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Abstract

Most of current visual search systems focus on image-

to-image (point-to-point) search such as image and object

retrieval. Nevertheless, fast image-to-video (point-to-set)

search is much less exploited. This paper tackles object in-

stance search in videos, where efficient point-to-set match-

ing is essential. Through jointly optimizing vector quan-

tization and hashing, we propose compressive quantiza-

tion method to compress M object proposals extracted from

each video into only k binary codes, where k ≪ M . Then

the similarity between the query object and the whole video

can be determined by the Hamming distance between the

query’s binary code and the video’s best-matched binary

code. Our compressive quantization not only enables fast

search but also significantly reduces the memory cost of

storing the video features. Despite the high compression

ratio, our proposed compressive quantization still can effec-

tively retrieve small objects in large video datasets. System-

atic experiments on three benchmark datasets verify the ef-

fectiveness and efficiency of our compressive quantization.

1. Introduction

Given an image of the query object, the video-level ob-

ject instance search [27, 28] is to retrieve all relevant videos

in the database that contain the query object. Retrieving

small objects in big videos has many applications in social

media, video surveillance, and robotics, but is much less

explored compared with object search in images.

Despite the recent progress of object instance search in

images [15, 24, 11, 25, 31, 23, 22, 6, 3, 5, 19, 18, 37],

video-level object instance search [22, 38, 36] remains a

difficult problem due to the following challenges: (1) The

query object can be a small one and appear only in a small

portion of frames of a video. A direct matching between

the small query object with the whole video usually cannot

bring satisfactory search performance. (2) Different from

image search which mainly addresses point-to-point match-

ing in the feature space, object-to-video search is a point-

to-set matching problem, where the query object requires to
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Figure 1. The overview of the proposed algorithm. Given a video

of m frames, we extract t object proposals for each frame and

further compress the m × t object proposals into k binary codes

using the proposed compressive quantization.

match a set of object candidates in the video to determine

its relevance to that video. Considering the big video corpus

of video clips, a fast point-to-set search is critical.

To address the above challenges, in this work, we pro-

pose to utilize the spatio-temporal redundancy of the video-

data to enable fast object-to-video (i.e., point-to-set) search.

For each video clip in the database, we can represent it as

a collection of object proposals generated from its frames.

However, instead of storing all the object proposals from

one video, we propose compressive quantization to com-

press the set of object proposals into only a few binary

codes, where each binary code is a compact representative

of the object proposals. As a compact representation of a

set of object proposals, our compressive quantization tar-

gets at (1) quantizing the set of object proposals into fewer

codewords and (2) hashing the codewords into binary codes.

Nevertheless, instead of following a two-step optimization,

we propose a joint optimization framework that can simul-

taneously optimize the distortion errors from quantization

and hashing. It directly compresses M object proposals into

k binary codes, where k ≪ M .

As our compressive quantization simultaneously per-

forms vector quantization and hashing, it is different from

either conventional vector quantization or hashing meth-

ods. On one hand, different from conventional vector quan-

tization [20], our compressive quantization constrains the

codewords to be binary codes to achieve higher compres-

sion ratio. On the other hand, unlike hashing methods

[8, 32, 10, 14] mapping one real-value vector to one binary



code, our compressive quantization summarizes many real-

value vectors into only a few binary codes, leading to a more

compact representation of the set compared with traditional

hashing methods.

As illustrated in Figure 1, using the proposed compres-

sive quantization, a video consisting of m × t object pro-

posals can be compactly represented by k (≪ m× t) binary

codes. To measure the relevance of a video with the query,

we only need to compare the binary code of the query with

k binary codes representing the video. It not only reduces

the number of distance computations (m× t → k) but also

enables fast search leveraging binary codes, which boosts

the efficiency in both time and memory.

