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Abstract

We propose a simple, yet effective approach for real-time
hand pose estimation from single depth images using three-
dimensional Convolutional Neural Networks (3D CNNs).
Image based features extracted by 2D CNNs are not direct-
ly suitable for 3D hand pose estimation due to the lack of
3D spatial information. Our proposed 3D CNN taking a 3D
volumetric representation of the hand depth image as input
can capture the 3D spatial structure of the input and accu-
rately regress full 3D hand pose in a single pass. In order
to make the 3D CNN robust to variations in hand sizes and
global orientations, we perform 3D data augmentation on
the training data. Experiments show that our proposed 3D
CNN based approach outperforms state-of-the-art methods
on two challenging hand pose datasets, and is very efficient
as our implementation runs at over 215 fps on a standard
computer with a single GPU.

1. Introduction
Articulated hand pose estimation is one of the core tech-

nologies for human computer interaction in virtual reali-
ty and augmented reality applications, since this technol-
ogy provides a natural way for users to interact with virtu-
al environments and objects. Accurate real-time 3D hand
pose estimation has aroused a lot of research attention in
the past few years [7, 10, 15, 18, 21, 30, 32, 34, 39] with
the emergence of consumer depth cameras. However, it is
still challenging to achieve efficient and robust estimation
performance because of large variations in hand pose, high
dimensionality of hand motion, severe self-occlusion and
self-similarity of fingers in the depth image.

Many recent works on hand pose estimation have
achieved good performance due to the success of Convo-
lutional Neural Networks (CNNs) [4, 17, 23, 34, 40, 42]
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Figure 1: Overview of our proposed 3D CNN based hand
pose estimation method. We generate the 3D volumetric
representation of hand with projective D-TSDF from the 3D
point cloud. 3D CNN is trained in an end-to-end manner
to map the 3D volumetric representation to 3D hand joint
relative locations in the 3D volume.

and the availability of large hand pose datasets [28, 30, 34].
These methods directly take the depth image as input to
2D CNNs which output 3D joint locations [16, 17, 23, 40],
hand model parameters [42] or heat-maps [34]. Neverthe-
less, we argue that image based features extracted by 2D
CNNs are not directly suitable for 3D hand pose estima-
tion due to the lack of 3D spatial information. For example,
in [17], the initial result of 2D CNN is very poor, and it
is iteratively refined by a feedback loop to incorporate 3D
information from a generative model. Ge et al. [4] better
utilize the depth cues by projecting the depth image onto
three views and applying multi-view CNNs to regress three
views’ heat-maps. However, the multi-view CNNs still can-
not fully exploit 3D spatial information in the depth image,
since the projection from 3D to 2D will lose certain infor-
mation. Although increasing the number of views may im-
prove the performance, the computational complexity will
be increased when using more views.



In this work, we propose a 3D CNN based hand pose
estimation approach that can capture the 3D spatial struc-
ture of the input and accurately regress full 3D hand pose
in a single pass, as illustrated in Figure 1. Specifically, hu-
man hand is first segmented from the depth image; the 3D
point cloud of the hand is encoded as 3D volumes storing
the projective Directional Truncated Signed Distance Func-
tion (D-TSDF) [24] values, which are then fed into a 3D
CNN containing three 3D convolutional layers and three
fully-connected layers. The output of this network is a set
of 3D hand joint relative locations in the 3D volume. By
applying simple coordinate transformations, we can finally
obtain the 3D hand joint locations in the camera’s coordi-
nate system. To our knowledge, this is the first work that
applies such a 3D CNN in hand pose estimation in order to
understand hand pose structure in 3D space and infer 3D
hand joint locations efficiently and robustly.

Compared to previous CNN based methods for hand
pose estimation, our proposed 3D CNN based method has
the following advantages:

• Our proposed 3D CNN has the ability to effectively learn
3D features from the 3D volumetric representation for
hand pose estimation. Compared to the 2D CNN regress-
ing 3D joint locations from 2D features [5, 16, 17, 40],
the 3D CNN can directly regress 3D joint locations from
3D features in a single pass without adopting any iterative
refinement process, and can achieve superior estimation
performance.

