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Abstract—Local binary pattern (LBP) is sensitive to image
noise. Noise-resistant LBP (NRLBP) improves the robustness
to noise by incorporating the prior knowledge of images and
information of other LBP bits into encoding process. However,
it encodes the small pixel difference in such a way that its sign
and magnitude are ignored. Although the small pixel difference
may be easily distorted by noise, some of its information is still
useful for LBP encoding. In this letter, we propose two enhanced
NRLBPs that jointly utilize the sign and the magnitude of the
current pixel difference, and also the information of other LBP
bits. The proposed approaches are validated on two benchmark
databases and demonstrate a superior performance compared
with NRLBP and other LBP variants. The performance gain is
significant when the noise level is high.

Index Terms—Noise-Resistant Local Binary Pattern, NRLBP+,
NRLBP++, Face Recognition

I. I NTRODUCTION

L OCAL binary pattern (LBP) encodes the sign of the
pixel differences between a pixel and itsP neighbors.

The histogram of LBP codes is often used as the feature
descriptor. Fig. 1 illustrates the LBP feature extraction process.
LBP is popular because of its simplicity and robustness
to illumination variations and alignment error. LBP and its
variants have been widely used in face recognition [1]–[4],
texture classification [5]–[7], dynamic texture recognition [8]–
[10], human detection [11], [12] and many others [13]–[18].

Fig. 1. Illustration of the feature extraction process for LBP.

However, LBP is sensitive to image noise [2], [3]. A
small image variation may alter the LBP code. To tackle this
problem, many approaches were proposed in literature. In [5],
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uniform patterns were proposed to capture image structures
and noisy non-uniform patterns were grouped into one bin
to suppress the noise. In dominant LBP (DLBP) [7], the
most frequently occurred patterns were utilized instead of
uniform patterns. Tan and Triggs proposed local ternary pattern
(LTP) [2] to handle the image noise in a smooth image region.
Subsequently, many LTP variants were proposed [19]–[21].
Instead of hard-coding the pixel difference, a probabilitymea-
sure is used in fuzzy LBP (FLBP) to represent the likelihood
of a pixel difference to be encoded as “0” or “1”, e.g. a
piecewisely linear membership function in [6], [22] and a
Gaussian-like membership function in [23]. After fuzzfication,
an image variation will only slightly alter the FLBP histogram.

One limitation of the aforementioned approaches is that
when encoding an LBP bit, only the sign and the magnitude of
the current pixel difference are considered, and the information
of other LBP bits is ignored. To address this issue, noise-
resistant LBP (NRLBP) [3] utilizes the information of other
bits when encoding the small pixel difference, towards the
objective of forming image micro-structures, i.e. uniform
patterns. When there are more than one possible uniform code,
each code is assigned an equal weight to the histogram regard-
less the sign and the magnitude of the small pixel difference.
As the small pixel difference is vulnerable to image noise, its
sign and magnitude are unreliable, and hence discarded during
the encoding of the current small pixel difference.

NRLBP incorporates the information of other bits and the
prior knowledge of images into encoding process, and hence
demonstrates a superior performance [3]. However, it ignores
the sign and the magnitude of the current small pixel difference
during encoding. This information can be also useful. Espe-
cially when a large threshold is used for high-level noise [3],
the magnitude of the pixel difference below the threshold
may not be that small, and hence its sign and magnitude
play an important role in LBP encoding. In view of this,
we propose two improved versions of NRLBP: NRLBP+ that
utilizes the sign of the small pixel difference and NRLBP++
that utilizes both the sign and the magnitude of the small pixel
difference. Besides, both approaches utilizes the information
of other bits to form image micro-structures, in the same way
as in NRLBP. As more information is utilized, the proposed
approaches achieve a better performance than NRLBP [3].