To evaluate the performance of our proposed compres-

sive quantization, we perform systematic experiments on

three benchmark datasets. It validates that our compressive

quantization can not only provide a high compression ra-

tio for video features, but also maintain excellent precision

of searching small objects in big videos. Particularly, on

the CNN2h dataset [1] consisting of 72000 frames, exhaus-

tively comparing the query object with all the object propos-

als of all the videos takes 10.48 s and 2.060 GB memory to

achieve 0.856 mAP. In contrast, the proposed compressive

quantization achieves 0.847 mAP using only 0.008 s and

4.39 MB memory. It achieves 1310× speed-up and 480×
memory reduction with comparable search precision.

2. Related Work

Object Instance Search. In the past decade, the prob-

lem of object instance search has been widely exploited on

image datasets [15, 11, 30, 29, 31, 6] , while few works

have focused on video datasets. A pioneering work for ob-

ject instance search in videos is Video Google [28], which

treats each video keyframe independently and ranks the

videos by their best-matched keyframe. Some following

works [39, 34] also process the frames individually and ig-

nore the redundancy across the frames in videos. Until re-

cently, Meng et al. [22] create a pool of object proposals

for each video and further select the keyobjects to speed

up the search. It is closely related with our work, but ours

can achieve higher compression ratio since the codewords

generated from the proposed compressive quantization are

binary codes whereas the keyobjects from [22] are repre-

sented by high-dimension real-value vectors.

Fast Nearest Neighbour Search. In the past decade, we

have witnessed substantial progress in fast nearest neigh-

bour (NN) search, especially in visual search applica-

tions. We review two related methods: hashing-based bi-

nary codes and non-exhaustive search based on inverted-

indexing.

Locality-Sensitive hashing [8] motivates the hashing-

based binary codes. Some following works include spec-

tral hashing [32], iterative quantization (ITQ) [10], bilin-

ear projections (BP) [9], circulant binary embedding (CBE)

[35] and sparse projection binary encoding (SPBE) [33].

The generated binary codes from hashing not only reduce

the memory cost but also speed up the search process by

fast Hamming distance calculation. Our work is closely re-

lated with the hashing-based compact codes. The differ-

ence is that, the hashing-based binary code maps each real-

value vector into a bit vector whereas our work maps M
real-value vectors into k bit vectors, where k ≪ M . The

compression ratio of our compressive quantization is higher

since it not only makes each vector more compact but also

reduces the number of vectors.

When the scale of the dataset is large, the exhaustive

search is mostly infeasible to achieve satisfactory efficiency

even if we adopt hashing-based binary codes. Thus, many

researchers have resorted to the non-exhaustive search. The

current mainstream non-exhaustive search system is based

on inverted-indexing. Some representative works include

IVFADC [17] and its followers such as IMI [2] and GNO-

IMI [4]. IVFADC divides the data space into multiple cells

through k-means and each cell will be represented by its

centroid. When the query comes, IVFADC only considers

the points from the cells which are close to it. In essence,

IVFADC conducts the point-to-cell search to filter out some

unrelated data points in order to avoid the exhaustive search.

Our work is closely related with inverted-indexing method.

But our method can achieve higher compression ratio since

the codewords from the proposed compressive quantization

are bit vectors whereas the cell centroids used in inverted-

indexing are real-value vectors.

Point-to-set Matching. Zhu et al. [40] exploit the point-

to-set matching problem and propose the point-to-set dis-

tance (PSD) for visual classification. However, comput-

ing PSD requires to solve a least square regression prob-

lem which is computationally demanding. The point-to-

set matching has also been exploited in face video retrieval

task [21]. Given a face image of one person, face video

retrieval is to retrieve videos containing this person. Li et

al. [21] aggregate the features of the frames of the video

shots into a global covariance representation and learned

the hashing function across Euclidean Space and Rieman-

nian Manifold. Their method is supervised by the labelled

image-video matching pairs. However, the labelled image-

video matching pairs are not available in real applications.

In contrast, our proposed compressive quantization method

is fully unsupervised.

3. A Baseline by Quantization + Hashing

We denote by Vi the i-th video in the database contain-

ing m frames {f1
i , · · · , f

m
i }. For each frame f j

i , we crop

t object proposals. Therefore, the video Vi will be cropped

into a set of m× t object proposals Si = {o1
i , · · · ,o

m×t
i }.

Given a query q, the distance between Vi and q can be de-



termined by the best-matched object proposal in Si:

D(q,Vi) = min
o∈Si

‖q− o‖2. (1)

To obtain D(q,Vi) in Eq. (1), it requires to compare the

query with all the object proposals in Si. Nevertheless, it

ignores the redundancy among the object proposals in Si

and leads to heavy computation and memory cost.