• Our proposed method can run fast at over 215 fps on a
single GPU. We design a relatively shallow architecture
for the 3D CNN which contains only three 3D convolu-
tional layers and three fully-connected layers. In addi-
tion, the number of parameters in fully-connected layers
is moderate. Thus, our proposed method can meet the
real-time requirement for hand pose estimation.

• Our proposed method is robust to variations in hand sizes
and global orientations, since we perform 3D data aug-
mentation on the training set. Different from traditional
data augmentation that performs 2D transformations on
2D images, our proposed 3D data augmentation applies
3D transformations on 3D point clouds, thus can better
enrich the training data in 3D space.

We evaluate our proposed method on two challeng-
ing hand pose datasets: MSRA dataset [28] and NYU
dataset [34]. Comprehensive experiments show that our
proposed 3D CNN based method for 3D hand pose estima-
tion outperforms state-of-the-art methods on both datasets,
with runtime speed of over 215 fps on a standard computer
with a single GPU.

2. Related Work
Hand pose estimation Methods for hand pose estima-

tion from depth images can be categorized into model-
driven approaches, data-driven approaches and hybrid ap-
proaches. Model-driven approaches fit an explicit de-
formable hand model to depth images by minimizing a
hand-crafted cost function. The commonly used optimiza-
tion methods are Particle Swarm Optimization (PSO) [18],
Iterative Closest Point (ICP) [29] and their combina-
tion [20]. The 3D hand model is represented by Linear
Blend Skinning (LBS) model [1, 8, 36], Gaussian mix-
ture model [25, 26], etc. Some models require to define
user-specific parameters and motion constraints. These ap-
proaches are sensitive to initialization, since they usually
take advantage of temporal information. The estimation er-
rors will be accumulated when previous frames’ estimations
are inaccurate.

Data-driven approaches learn a mapping from depth im-
age to hand pose from training data. Inspired by the pi-
oneering work in human pose estimation [22], [7, 9, 28,
30, 31, 37, 39] apply random forests and their variants as
the discriminative model. Limited by the hand-crafted fea-
tures, random forests based methods are difficult to outper-
form current CNN based methods in hand pose estimation.
Our work is related to the CNN based data-driven approach.
Tompson et al. [34] first propose to employ CNNs to predict
heat-maps representing the probability distribution of 2D
joint positions in the depth image. Ge et al. [4] improve this
method by predicting heat-maps on multiple views in order
to better utilize the depth information. Oberweger et al. [17]
train a feedback loop containing a discriminative network
for initial pose estimation, a generative network for pose
synthesizing and a pose update network for improving the
pose estimation. Zhou et al. [42] propose to predict hand
model parameters instead of the joint locations by adopt-
ing CNNs. Sinha et al. [23] extract activation features from
CNNs to synchronize hand poses in nearest neighbors by
using the matrix completion algorithm. Ye et al. [40] pro-
pose a spatial attention network with a hierarchical hybrid
method for hand pose estimation. All these methods use 2D
filters in 2D CNNs to extract 2D features which are lack of
3D spatial information. Thus, mapping from 2D features to
3D joint locations is difficult. In this work, we lift the 2D
CNN to 3D CNN which can understand 3D spatial informa-
tion and extract 3D features for 3D hand pose estimation.

Hybrid approaches combine a data-driven approach
based per-frame reinitialization with a model driven ap-
proach [21, 32]. These methods are usually applied for hand
tracking since they utilize temporal information to achieve
smooth results. However, in this work, we focus on hand
pose estimation from single depth images without using any
temporal information, which can be used for robust reini-
tialization in hybrid hand tracking approaches.



Figure 2: Visualization of TSDF volumes. For comparison, we visualize accurate TSDF and projective D-TSDF. We only
visualize voxels of which values are less than 1 and larger than -1 by using color maps shown in the color bar. Positive value
(red or yellow) indicates that the voxel is in front of the visible surface; and negative value (blue or cyan) indicates that the
voxel is behind the visible surface. The volume resolution is 32×32×32. This figure is best viewed in color.