LBP features have been extensively used in face recognition.
To validate the proposed approaches, we compare them with
other LBP variants on the AR database [24] injected with
noise, and the challenging O2FN database [25]. On both
databases, the proposed approaches consistently demonstrate a
superior performance using three different distance measures.
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II. T HE PROPOSEDAPPROACH

A. Problem Analysis of Noise-Resistant Local Binary Pattern

Local binary pattern is sensitive to noise. A small image
variation may alter the LBP bit from “0” to “1” or vice
versa. Local ternary pattern partially resolves this problem
by encoding the small pixel differences into a separate state.
However, both LBP and LTP lack a mechanism to recover
the distorted patterns. In [3], a noise-resistant local binary
pattern with an embedded error-correction mechanism was
proposed. As the small pixel difference is vulnerable to noise,
it is encoded as the uncertain bit. Mathematically, the pixel
differencez between a neighbor and its center is encoded as:

b =











1 if z ≥ t,

X if |z| < t,

0 if z ≤ −t.

(1)

where stateX represents the uncertain state, andt is a
threshold. The uncertain bit is constrained to either “0” or
“1”, represented by a variablexi ∈ {0, 1}, i = 1, 2, . . . , n,
where n is the number of uncertain bits of an LBP code.
For the certain code that does not have an uncertain bit,
n = 0. The uncertain code is represented by a function
C(X), whereX = (x1, x2, . . . , xn). Then, the uncertain bits
are determined using other certain bits to form image micro-
structures. In [5], it is shown that uniform codes represent
image micro-structures while non-uniform codes represent
noisy patterns. Thus, the uncertain bits are determined so as to
form only uniform codes. Mathematically, letΦu denote the
collection of all uniform codes. Based on the functionC(X),
a set of NRLBP codes are generated as:

S = {C(X)|X ∈ {0, 1}n, C(X) ∈ Φu}. (2)

If the number of elementsm in S is more than 1, each ele-
ment is treated equally and each corresponding histogram bin
is added by an equal weight of1/m. The small pixel difference
is easily distorted by noise. Both its sign and magnitude are
unreliable, and hence discarded during encoding. The small
pixel difference is encoded solely based on other certain bits.
As shown in [3], such an encoding scheme is robust to image
noise and able to recover the distorted image micro-structures.

B. Proposed NRLBP+ and NRLBP++

In NRLBP, the small pixel differencez ∈ (−t, t) is encoded
as an uncertain bit regardless its sign and magnitude, as it is
easily distorted by noise. However, the small pixel difference
still carries certain useful information. This information be-
comes more important when the noise level is higher and a
higher thresholdt is applied. As shown in [3], a large threshold
t is often needed to handle high-level image noise. In such a
case, the pixel differencez ∈ (−t, t) could differ largely from
each other. To take account of the information of the uncertain
bit, we propose two LBP-encoding schemes that jointly utilize
the information of both certain bits and uncertain bits.

In the proposed NRLBP+ and NRLBP++, the pixel differ-
ence is encoded in the same way as in Eq. (1), and a set of
NRLBP codes are generated using Eq. (2). Similarly as in

NRLBP, the proposed approaches only form possible uniform
codes by utilizing the information of other certain codes.
Different from NRLBP in which an equal weight is assigned to
each possible uniform code when constructing the histogram,
in the proposed approaches the weights are assigned according
to the information of the small pixel difference.

In the proposed NRLBP+, we assign the weight of each
possible uniform code according to the sign of small pixel
difference. Intuitively, when forming possible uniform codes,
the uncertain bits corresponding to positive pixel difference
should have a larger probability to be encoded as “1”, and
the uncertain bits corresponding to negative pixel difference
should have a larger probability to be encoded as “0”.
Mathematically, we define the probability of the small pixel
differencezi to be encoded as “1” as:

f(zi) = 0.5(1 + q sgn (zi)) for |zi| < t, (3)

where sgn(zi) is a sign function, i.e.sgn (zi) = 1 if zi >
0, sgn (zi) = 0 if zi = 0 and sgn (zi) = −1 if zi < 0.
q ∈ [0, 0.5] is a small positive constant, which weighs the
importance of the sign information. Ifq = 0, NRLBP+ is
degraded to NRLBP. A largerq indicates a higher importance
of the sign information. The optimalq is task-dependent. In
this letter,q is set to 0.2 based on initial experimental results.