Quantization. To exploit the redundancy among the

object proposals for reducing the memory cost and speed-

ing up the search, one straightforward way is to quan-

tize m × t object proposals in Si into k codewords Zi =
{z1i , · · · , z

k
i }. In this case, we only need to compare the

query q with codewords rather than all the object proposals

in Si. One standard vector quantization method is k-means,

which seeks to minimize the quantization errors Qi:

Qi =

k
∑

u=1

∑

v∈Cu

i

‖ov
i − zui ‖

2
2, (2)

where Cu
i denotes the set of indices of the object proposals

in Si that are assigned to the u-th cluster. Then the distance

between q and Vi can be calculated by

D(q,Vi) = min
z∈Zi

‖q− z‖2. (3)

Since |Zi| ≪ |Si|, computing Eq. (3) is much faster than

computing Eq. (1).

Hashing. In practice, due to the number of videos n
in the dataset is huge and the codewords are represented

by high-dimensional real-value vectors, it is still time con-

suming to compare the query with all the codewords. To

further speed up the search, we seek to map the code-

words to Hamming space by hashing. One popular hash-

ing method is ITQ [10], which learns the binary codes

[b1
1,b

2
1, · · · ,b

k
n] ∈ {−1, 1}l×nk and the transform matrix

R ∈ R
d×l through minimizing the distortion error H:

H =

n
∑

i=1

k
∑

u=1

‖zui −R⊤bu
i ‖

2
2, s.t. R⊤R = I. (4)

We denote by Bi = {b1
i , · · · ,b

k
i } the set of binary codes

for the video Vi and denote by bq = sign(Rq) the binary

code of the query q. In this scenario, the distance between

q and the video Vi can be determined by the Hamming dis-

tance (‖ · ‖H ) between the query’s binary code bq and the

nearest binary code in Bi:

D(q,Vi) = min
b∈Bi

‖bq − b‖H . (5)

Limitations. The above two-step optimization sequen-

tially minimizes the quantization errors of object proposals

caused by quantization and the distortion errors of the code-

words caused by hashing. Nevertheless, the above two-step

optimization can only yield a suboptimal solution for the

following reasons: (1) The distortion error H caused by

the hashing is not taken into consideration when optimizing

quantization errors {Qi}
n
i=1. (2) The quantization errors

{Qi}
n
i=1 are not considered when minimizing the distortion

error H . This motivates us to jointly minimize the total er-

rors caused by quantization and hashing in order to achieve

a higher search precision.

4. Compressive Quantization

One straightforward way to jointly optimize the quan-

tization and hashing is to optimize a weighted sum of the

quantization errors caused by the quantization and the dis-

tortion errors caused by hashing given by:

J =

n
∑

i=1

Qi + λH, (6)

where λ is the parameter controlling the weight of distortion

error H with respect to the quantization errors {Qi}
n
i=1.

However, the choice of λ is heuristic and dataset dependent.

Meanwhile, the accumulated distortion error from two sep-

arate operations is not equivalent to a simple summation of

errors from each operation.

The above limitations motivate us to propose the com-

pressive quantization scheme which directly minimizes the

total distortion error J :

J =

n
∑

i=1

k
∑

u=1

∑

v∈Cu

i

‖ov
i − αR⊤bu

i ‖
2
2,

s.t. R⊤R = I, bu
i ∈ {−1,+1}l,

(7)

where Cu
i denotes the set of indices of the object proposals

assigned to u-th cluster of Si; b
u
i denotes the binary code-

words representing Cu
i ; α ∈ R

+ denotes the scaling factor

and R ∈ R
d×d denotes the rotation matrix.

Intuitively, we fix the binary codewords as the vertices

of the hypercube. As illustrated in Figure 2, we rotate and

stretch the hypercube to minimize the sum of the squares

of the Euclidean distance from each object proposal to the

corresponding vertex of the hypercube. Note that, in cur-

rent formulation, we set the rotation matrix R as the square

matrix, i.e, we fix the code length l to be equal to the origi-

nal feature’s dimension d. Later on, we will discuss how to

extend the current algorithms to the scenario when l 6= d.

It is easy to see the above optimization problem is highly

non-convex and difficult to solve. But it is tractable to solve

the problem by updating one variable with others fixed:

1. Fix {Cu
i }

n,k
i=1,u=1, R and α, update {bu

i }
n,k
i=1,u=1.



Figure 2. The green circles denote the object proposals generated

from the video V1 and the orange squares denote the object pro-

posals from the video V2, we rotate and stretch the blue hypercube

to minimize the distance from each object proposal to the corre-

sponding vertex of the hypercube the object proposal is assigned

to. After the optimization, the corresponding vertices of the hy-

percube will be the binary codewords representing V1 and V2.