3D CNN 3D CNNs have been successfully applied in
video and dynamic hand gesture analysis for recognition
tasks [6, 35, 13], which regard time as the third dimen-
sion. 3D CNNs are also applied to extract 3D features
from 3D data, such as depth images and CAD models.
3D ShapeNets [38] learn powerful 3D features by using
the Convolutional Deep Belief Network for modeling 3D
shapes. Qi et al. [19] show that the 3D CNN with low in-
put volume resolution can still achieve good object classi-
fication accuracy by applying subvolume supervision and
anisotropic probing. Song and Xiao [24] propose to use
3D CNN for 3D object detection in RGB-D images. Matu-
rana and Scherer [12] propose VoxNet, a 3D CNN that can
process LiDAR, RGB-D and CAD data for object recogni-
tion. They also apply the 3D CNN for landing zone detec-
tion [11]. Yumer and Mitra [41] propose to use the 3D CNN
to learn deformation flows from CAD models for 3D shape
deformation. Although these works achieve state-of-the-art
results in their problems, none of them focuses on 3D hand
pose estimation that requires to localize a set of articulated
3D points from single depth images in real-time.

3. Methodology

Our method estimates 3D hand pose from single depth
images. Specifically, the input of this task is a depth image
containing a hand and the outputs areK hand joint locations
in 3D space, which represent the 3D hand pose. Let the K
objective hand joint locations be Φ = {φk}Kk=1 ∈ Λ, here
Λ is the 3×K dimensional hand joint space.

The hand depth image is encoded by a volumetric rep-
resentation which is the input of our proposed 3D CNN.
Through 3D convolution and 3D pooling operations in the
3D CNN, 3D features can be extracted from the volumet-
ric representation and are used for regressing 3D hand joint
relative locations in the 3D volume. To make the 3D CNN
robust to various hand sizes and global orientations, we also
perform 3D data augmentation on the training data.

3.1. Volumetric Representation

The objective for encoding volumetric representation is
to generate 3D volumes representing the hand in 3D space
as raw as possible from the depth image in real-time. These
3D volumes will be fed into the 3D CNN for learning 3D
features and regressing 3D hand joint locations.

If the input is a 3D CAD model where the 3D informa-
tion is fully known, we can use a binary grid to represent
occupied and unoccupied voxels in the 3D volume. How-
ever, in our problem, the input is a 2.5D depth image which
only captures the visible surface points from the view of
camera. 3D ShapeNets [38] classify voxels as free space,
surface and occluded space. The probability distribution
of occupancy in the occluded space is estimated for shape
classification. But this method requires to traverse multiple
camera views and different possible shapes, thus is hard to
achieve real-time performance. KinectFusion [14] applies
the Truncated Signed Distance Function (TSDF) based vol-
umetric representation for environment mapping and local-
ization with depth camera. In accurate TSDF, each voxel
stores the signed distance from the voxel center to the clos-
est surface point which is positive when the voxel is in front
of the visible surface and negative when the voxel is occlud-
ed by the visible surface. The distance is cut off at a trunca-
tion distance and is normalized between -1 and 1. However,
computing accurate TSDF is time consuming, because it re-
quires to search the closest point among all surface points
for all voxels in the 3D volume. For real-time considera-
tions, the projective TSDF, where the closest point is found
only on the line of sight in the camera frame, should be
used. It can be computed efficiently in parallel on a GPU.
Since the projective TSDF is an approximation of the ac-
curate TSDF, some information may be inaccurate or lost
in the projective TSDF. In order to encode more informa-
tion in the volumetric representation, in this work, we ap-
ply the projective Directional TSDF (D-TSDF) proposed in
[24] that replaces the Euclidean distance with a 3D vector



(a) (b)

Figure 3: (a) Architecture of our proposed 3D convolutional neural network. The network contains three 3D convolutional
layers and three fully-connected layers. (b) Visualization of extracted 3D features output from layers L1, L2 and L3 during
the forward pass in a fully trained CNN model. For illustration purpose, we only draw 16, 32, 48 feature volumes output
from L1, L2, L3, respectively. For feature volumes output from L1, we only draw voxels of which values are larger than a
threshold. Voxels with large values are shown in bright color, and voxels with small values are shown in dark color. This
figure is best viewed in color.

