
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Fig. 14. The invariant functions of occluded shape compared with original shape. The first column are the original shape and an occluded shape. The occluded part is blocked

by squares in both images. The 2–4 columns are functions of the invariants s, l and c in the first scale. The squares in the functions correspond to the occluded part of the

image.

Fig. 15. Nonlinear mapping of occluded shapes.
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Table 2

Retrieval rates (Bulls-Eye) on MPEG-7

dataset with distance learning.

Method Retrieval rate (%)

IDSC [8] 85.40

Our Method 91.25

IDSC+LP [20] 91.61

IDSC+LCDP [22] 92.36

Our method+LP 94.51
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atching with shape description cannot measure the weight of

hape feature because the pre-knowledge of the dataset is not uti-

ized. In this sense, it is necessary to make use of the excellent

istance learning method to further improve the retrieval rate.

To evaluate the capability of our method with distance learning

ethod, the proposed MID invariants of the ADCE shape contour

re used as the basic descriptor and the LP [21] distance learn-

ng method is applied to improve the retrieval rate. The distance

earning methods [21,22] are also applied on the IDSC[8] descriptor

or comparison. The IDSC descriptor is a popular shape descriptor
Fig. 16. Typical shapes of MPEG-7 wi
hich is widely used as the basic descriptor to design the distance

earning methods for shape matching [20–22]. Hence, this experi-

ent is fair to evaluate the accuracy of our method with distance

earning.

The results are listed in Table 2, where the methods above the

oundary line are the original methods without distance learning

hile the methods below the boundary line are methods applied

ith distance learning. From the results we can see that the

etrieval rates of both the IDSC and our method are improved by

he distance learning methods, i.e., the LP and the LCDP. With

istance learning, our method shows an impressive performance

ith the dominating retrieval rate of 94.51%, compared to others.

he results indicate that improving the capability of descriptor is
th two shapes from each class.
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Fig. 17. Retrieval rates of the 70 classes in the MPEG-7 dataset.

Fig. 18. Shapes of the two classes which have the lowest retrieval rate of the 70 classes in the MPEG-7 dataset.

Table 3

Retrieval results on Kimia’s 99 dataset.

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SC [14] 97 91 88 85 84 77 75 66 56 37

CDPH+EMD [44] 96 94 94 87 88 82 80 70 62 55

Gen. model [37] 99 97 99 98 96 96 94 83 75 48

Efficient indexing [9] 99 97 98 96 97 97 96 91 83 75

Path similarity [45] 99 99 99 99 96 97 95 93 89 73

Our method 99 99 99 99 98 97 95 94 90 83

Table 4

Retrieval results on Kimia’s 216 dataset.

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

SC [14] 214 209 205 197 191 178 161 144 131 101 78

CDPH+EMD [44] 215 215 213 205 203 204 190 180 168 154 123

Our method 216 216 214 210 207 207 201 194 188 182 163
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important for shape matching, even if a distance learning method

can optimize the accuracy.

6.2.3. Kimia’s dataset

The Kimia’s dataset [25] is another widely used benchmark

dataset for evaluating shape matching and retrieval methods, in-

cluding Kimia’s 25, Kimia’s 99 and Kimia’s 216. As the Kimia’s 25

dataset is too small (contains only 25 shape samples in total), we

choose the Kimia’s 99 and Kimia’s 216 datasets to test our method

for shape retrieval. All the shape samples of these two datasets are

shown in Fig. 19 and Fig. 20. The Kimia’s 99 dataset contains 99

shapes grouped into 9 classes. In our test, each shape is used as

a query to match all other shapes and their similarities are com-

puted. The retrieval rates are summarized as the number of shapes
rom the same class among the top1 to 10 most similar shapes,

nd the best possible result for each of them is 99. The Kimia’s 216

ataset consists of 18 shape classes with 12 shapes in each class.

e test our method on this dataset in the same manner as the

est on the Kimia’s 99 dataset and the best possible score of each

esult is 216. We only use our method to calculate the pairwise

imilarity of the shapes, where the distance learning methods are

ot employed. The results on these two datasets comparing with

ther methods are shown in Tables 3 and 4, which show that our

ethod has comparable results.

.2.4. Articulated dataset

In this experiment, we implement our method on the artic-

lated dataset [8] to evaluate the robustness against articulated
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Fig. 19. All the shapes of the Kimia’s 99 dataset.

Fig. 20. All the shapes of the Kimia’s 216 dataset.
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Fig. 21. All the shapes of the articulated shape dataset.

Table 5

Retrieval results on the articulated shape dataset.

Method Top 1 Top 2 Top 3 Top 4

L2 (base line) [8] 25 15 12 10

SC [8] 20 10 23 5

MDS+SC [8] 36 26 17 15

IDSC [8] 40 34 35 27

Our method 40 37 35 30

Table 6

Retrieval rates with different initial R.

Ratio of R 0.3 0.4 0.5 0.6 0.7

MPEG-7 88.16 90.42 91.25 88.74 85.32

Kimia’s 99 90.22 93.17 94.46 91.78 86.65

Table 7

Retrieval rates with different scale number m.

Scale number m 1 2 3 4 5

MPEG-7 87.37 88.79 90.10 91.25 89.41

Kimia’s 99 91.85 93.21 94.46 92.62 89.56
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deformation. The articulated dataset contains 40 shapes from 8

classes of objects (six classes of different scissors and two classes

of staplers) as shown in Fig. 21. In each class, the five shapes have

serious articulated deformation contrast to each other. Besides the

articulated deformation, another challenge to implement shape

retrieval on this dataset is the significant inter-class similarity.