Now let us construct the histogram of NRLBP+ for a local
image patch. Ifm = 0, no uniform codes can be formed, and
hence the non-uniform bin is added by 1. Ifm > 0, the relative
contributions of different codesC(X) ∈ S to the histogram
are determined as follows:

W (X) =
n
∏

i=1

(xif(zi) + (1− xi)(1 − f(zi))) , (4)

wherexi is the i-th uncertain bit of the uncertain codeC(X).
The summation

∑

C(X)∈S
W (X) is in general not equal to 1.

Thus, we normalize the weight as:

WN (X) =
W (X)

∑

C(X)∈S
W (X)

. (5)

This process is repeated for every pixel in the patch to generate
the histogram of NRLBP+.

Now we introduce the proposed NRLBP++ that utilizes both
the sign and the magnitude of the uncertain bits. Intuitively,
the uncertain bit corresponding to a larger positive pixel
difference should have a larger probability to be encoded as
“1”. Mathematically, we define the probability of small pixel
differencezi to be encoded as “1” as:

f ′(zi) = 0.5(1 +
zi
t
) for |zi| < t. (6)

Note that this probability depends on both the sign and
the magnitude ofzi. When constructing the histogram of
NRLBP++, the contribution of each NRLBP code to the
histogram is derived using Eqs. (4) and (5), wheref ′ from
Eq. (6) is used in Eq. (4) instead off from Eq. (3).

Algorithm 1 summarizes the procedures to construct the
histogram of NRLBP+ and NRLBP++. As shown in Algo-
rithm 1, these two approaches differ only in the weights of
possible uniform codes to the histogram.
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Algorithm 1 Histogram construction for the proposed N-
RLBP+ and NRLBP++

for Every pixel in a patchdo
Derive the NRLBP bits according to Eq. (1).
if n = 0 then

Accumulate the bin of the certain code by 1.
else

Search uncertain codesC(X) in the space{0, 1}n to
generate a set ofm NRLBP codesS as in Eq. (2).
if m = 0 then

Accumulate the non-uniform bin by 1.
else

Derive the weight of each code inS to the histogram
using Eqs. (3), (4), (5) for NRLBP+, or using
Eqs. (6), (4), (5) for NRLBP++, respectively.

end if
end if

end for

It is clear that the proposed NRLBP+ and NRLBP++ are
different from NRLBP. In NRLBP, when determining the value
of an uncertain code, only other certain bits are considered
and the information of the uncertain bits is discarded. In the
proposed NRLBP+ and NRLBP++, the information of the
uncertain bits is also utilized for LBP encoding. Especially
when the noise level is high and a large threshold is applied,
the sign and the magnitude of the pixel difference below the
large threshold are significantly beneficial to LBP encoding,
despite the fact that they may be distorted by noise.

We briefly discuss the time complexity here. LBP [5],
LTP [2] and DLBP [7] have a time complexity ofO(nIP ), and
NRLBP [3] has a time complexity ofO(nI(P +m)), where
nI is the number of pixels in an image. Due to the histogram
calculation in Eq. (4), the proposed NRLBP+ and NRLBP++
have a higher time complexity ofO(nInm), but it is lower
than that of FLBP, i.e.O(nIP × 2P ). Note thatn ≤ P and
m < 2P .

III. E XPERIMENTAL RESULTS

We compare the proposed approaches with LBP [5], LT-
P [2], DLBP [7], FLBP [6] and NRLBP [3] on the AR
database [24] injected with Gaussian noise and uniform noise,
and the O2FN database [25]. All images are normalized to
128× 128 pixels, and divided into patches of10× 10 pixels.
We use the nearest-neighbor classifier with three distance
measures: Chi-square distance, histogram intersection and
modified G-statistic, same as in [3]. One image per subject
is used as the gallery set and others are used as the probe set.

A. Face Recognition on the AR Database

The AR database is of high image quality, almost without
image noise. In total, 75 subjects are chosen from the AR
database, each with 14 images. The experiments are repeated
6 times. For each trial, we use image 1, 5, 6, 8, 12, 13 of
each subject as the gallery set, respectively. The rest is used
as the probe set. It is a challenging task as face images of
large variations need to be identified using a single image.