[dx, dy, dz] representing three directions’ distances in the
camera’s coordinate system.

Figure 2 shows some examples of accurate TSDF vol-
umes and projective D-TSDF volumes with different hand
poses. As can be seen, in accurate TSDF, the value of TSDF
increases when moving from the visible surface, formed
by the point cloud, to the free space and decreases when
moving to the occluded space. But in projective D-TSDF,
the values of three directions vary continuously along their
corresponding directions and keep positive in front of the
surface, negative behind the surface. Experiments in Sec-
tion 4.1 will show that the projective D-TSDF is computa-
tionally efficient and can improve the estimation accuracy.

To create a 3D volume containing M×M×M voxels,
we first build an axis-aligned bounding box (AABB) for 3D
hand points. AABB is the minimum bounding box of which
x, y, z axes are respectively aligned with x, y, z axes of the
camera’s coordinate system. The 3D volume’s center is set
at the center of AABB, and its faces are set to be parallel to
those of AABB. The edge length of a voxel is set as:

lvoxel = max {lx, ly, lz}/M, (1)

where lx, ly , lz are AABB’s three edge lengths; M is the
volume resolution value. The truncation distance is set as
3× lvoxel. We balance the volume resolution value M with
computational cost. If the volume resolution is too large, it
will be time-consuming and memory intensive. If the vol-
ume resolution is too small, the volumetric representation

cannot give sufficient information for 3D hand pose estima-
tion. In this work, we choose the volume resolution val-
ue M as 32. Some experiments will be conducted in Sec-
tion 4.1 to show that this resolution is suitable for 3D hand
pose estimation when considering both estimation accuracy
and computational efficiency.

3.2. Network Architecture

Our proposed 3D CNN takes three volumes of the pro-
jective D-TSDF as inputs and outputs a column vector con-
taining 3×K elements corresponding to the K 3D hand
joint relative locations in the volume. Figure 3a shows our
proposed network architecture. For the three 3D convolu-
tional layers, the kernel sizes are 53, 33 and 33, all with
stride 1 and no padding. The first two 3D convolutional lay-
ers are followed by 3D max pooling layers with kernel size
23, stride 2 and no padding. After feature extraction by 3D
convolutional layers, three fully-connected layers are used
to map 3D features to 3D hand joint locations. In the first
two fully-connected layers, we apply dropout layers with
dropout rate 0.5 in order to prevent the neural network from
overfitting [27].

We denote a training sample as (Xn,Φn), where Xn is
the depth image, Φn is corresponding joint locations in the
camera’s coordinate system, n = 1, . . . , N . The depth im-
age Xn is converted to the volumetric representation Vn as
described in Section 3.1. Ground truth Φn is transformed
to coordinates in the volume’s coordinate system and nor-



malized between 0 and 1, denoted as Yn:

Yn = Tvolume
camera (Φn)

/
(M · lvoxel) + 0.5, (2)

where Tvolume
camera (·) is a coordinate transformation operation

converting joint locations Φ in camera’s coordinate system
to those in volume’s coordinate system. Since the origin
of the volume’s coordinate system is at the center of the
3D volume, coordinate values in the volume divided by the
volume’s edge length are between -0.5 and 0.5 (assume that
all joints are within the 3D volume). Thus, we add 0.5 in
Equation 2 to make values in Yn between 0 and 1. Dur-
ing the training stage, we minimize the following objective
function using stochastic gradient descent (SGD) algorithm:

w∗ = argmin
w

∑N

n=1
‖Yn −F (Vn,w)‖2, (3)

where w denotes network weights, F represents the 3D
CNN regressor.

In Figure 3b, we visualize some extracted 3D features
output from layers L1, L2 and L3 during the forward pass
using a fully trained 3D CNN model. The corresponding
input is the example shown in Figure 1. As can be seen,
from low layer to high layer, the size of feature volume de-
creases and features are more and more abstract. For each
layer, different parts (e.g., finger tips and hand palm) are ex-
aggerated in different 3D feature volumes. In addition, the
receptive field size of the third convolutional layer (L3) is
20, which can cover a large region in the 3D volume. With
such a large receptive field size, the network can capture
spatial dependencies of 3D hand joints and embed the 3D
joint constraints in an implicit way without using any ex-
plicit hand model or post-processing.