2. Fix {Cu
i }

n,k
i=1,u=1, {bu

i }
n,k
i=1,u=1 and α, update R.

3. Fix {Cu
i }

n,k
i=1,u=1, R and {bu

i }
n,k
i=1,u=1, update α.

4. Fix R, {bu
i }

n,k
i=1,u=1 and α, update {Cu

i }
n,k
i=1,u=1.

4.1. Fix {Cu
i }

n,k
i=1,u=1, R and α, update {bu

i }
n,k
i=1,u=1.

When Cu
i , R and α are fixed, the optimal value of bu

i can

be obtained by solving the below optimization problem:

bu
i = argmin

b∈{−1,1}d×1

∑

v∈Cu

i

‖ov
i − αR⊤b‖22

= argmin
b∈{−1,1}d×1

∑

v∈Cu

i

‖α−1xv
i − b‖22,

(8)

where xv
i = Rov

i . We denote by bui (t) the value of t-th bit

of the above optimized bu
i and denote by xu

i (t) the value of

t-th dimension of xu
i . Below we will prove that

bui (t) = sign(
∑

v∈Cu

i

xv
i (t)). (9)

Note that bui (t) has only two possible values {−1,+1}. We

denote by l+1(t) =
∑

v∈Cu

i

(α−1xv
i (t) − 1)2 the distortion

error when the t-th bit of bu
i is set to be +1 and denote by

l−1(t) =
∑

v∈Cu

i

(α−1xv
i (t)+1)2 the distortion error when

the t-th bit of bu
i is set to be −1 . We can further obtain

l+1(t)− l−1(t) = −2α−1
∑

v∈Cu

i

xv
i (t). (10)

Since α > 0,

min{l+1(t), l−1(t)} =

{

l−1(t), if
∑

v∈Cu

i

xv
i (t) < 0

l+1(t), if
∑

v∈Cu

i

xv
i (t) > 0

(11)

Thereafter,

bui (t) =

{

−1, if
∑

v∈Cu

i

xv
i (t) < 0

+1, if
∑

v∈Cu

i

xv
i (t) > 0

(12)

4.2. Fix {Cu
i }

n,k
i=1,u=1, {bu

i }
n,k
i=1,u=1 and α, update R.

We arrange the object proposals of all the videos

{o1
1,o

2
1, · · · ,o

mt
n } as columns in matrix O ∈ R

d×nmt. We

denote by B = [b
A(o1

1
)

1 ,b
A(o2

1
)

1 , · · · ,b
A(om

n
)

n ] the corre-

sponding binary codes of the object proposals, where A(ov
i )

denotes the index of the cluster which ov
i is assigned to.

When {Cu
i }

n,k
i=1,u=1, {bu

i }
n,k
i=1,u=1 and α are fixed, optimiz-

ing R is an orthogonal procrustes problem [12] solved by

R = VU⊤, (13)

where U and V are obtained by the singular value decom-

position (SVD) of OB⊤. Note that computing OB⊤ takes

O(nmtdl) complexity. Since mt, the number of object pro-

posals per video, is relatively large, this step is considerably

time consuming. Below we optimize our algorithm to speed

up the process of computing OB⊤. We rewrite OB⊤ into:

OB⊤ =

n
∑

i=1

m
∑

v=1

ov
i b

A(ov

i
)

i

⊤

=

n
∑

i=1

k
∑

u=1

∑

v∈Cu

i

ov
i b

u
i
⊤

= [
∑

v∈C1

1

ov
i , · · · ,

∑

v∈Cu

i

ov
i ][b

1
1, · · · ,b

k
n]

⊤

= [y1
1, · · · ,y

k
n][b

1
1, · · · ,b

k
n]

⊤,

(14)

where yu
i =

∑

v∈Cu

i

ov
i has already been obtained in

Eq. (9). Therefore, we can calculate OB⊤ through

[y1
1, ...,y

k
n][b

1
1, ...,b

k
n]

⊤, which takes only O(nkdl) com-

plexity. Considering the number of codewords (k) per video

is significantly smaller than the number of object proposals

(mt) per video, the complexity is largely reduced.

4.3. Fix {Cu
i }

n,k
i=1,u=1, R and {bu

i }
n,k
i=1,u=1, update α.