1) Resistant to Additive Gaussian Noise: Gaussian noise
is one of the most common types of noise. The images are
normalized in the range of[0, 1], and injected with additive
Gaussian noise of zero mean and standard derivationσ =
0.05, 0.10, 0.15, 0.20. The sample images are shown in Fig. 2.

(a) σ = 0.05 (b) σ = 0.10 (c) σ = 0.15 (d) σ = 0.20

(e) p = 0.2 (f) p = 0.4 (g) p = 0.7

Fig. 2. Sample images of the AR database with Gaussian noiseσ =

0.05, 0.10, 0.15, 0.20 and uniform noisep = 0.2, 0.4, 0.7, respectively.

LTP, NRLBP, NRLBP+ and NRLBP+ have one free parame-
ter: thresholdt, and FLBP also has one free parameter: fuzzifi-
cationd. To study the effect oft (or d), we plot the recognition
rates vs.t (or d) using Chi-square distance, as shown in Fig. 3.
LBP and DLBP are plotted in dashed lines. At the low noise
level, the proposed approaches slightly outperform NRLBP
and DLBP, and significantly outperform LBP and FLBP. The
proposed NRLBP+ achieves a slightly better performance than
NRLBP++ whent ≤ 6. When the noise level increases, LBP,
LTP and DLBP fail to work, whereas FLBP, NRLBP, NRLBP+
and NRLBP++ can still achieve fairly good recognition ratesif
proper thresholds are applied. The optimal threshold for FLBP,
NRLBP, NRLBP+ and NRLBP++ increases as the noise level
increases. The proposed approaches consistently outperform
FLBP for different noise levels at different thresholds, and
outperform NRLBP for most thresholds. The performance gain
is more significant when the noise level is high.

Table I summarizes performance comparison with others at
the optimal threshold. The proposed approaches consistently
outperform others under different noise levels using three
distance measures. The performance gain over NRLBP is more
than 10% at the high noise level. At the low noise level,
NRLBP+ achieves a better performance than NRLBP++ as the
magnitude of the small pixel difference is easily distortedby
noise. On the other hand, when the noise level increases, the
proposed NRLBP++ outperforms NRLBP+. This is because a
larger threshold is needed at the higher noise level, and hence
the magnitude of the pixel difference below the threshold
becomes more significant in LBP encoding.

2) Resistant to Additive Uniform Noise: We also conduct
experiments on the AR database injected with additive uniform
noise in the range of(−p/2, p/2), e.g.p = 0.2, 0.4, 0.7. The
sample images are shown in the second row of Fig. 2. The
performance comparison is shown in Table II. At the low noise
level, the proposed NRLBP+ consistently achieves the best
performance. At the middle and high noise levels, the pro-
posed NRLBP++ consistently achieves the best performance.
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TABLE I
COMPARISON OF RECOGNITION RATES AT THE OPTIMAL THRESHOLD ON THE AR DATABASE INJECTED WITH GAUSSIAN NOISE.

Algorithm Chi-square Distance,σ = Histogram Intersection,σ = Modified G-Statistics,σ =

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
LBP [5] 85.76% 65.71% 42.29% 28.62% 83.61% 55.52% 34.77% 26.41% 81.35% 57.74% 36.00% 23.42%
LTP [2] 86.10% 65.33% 44.56% 29.98% 83.47% 54.74% 37.40% 27.98% 82.77% 63.21% 40.26% 25.97%
DLBP [7] 86.84% 64.87% 39.81% 25.62% 87.18% 61.52% 37.95% 26.22% 84.92% 61.26% 32.50% 15.83%
FLBP [6] 86.53% 79.98% 71.42% 59.06% 86.14% 74.21% 58.19% 43.91% 84.38% 76.85% 68.75% 57.62%
NRLBP [3] 87.20% 80.41% 68.53% 52.53% 88.14% 78.68% 64.97% 52.91% 86.63% 79.52% 67.59% 52.36%
Proposed NRLBP+ 87.86% 82.15% 74.55% 64.24% 88.60% 81.93% 73.79% 62.72% 86.85% 81.76% 74.05% 63.73%
Proposed NRLBP++ 87.54% 82.56% 76.82% 67.91% 88.27% 83.15% 74.51% 65.33% 86.65% 81.93% 75.91% 67.03%

TABLE II
COMPARISON OF RECOGNITION RATES AT THE OPTIMAL THRESHOLD ON THE AR DATABASE INJECTED WITH UNIFORM NOISE.