3.3. 3D Data Augmentation

One challenge of hand pose estimation is that hand pose
has large variations in global orientations and hand sizes. In
order to make the 3D CNN model robust to different orien-
tations and sizes, we propose to perform 3D data augmen-
tation on the training data. Different from existing 2D im-
age data augmentation, our method can directly rotate and
stretch the hand point cloud in 3D space.

We first stretch the point cloud along x, y, z axes of the
camera’s coordinate system by stretch factors sx, sy and
sz , respectively. Then, the point cloud is rotated around x,
y, z axes of the camera’s coordinate system with rotation
angles θx, θy and θz , respectively. For a 3D point p, after
stretching and rotation, the point p is transformed into p′:

p′ = R · S · p
R = Rx (θx) · Ry (θy) · Rz (θz)

S = Diag (sx, sy, sz) ,

(4)

whereRx,Ry andRz are 3×3 rotation matrices around x,
y, z axes, respectively; Diag (sx, sy, sz) is a 3×3 diagonal

Figure 4: An example of 3D data augmentation. Top-
left: original point cloud, ground truth and TSDF volume.
Bottom-left: point cloud, ground truth and TSDF volume
after 3D stretching. Top-right: point cloud, ground truth
and TSDF volume after 3D rotation. Bottom-right: point
cloud, ground truth and TSDF volume after 3D stretching
and rotation. For illustration purpose, we only draw the pro-
jective D-TSDF volume on z direction.

matrix whose diagonal entries starting in the upper left cor-
ner are sx, sy and sz . Figure 4 shows an example of 3D data
augmentation. 3D stretching and rotation are performed on
hand point cloud and corresponding ground truth. TSDF
volumes are generated from the transformed point cloud.

In this work, a transformed training set is generated by
randomly stretching and rotating original training samples.
The rotation angles θx and θy are chosen uniformly at ran-
dom from the interval [−45◦, 45◦]. The rotation angle θz is
chosen uniformly at random from the interval [−90◦, 90◦].
The stretch factors sx and sy are chosen log-uniformly at
random from the interval [1/1.3, 1.3]. Since it is the rela-
tive size rather than the absolute size that affects the TSDF
volume, we can set the stretch factor sz as 1. During the
training stage, both the original training set and the trans-
formed training set are used for training.

4. Experiments

We evaluate our proposed method on two public hand
pose datasets: MSRA dataset [28] and NYU dataset [34].
Three metrics are employed to evaluate the hand pose esti-
mation performance in our experiments. The first metric is
the per-joint mean error distance over all test frames. The
second metric is the proportion of good frames in which the
worst joint error is below a threshold [33], which is a strict
measure. The third metric is the proportion of joints within
an error threshold [21].

All experiments are conducted on a computer with two
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Figure 5: Self-comparison of different methods on MSRA dataset [28]. Left: the impact of different volume resolutions on
the proportion of good frames. Middle: the impact of different TSDF types and data augmentation on the proportion of good
frames. Right: the impact of different TSDF types and data augmentation on the per-joint mean error distance (R:root, T:tip).

Intel Core i7 5930K 3.50GHz, 64GB of RAM and an Nvidia
Quadro K5200 GPU. The 3D CNN model is implemented
within the Torch7 [3] framework. For network training pa-
rameters, we choose the batch size as 16, the learning rate as
0.01, the momentum as 0.9 and the weight decay as 0.0005.
The networks are trained for 50 epochs. Training the 3D
CNN proposed in Section 3.2 with 3D data augmentation
takes about 12 hours on the MSRA dataset and 13 hours on
the NYU dataset.

4.1. MSRA Hand Pose Dataset

The MSRA hand pose dataset [28] contains 9 subjects,
each subject contains 17 gestures and each gesture contains
about 500 frames. In the experiment, we train on 8 sub-
jects and test on the remaining subject. This experiment is
repeated 9 times for all subjects. The ground truth for each
frame contains 21 3D hand joint locations including 4 joints
for each finger and one joint for the wrist.