We directly compute the first-order and second-order

derivative of J with respect to α:

∂J

∂α
= 2

n
∑

i=1

k
∑

u=1

∑

v∈Cu

i

(−R⊤bu
i )

⊤(ov
i − αR⊤bu

i ),

∂2J

∂2α
= 2

n
∑

i=1

k
∑

u=1

∑

v∈Cu

i

(−R⊤bu
i )

⊤(−R⊤bu
i ).

(15)

Since ∂2J/∂2α = 2
∑n

i=1

∑k

u=1

∑

v∈Cu

i

‖R⊤bu
i ‖

2
2 >

0, by setting ∂J/∂α = 0, we can obtain the optimal value

of the scaling coefficient α which minimizes J :



α =

∑n

i=1

∑k

u=1 b
u
i
⊤ ∑

v∈Cu

i

Rov
i

∑n

i=1

∑k

u=1

∑

v∈Cu

i

bu
i
⊤RR⊤bu

i

=

∑n

i=1

∑k

u=1 sign(
∑

v∈Cu

i

Rov
i )

⊤
∑

v∈Cu

i

Rov
i

∑n

i=1

∑k

u=1

∑

v∈Cu

i

bu
i
⊤bu

i

=

∑n

i=1

∑k

u=1 ‖
∑

v∈Cu

i

Rov
i ‖1

nmt
.

(16)

4.4. Fix R, {bu
i }

n,k
i=1,u=1 and α, update {Cu

i }
n,k
i=1,u=1.

When R, {bu
i }

n,k
i=1,u=1 and α are fixed, the optimal

{Cu
i }

n,k
i=1,u=1 can be obtained by simply assigning each ob-

ject proposal ov
i to its nearest vertex of hypercube by

A(ov
i ) = argmin

u
‖ov

i − αR⊤bu
i ‖2. (17)

4.5. Initialization and Implementation Details

We initialize {Cu
i }

n,k
i=1,u=1 by conducting k-means clus-

tering for {Si}
n
i=1 and initialize the rotation matrix R using

the centroids of {Cu
i }

n,k
i=1,u=1 through ITQ. The whole op-

timization process is summarized in Algorithm 1.

Algorithm 1 Compressive Quantization

Input: n sets of object proposals {Si}
n
i=1 generated from

videos {Vi}
n
i=1, number of codewords k per video.

Output: The rotation matrix R, the binarized codewords

{bu
i }

n,k
i=1,u=1.

1: Initialize the clusters {Cu
i }

n,k
i=1,u=1, R, α.

2: repreat

3: for t = 1 ... T
4: Update {bu

i }
n,k
i=1,u=1 using Eq. (9).

5: Update R using Eq. (13).

6: end

7: Update α using Eq. (16).

8: Update {Cu
i }

n,k
i=1,u=1 using Eq. (17).

9: until converge

10: return R, {bu
i }

n,k
i=1,u=1.

Our algorithm iteratively updates {Cu
i }

n,k
i=1,u=1, R,

{bu
i }

n,k
i=1,u=1 and α. Note that there is an inner loop within

the outer loop, we set the number of iterations of the in-

ner loop T = 10. The aim of the inner loop is to en-

sure that R and {bu
i }

n,k
i=1,u=1 are able to reach their lo-

cal optimality before updating {Cu
i }

n,k
i=1,u=1 and α. Since

each update of {Cu
i }

n,k
i=1,u=1, R, {bu

i }
n,k
i=1,u=1 and α can

strictly reduce the distortion error J , our algorithm can en-

sure the convergence. Our experiments show that it can con-

verge within 50 iterations of outer loops on three datasets.

Like other alternative-optimization algorithms, our algo-

rithm only achieves a local optima and is influenced by the

initialization.

Discussion: In the above formulation, we fix R as a

square matrix, i.e., we constrain the length of code l to the

dimension of the original feature d. However, we still can

deal with the situation when l 6= d with pre-processing op-

erations.