The test is carried out in the same manner as the experiments

on the Kimia’s datasets, and the results are shown in Table 5. Our

method has the highest scores in this table, especially outperforms

the IDSC [8] method which is specially designed for articulated

shapes. Although the curves of the holes inside the scissors are

not used as contours in our method, the holes have effects on the

values of the IMD invariants, which increase the discrimination of

our method on this dataset.

6.2.5. Validation of initial radius R and total scale number m

This experiment demonstrates how the parameters R and m af-

fect the performance of our method. Firstly, the accuracy of our

method is tested when the initial radius R is set to different val-

ues. The R is set to different ratios of the distance from the con-

tour point to the shape center (defined in Section 3.3, Eqs. 10

and 11). In this experiment, we set the ratio from 0.3 to 0.7, and

the performances of shape retrieval on the MPEG-7 dataset and

Kimia’s 99 dataset are shown in Table 6 with the bull’s eye scores.

From the results we can find that the ratio of 0.5 renders the best

score in both datasets. The score drops when the ratio is higher or

lower. That is because a too small initial R covers a very local area

and the semi-global information is lost, while a too large R covers

nearly the whole shape, thus the description of different contour

points are similar. Thus the idea of our descriptor to represent both
ocal and semi-global shape features is reasonable and the setting

f initial R to 0.5 is validated.

In validation of the total scale number m, we set m from 1 to

, and calculate the retrieval accuracy of our method on the two

atasets. m = 1 means that only the first scale with initial R is

sed to represent shape features, while m = 5 is big enough to in-

lude detailed local shape features in these datasets. An extreme m

s to make the smallest circle cover only one pixel, which is mean-

ngless in real application. The experimental results are shown in

able 7, where m = 4 makes the best score in MPEG-7 dataset

nd m = 3 renders the best result in the Kimia’s 99 dataset. The

cores with other scale numbers are lower in respective datasets.

ess scales cannot represent shape feature details well, while too

any scales cannot increase the representativeness of the descrip-

or but introduce extra noises and errors.

.3. Robustness for noise

This experiment is carried out to evaluate the robustness of

ur method against noise. Gaussian noises are added to the orig-

nal shape contours in the Kimia’s 99 dataset. The shape con-

ours are perturbed by a Gaussian random function with zero

ean and deviation σ in both x and y directions. The noisy

hapes with different deviations σ are shown in Fig. 22. The

MD functions of the original shape (Fig. 22, (a)) and the noisy

hapes with σ = 0.4 and σ = 0.8 (Fig. 22, (c), (e)) are shown in

ig. 23. From the figure we can find that the IMD invariants pre-

erves invariance under noise, and the increasing of σ has very

ittle effect on our method. The invariants s and c with differ-

nt σ are almost the same. The absolute values of l increases

hen σ gets bigger, because the noise increases the total arc

ength of the contour as well as the normalized l.

We also test our method on the perturbed Kimia’s 99 dataset

ith different σ . This test is implemented in the same manner as

efore to calculate the retrieval rate. The result is shown in Table 8.

rom the results we can see that the retrieval rates of our method

s rarely affected under noise level from σ = 0.2 to σ = 0.6, while

he rates of σ = 0.8 still maintain a relatively high score. This re-

ult verifies the robustness of our method against noise in shape

etrieval.
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Fig. 22. The same shape with Gaussian noises in different degrees.

Fig. 23. The invariant functions with Gaussian noises, where σ= 0, 0.4 and 0.8 in the 1–3 rows respectively. The columns are different types of invariants in the first scale.

Table 8

Retrieval results on Kimia’s 99 dataset with noise.

σ 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0 99 99 99 99 98 97 95 94 90 83

0.2 99 99 99 98 97 96 94 93 88 82

0.4 99 99 98 97 97 95 93 92 87 79

0.6 99 99 98 97 96 96 93 91 86 77

0.8 99 99 97 96 96 95 92 88 83 74

Table 9

Efficiency of different methods on the MPEG-7

dataset.

Method Time (ms)

SC [14] 200

IDSC [8] 310

HPM [17] 25

TAR [15] 70

Shape Tree [18] 500

Our method without ADCE 65

Our method 12
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.4. Efficiency comparison

In this experiment, we test the efficiency of our method com-

aring with other important methods. The average calculation time

f each query shape in the MPEG-7 dataset is tested for different

ethods, and the results are listed in Table 9. From the table we

an see that our method needs 12 ms for each query shape, which

s the best score in this table. Furthermore, this result validates

hat our method is capable of real time implementation under at

east 80 fps. We also test the efficiency of our method without us-

ng the ADCE algorithm, and the result is 65 ms. This result in-

icates that the ADCE processing improves the efficiency of shape

atching significantly.
. Conclusion

In this paper, a novel invariant multi-scale descriptor is pro-

osed for shape representation, matching and retrieval. Different

ypes of invariants in the proposed descriptor capture shape fea-

ures from different aspects. Invariants are used in different scales,

hich are capable of representing both local and global informa-

ion simultaneously. The experimental results verify that this de-

criptor is invariant to rotation, scaling, partial occlusion and intra-

lass variations, insensitive to articulation and robust for noises.

he invariant functions show that the local and semi-global fea-

ures are both captured by the invariants in different scales. The

roposed ADCE algorithm is capable of extract the salient feature

oints. The retrieval experiments on the benchmark datasets verify

hat the proposed method has an excellent advantage on retrieval

ccuracy. The experiment of our method with distance learning al-

orithms validates that the capability of descriptor is essentially

mportant for a good retrieval performance.
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