Self-comparisons For self-comparison, we experiment
with different volume resolutions and different types of
TSDF. We also evaluate the effect of 3D data augmenta-
tion. Experimental results are shown in Figure 5.

We experiment with projective D-TSDF volumes with
different resolution values: 16, 32 and 64. Note that when
the volume resolution is 16×16×16 or 64×64×64, the net-
work architecture is different with that in Figure 3a. We
modify the architectures according to different volume res-
olutions and present them in the supplementary material.
Since training the network with 64×64×64 volume res-
olution will consume large amounts of memory, we only
train and test these three networks with different volume
resolutions on a small subset of the MSRA dataset with-
out data augmentation in this experiment. As shown in
Figure 5 (left), the estimation accuracy of 16×16×16 res-
olution is slightly inferior to those with 32×32×32 and
64×64×64 resolutions. The estimation accuracy of the

latter two resolutions is almost the same. But computing
TSDF volume with 64×64×64 resolution is more time con-
suming and memory intensive. Thus, the volume resolution
32×32×32 is most suitable for hand pose estimation. This
result also shows that our method is robust to relatively low
volume resolution, since the estimation accuracy does not
decrease a lot when the resolution value is 16.

We evaluate the impact of different TSDF types and da-
ta augmentation on the estimation accuracy on the whole
MSRA dataset with volume resolution 32×32×32. Note
that, in this experiment, when the input volume is accu-
rate/projective TSDF which has only one channel, the pa-
rameters of the network architecture in Figure 3a should be
modified. We present the modified architecture in the sup-
plementary material. As can be seen in Figure 5 (middle and
right), the estimation accuracy of accurate TSDF and pro-
jective TSDF is almost the same, which indicates that using
an approximation of the accurate TSDF to speed up compu-
tation will not reduce the estimation accuracy of hand pose
estimation. In addition, the estimation accuracy of projec-
tive D-TSDF is better than that of projective TSDF. When
using 3D data augmentation in the training stage, the esti-
mation accuracy will be further improved. For the real-time
performance, the average computation time for generating
accurate TSDF, projective TSDF and projective D-TSDF
on the same GPU are 30.2ms, 1.9ms and 2.9ms, respec-
tively. Thus, considering both the estimation accuracy and
the real-time performance, the projective D-TSDF is overall
better than accurate TSDF and projective TSDF. In the fol-
lowing experiments, we apply the projective D-TSDF with
32×32×32 volume resolution as the network input and ap-
ply 3D data augmentation for training.

Comparison with state-of-the-art We compare our 3D
CNN based hand pose estimation method with four state-
of-the-art methods: the hierarchical regression method [28],
the collaborative filtering method [2], the multi-view CNN
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Figure 6: Comparison with state-of-the-art methods [28, 2, 4, 37] on MSRA dataset [28]. Left: the proportion of good frames
over different error thresholds. Middle & right: the mean error distance over different yaw and pitch viewpoint angles with
respect to the camera frame. Some curves are cropped from corresponding figures reported in [28, 2, 4, 37].
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Figure 7: Comparison with state-of-the-art methods [34, 16, 17, 42, 23, 40] on NYU dataset [34]. Left: the proportion of
good frames over different error thresholds. Right: the proportion of joints within different error thresholds. Some curves
are cropped from corresponding figures reported in [16, 17, 42, 23, 40].

based method [4] and the local surface normals based
method [37] on the whole MSRA dataset. Note that since
the hierarchical regression method [28] has been shown su-
perior to the methods in [22, 30, 39], we indirectly compare
our method with [22, 30, 39].

As shown in Figure 6, our 3D CNN based method out-
performs state-of-the-art methods by large margin on the
MSRA dataset. The proportion of good frames over differ-
ent error thresholds is shown in Figure 6 (left). Our method
achieves the best performance when the error threshold is
larger than 10mm. For example, when the error threshold
is 30mm, the proportion of good frames of our method is
about 10%, 12%, 25% and 30% higher than those of the
methods in [4], [37] (pose classification), [28] and [2], re-
spectively. When the error threshold is 5mm, the proportion
of good frames of our method is slightly worse than those
of the methods in [28] and [2]. This may be caused by the
relatively large edge length of the voxel, which is 5.5mm
in average when the volume resolution is 32×32×32. In
Figure 6 (middle and right), we compare the mean error

distance over different yaw and pitch viewpoint angles with
the methods in [28, 4]. As can be seen, the mean errors over
different viewpoint angles of our method are about 5.5mm
and 3mm smaller than those of the methods in [28] and [4],
respectively. Our method exhibits less variance to the pitch
viewpoint angle changes with a smaller standard deviation
(0.48mm) than those of the methods in [28] (0.79mm) and
[4] (0.64mm).