Particularly, when l < d, we will pre-process the orig-

inal features using principle component analysis (PCA) to

reduce their dimensionality from the d to l. After that, we

can conduct the proposed compressive composition using

the reduced features. It will obtain l-bit binary codes by

the square rotation matrix R ∈ R
l×l. On the other hand,

if l > d, we project the original feature o to l-dimension

feature ô by a random orthogonal matrix P ∈ R
l×d :

ô = Po, s.t. P⊤P = I. (18)

After projection, the Euclidean distance between two points

in original feature space ‖o1−o2‖2 can be preserved in the

projected feature space since

‖ô1 − ô2‖
2
2 = (o1 − o2)

⊤P⊤P(o1 − o2) = ‖o1 − o2‖
2
2. (19)

We can further conduct the proposed compressive quantiza-

tion using the projected data samples to obtain l-bit binary

codes by the square rotation matrix R ∈ R
l×l.

4.6. Relation to Existing Methods

K-means [20] is a widely used vector quantization

method. It minimizes the quantization errors by iteratively

updating the assignments of the data samples and the cen-

troids of the clusters. Our compressive quantization also

seeks to minimize the quantization errors, but the code-

words generated from our method are binary codes.

Iterative Quantization [10] is a popular hashing

method. It learns the rotation matrix by minimizing the dis-

tortions between the data samples with their rotated binary

codes. Like other hashing methods, it maps a real-value

vector x to a binary code b. The proposed compressive

quantization also learns a rotation matrix, but we map a set

of real-value vectors X = {x1, · · · ,xM} to another set of

binary codes B = {b1, · · · ,bk}, where |B| ≪ |X |.

K-means Hashing [13] is another hashing method,

which minimizes a weighted summation of the quantiza-

tion errors cause by k-means and the affinity errors caused

by hashing. Its formulation is very similar to Eq. (6), which

is different from ours formulated as Eq. (7). Meanwhile,

K-means Hashing maps one real-value vector to a binary

code. In contrast, our compressive quantization maps M
real-value vectors to k (≪ M) binary codes, which can

achieve significantly higher compression ratio.



(a) Groundhog Day

(b) CNN2h

(c) Egocentric

Figure 3. Examples of query objects.

5. Experiment

5.1. Settings, Dataset and Evaluation Metric

We adopt Edge Boxes [41] to generate the object pro-

posals for each frame of the videos. For each frame, we

extract 300 object proposals. For each object proposal, we

further extract its feature by max-pooling the last convolu-

tional layer of VGG-16 CNN model [26] pre-trained on Im-

agenet dataset. The max-pooled 512-dimensional features

are further post-processed by principle component analy-

sis (PCA) and whitening in order to suppress the burstiness

[16] and the dimension of the feature is fixed as 256. Ob-

serving the object proposals from the same frame heavily

overlap with each other, we use k-means to group 300 ob-

ject proposals into 30 clusters. We select the centroids of

the cluster as the compact object proposals. Given a video

of n frames, we will obtain 30n object proposals.

We conduct the experiments on Groundhog Day [28],

CNN2h [1] and Egocentric [7] datasets. The Groundhog

Day contains 5640 keyframes. We equally divide them

into 56 short videos. The CNN2h dataset contains 72, 000
frames and we equally divide them into 720 short videos.

The Egocentric dataset consists of 19 long videos. We uni-

formly sample the keyframes per 20 frames, obtain 51804
keyframes and further equally divide all the keyframes into

517 videos. The Groundhog Day dataset provides six query

objects. On CNN2h and Egocentric datasets, we use eight

query objects and skip those scene query images. Figure 3

visualizes the query objects of three datasets. The effective-

ness of the proposed method is evaluated by mean average

precision (mAP).

5.2. Baseline Evaluations

Before evaluating the effectiveness of the proposed com-

pressive quantization, we first evaluate three baselines. We

denote by Baseline1 the exhaustive matching scheme de-

fined as Eq. (1). It is considerably memory demanding

and computationally costly since it requires to compare the

query with all the object proposals of the videos.

We denote by Baseline2 the algorithm based on k-means
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Figure 4. mAP comparison between Baseline2 and Baseline3.

defined as Eq. (3). We vary the number of codewords k
per video among 10, 20, 40 and 100. As shown in Ta-

ble 1, the precision obtained by Baseline2 improves as the

number of codewords k per video increases. Meanwhile,

Baseline2 achieves comparable mAP with Baseline1 with

significantly less computation and memory cost. For in-

stance, on the CNN2h dataset, the mAP achieved by Base-

line1 is 0.856 using 10.48 seconds and 2.060GB memory,

whereas Baseline2 achieves 0.817 mAP when k = 40 using

only 0.147 seconds and 28.12 MB memory. The promising

results achieved by Baseline2 is expected since there ex-

ists heavy redundancy among the object proposals from the

same video.