Algorithm
Chi-square Distance,p = Histogram Intersection,p = Modified G-Statistics,p =

0.2 0.4 0.7 0.2 0.4 0.7 0.2 0.4 0.7
LBP [5] 84.00% 55.81% 25.50% 79.26% 46.67% 24.12% 79.79% 48.80% 20.89%
LTP [2] 84.79% 63.44% 30.02% 80.31% 49.38% 24.74% 80.96% 55.86% 24.91%
DLBP [7] 84.84% 56.00% 24.79% 83.38% 50.22% 24.39% 81.21% 45.56% 8.92%
FLBP [6] 82.87% 77.37% 56.14% 82.65% 70.39% 41.59% 80.55% 74.10% 54.56%
NRLBP [3] 86.44% 77.73% 49.88% 87.38% 74.12% 47.52% 85.64% 75.64% 49.16%
Proposed NRLBP+ 86.75% 79.86% 59.97% 87.49% 78.65% 56.34% 85.83% 79.20% 59.32%
Proposed NRLBP++ 86.46% 80.97% 66.82% 87.35% 80.72% 60.09% 85.30% 80.12% 65.81%

(a) σ = 0.05 (b) σ = 0.10

(c) σ = 0.15 (d) σ = 0.20

Fig. 3. The recognition rates using Chi-square distance vs.threshold on the
AR database injected with Gaussian noiseσ = 0.05, 0.10, 0.15, 0.20.

Particularly, the proposed approaches significantly outperform
NRLBP and other LBP variants at the high noise level.

B. Face Recognition on the O2FN Mobile Database

The O2FN mobile face database [25] was designed to eval-
uate face-recognition algorithms on images of low resolution
and low image quality. It contains 2000 images of 50 subjects.
The images are severely distorted by noise. To reduce the
noise, the images are photometrically normalized as in [2].
We conduct the comparison experiment and repeat it for 5
times. For each trial, we randomly choose one image of each
subject as the gallery images and the rest as the probe images.
The recognition rates at the optimal threshold and the time

consumption for feature extraction per image are reported
in Table III. All approaches are implemented using Matlab
R2015a on IntelR©CoreTM2 i7-3770 CPU @ 3.4GHz with 8Gb
memory. The proposed NRLBP+ and NRLBP++ achieve a
slightly better performance than NRLBP and FLBP, and a
much better performance than LBP, LTP and DLBP using three
distance measures.

TABLE III
COMPARISON OF RECOGNITION RATES AND TIME CONSUMPTION ON THE

O2FNDATABASE.

Algorithm Chi-square
Distance

Histogram
Intersection

Modified
G-Statistics

Time
(ms)

LBP [5] 74.55% 71.75% 73.65% 10.59
LTP [2] 77.32% 74.44% 76.82% 16.90
DLBP [7] 76.11% 77.51% 75.64% 18.86
FLBP [6] 79.29% 77.39% 79.14% 100.42
NRLBP [3] 78.78% 78.46% 79.03% 11.71
Proposed
NRLBP+

79.52% 79.30% 79.86% 54.50

Proposed
NRLBP++

80.34% 79.87% 80.27% 54.03

IV. CONCLUSION

In this letter, we address the challenge of improving the
robustness of LBP features to image noise. LBP is popular in
face recognition, but it is sensitive to noise. NRLBP improves
the robustness by incorporating the information of other bits
into the encoding of small pixel difference. However, the small
pixel difference is encoded without considering the informa-
tion of itself. We show that this information is also useful and
develop NRLBP+ and NRLBP++, which jointly utilize the
information of certain bits and uncertain bits of an LBP code.
The proposed approaches are validated by image matching
using three distance measures on two benchmark face image
datasets, and demonstrate a superior performance compared
with NRLBP and other LBP variants. The performance gain
is significant at the high noise level.
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