4.2. NYU Hand Pose Dataset

The NYU hand pose dataset [34] contains 72,757 train-
ing frames and 8,252 testing frames with continuous hand
poses. The ground truth for each frame contains 36 3D hand
joint locations. In our experiments, the 3D CNN is trained
to estimate a subset of 14 hand joints, following previous
work in [34, 17]. Since the NYU dataset provides the orig-
inal depth image containing human body and background,
we segment the hand from the depth image by using the
Random Decision Forest (RDF) [22] similar to [34].

We first compare our 3D CNN based hand pose estima-



Figure 8: Qualitative results for MSRA dataset [28] and NYU dataset [34]. We compare our 3D CNN based method (in
the second line) with the multi-view CNN based method in [4] (in the first line). The ground truth hand joint locations are
presented in the last line. We show hand joint locations on the depth image. Different hand joints and bones are visualized
using different colors. This figure is best viewed in color.

tion method with five state-of-the-art methods: the 2D CNN
based heatmap regression method [34], the 2D CNN based
direct regression method with a prior [16], the 2D CNN
based regression method using feedback loop [17], the 2D
CNN based hand model parameters regression method [42]
and the deep feature based matrix completion method [23]
on the NYU dataset. This evaluation is performed on the 14
hand joints. As shown in Figure 7 (left), our method signif-
icantly outperforms these five state-of-the-art methods over
all the error thresholds. For example, the proportion of good
frames of our method is about 10% more than that of the
method in [17] when the error threshold is between 20mm
and 40mm.

In order to make a fair comparison with the spatial at-
tention network based hierarchical hybrid method in [40],
we evaluate the proportion of joints within in different er-
ror thresholds on the subset of 11 hand joints following the
experiment in [40] (removing palm joints except the root
joint of thumb). As shown in Figure 7 (right), our method
is superior to the methods in [16, 17, 40] over all the error
thresholds. For example, the proportion of joints within er-
ror threshold 20mm of our method is about 10% more than
that of the method in [40].

4.3. Runtime and Qualitative Results

Runtime The runtime of our method using the projec-
tive D-TSDF with 32×32×32 volume resolution as network
input is 4.6ms in average, including 2.9ms for the projec-
tive D-TSDF volume generation, 1.5ms for the 3D CNN
forward propagation and 0.18ms for coordinate transforma-
tion. Thus, our method runs in real-time at over 215fps.
The processes of volume generation and 3D CNN forward
propagation are performed on GPU. The coordinate trans-

formation that converts CNN output values to 3D locations
in the camera’s coordinate system is performed on CPU. In
addition, our 3D CNN model takes about 500 MB of GPU
memory during testing, while the multi-view CNNs in [4]
take about 1.5 GB of GPU memory during testing.

Qualitative results Some qualitative results for MSRA
dataset and NYU dataset are shown in Figure 8. As can
be seen, compared with the multi-view CNN based method
in [4], our 3D CNN based method can better utilize the
depth information and provide more accurate estimation.

5. Conclusion
We present a novel 3D CNN based hand pose estimation

method in this paper. By adopting the projective D-TSDF,
we encode the hand depth image as a 3D volumetric repre-
sentation which is then fed into the 3D CNN. We show that
the 3D CNN mapping the 3D volumes to 3D joint locations
in a single pass is easy to train. We also perform 3D da-
ta augmentation on the training data to make the 3D CNN
robust to various hand sizes and global orientations. Exper-
imental results indicate that our proposed 3D CNN based
approach achieves state-of-the-art performance for 3D hand
pose estimation in real-time on two challenging datasets.
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