We denote by Baseline3 the algorithm based on k-means

followed by iterative quantization defined as Eq. (5). Note

that Baseline3 conducts the quantization and hashing se-

quentially. We vary the number of codewords k per video

among 10, 20, 40 and 100 and vary the code length l of the

binary codewords among 128, 256 and 512. As we can see

from Figure 4, the mAP achieved by Baseline3 is consider-

ably lower than that of Baseline2. This is expected since the

ITQ brings additional distortion errors, which can signif-

icantly deteriorate the search precision if the accumulated

distortion errors from k-means and ITQ are large. Partic-

ularly, on the CNN2h dataset, when k = 100, Baseline2

achieves 0.845 mAP but Baseline3 (l = 512) only achieves

0.687 mAP.

5.3. Evaluations of Compressive Quantization

In this section, we evaluate the performance of the pro-

posed compressive quantization. To demonstrate its effec-

tiveness, we directly compare it with Baseline2 and Base-

line3, respectively.



Groundhog Day CNN2h Egocentric

Memory Time mAP Memory Time mAP Memory Time mAP

Baseline1 165.2 MB 1.398 s 0.724 2.060 GB 10.48 s 0.856 1.518 GB 8.826 s 0.974

Baseline2

k = 10 0.547 MB 0.004 s 0.530 7.031 MB 0.035 s 0.625 5.049 MB 0.026 s 0.617
k = 20 1.094 MB 0.006 s 0.545 14.06 MB 0.069 s 0.674 10.10 MB 0.049 s 0.717
k = 40 2.188 MB 0.012 s 0.682 28.12 MB 0.147 s 0.817 20.20 MB 0.084 s 0.744
k = 100 5.469 MB 0.031 s 0.709 70.31 MB 0.314 s 0.845 50.49 MB 0.226 s 0.905

Table 1. The memory, time and mAP comparisons of Baseline1 and Baseline2 on three datasets.
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Figure 5. mAP comparison of the proposed compressive quantiza-

tion (ours) with Baseline3 on the Groundhog Day dataset.
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Figure 6. mAP comparison of the proposed compressive quantiza-

tion (ours) with Baseline3 on the CNN2h dataset.
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Figure 7. mAP comparison of the proposed compressive quantiza-

tion (ours) with Baseline3.

Figure 5, 6, 7 compare the performance of the pro-

posed compressive quantization with Baseline3 on Ground-

hog Day, CNN2h and Egocentric datasets. In our imple-

mentation, we vary the code length (l) among 128, 256
and 512 and vary the number of codewords (k) per video

among 10, 20, 40 and 100. As we can see from Figure 5,

6, 7 that, our compressive quantization significantly outper-

forms Baseline3 when the memory and computation cost

are the same. Particularly, on the Groundhog Day dataset,

when k = 40 and l = 256, our compressive quantization

achieves 0.654 mAP whereas Baseline3 only obtains 0.523
mAP. On the CNN2h dataset, when k = 40 and l = 256,

our compressive quantization achieves 0.751 mAP whereas
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Figure 8. mAP comparison between the proposed compressive

quantization (ours) and Baseline2.
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Figure 9. Memory comparison between the proposed compressive

quantization (ours) and Baseline2.

Baseline3 only obtains 0.578 mAP.

Figure 8 compares the mAP of the proposed compressive

quantization with Baseline2 on Groundhog Day, CNN2h

and Egocentric datasets. In our implementation, we fix

the code length (l) as 512 and vary the number of code-

word (k) per video among 10, 20, 40 and 100. We can

observe from Figure 8 that, the precision achieved by the

proposed compressive quantization is comparable with that

from Baseline2 implemented by k-means. For example, on

the CNN2h dataset, when k = 100, our compressive quan-

tization has a mAP of 0.847, which is as good as Baseline2

which achieves 0.846 mAP. Meanwhile, it is also compara-

ble with Baseline1 (0.856 mAP). The slightly worse preci-

sion of ours is expected because of the inevitable distortion

errors caused by the quantization and the binarization steps.

Figure 9 compares the memory cost of the proposed

compressive quantization with Baseline2 on three datasets.

As shown in Figure 9, the proposed compressive quantiza-

tion requires much less memory than Baseline2. In fact,

Baseline2 requires to store 256-dimension real-value code-

words whereas the codewords from the proposed compres-

sive quantization are only 512-bit. The memory cost of

our compressive quantization is only 1/16 of that of Base-

line2. Particularly, on the CNN2h dataset, when k = 100,



k=10 k=20 k=40 k=100
0

10

20

30

40

T
im

e
 (

m
s)

 

 

Baseline2

Ours

(a) Groundhog Day

k=10 k=20 k=40k=100
0

100

200

300

400

T
im

e
 (

m
s)

 

 

Baseline2

Ours

(b) CNN2h

k=10 k=20 k=40k=100
0

50

100

150

200

250

T
im

e
 (

m
s)

 

 

Baseline2

Ours

(c) Egocentric

Figure 10. Time comparison between the proposed compressive

quantization (ours) and Baseline2.
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Figure 11. Top-3 search results of black clock and microphone.

the memory cost from Baseline2 is 70.32 MB, whereas our

compressive quantization only takes 4.39 MB. Compared

with Baseline1 using 2.060 GB, the proposed compressive

quantization brings 480× memory reduction.

Figure 10 compares the time cost of the proposed com-

pressive quantization with Baseline2 on three datasets. As

shown in Figure 10, the search based on our compressive

quantization is significantly faster than that of Baseline2.

This is attributed to the efficiency of Hamming distance

computation. Particularly, on the CNN2h dataset, when

k = 100, Baseline2 requires 314 milliseconds to conduct

the search, whereas our compressive quantization only takes

8 milliseconds, which is around 39× faster. Meanwhile,

compared with Baseline1 which takes 10.48s, the acceler-

ation of the proposed compressive quantization is around

1310×. Note that the reported time cost does not consider

the encoding time of the query, since it can be ignored com-

pared to the search time when dealing with huge datasets.

In Figure 11, we visualize top-3 retrieved videos

from the proposed compressive quantization method using

queries black clock and microphone on the Groundhog Day

dataset. For each video, we shows 6 keyframes uniformly

sampled from it. We use the green bounding boxes to show

the location of the query object. As shown in Figure 11, al-

Groundhog Day CNN2h

128 256 512 128 256 512

LSH [8] 0.393 0.526 0.533 0.313 0.376 0.473
SH [32] 0.512 0.632 0.615 0.242 0.731 0.771
BP [9] 0.576 0.586 0.617 0.317 0.691 0.645
CBE [35] 0.491 0.590 0.665 0.289 0.607 0.791
SPBE [33] 0.578 0.536 0.603 0.295 0.599 0.696
Ours 0.635 0.656 0.674 0.347 0.751 0.847

Table 2. Comparison of our method with k-means followed by

other hashing methods.

though the object only occupies a very small area in relevant

frames, we are still able to retrieve the correct videos.

5.4. Comparison with Other Hashing Methods

We also compare our method with k-means followed by

other hashing methods, e.g., Locality-Sensitivity Hashing

(LSH) [8], Spectral Hashing (SH) [32], Bilinear Projec-

tions (BP) [9], Circulant Binary Embedding (CBE) [35],

and Sparse Projection Binary Encoding (SPBE) [33]. All

of the above methods are conducted on the codewords ob-

tained from k-means. We fix the number of codewords k
per video as 100 and vary the code length l among 128, 256
and 512. As shown in Table 2, the mAP achieved by ours

outperforms all above-mentioned hashing methods. When

l = 512, ours achieves 0.847 mAP, whereas the second best

mAP is only 0.791 achieved by CBE. The excellent perfor-

mance of our compressive quantization is attributed to the

joint optimization mechanism, since all other hashing meth-

ods optimize the hashing and quantization independently.

6. Conclusion

To remedy the huge memory and computation cost

caused by leveraging object proposals in video-level object

instance search task, we propose the compressive quantiza-

tion. It compresses thousands of object proposals from each

video into tens of binary codes but maintains good search

performance. Thanks to our compressive quantization, the

number of distance computations are significantly reduced

and every distance calculation can be extremely fast. Ex-

perimental results on three benchmark datasets demonstrate

that our approach achieves comparable performance with

exhaustive search using only a fraction of memory and sig-

nificantly less time cost.
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[24] F. Radenović, G. Tolias, and O. Chum. Cnn image retrieval

learns from bow: Unsupervised fine-tuning with hard exam-

ples. In ECCV, pages 3–20. Springer, 2016.
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