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ABSTRACT 
Light field images can be conveniently captured by 
consumer-level plenoptic cameras. However, as the resulting 
data rates are very high, providing efficient compression for 
this type of data is of critical importance. This remains an 
open problem which has recently attracted a lot of attention 
from the coding community. State-of-the-art compression 
systems prove to be inefficient when directly applied on this 
type of data due to the inherent spatial discontinuities in light 
field images. In this paper, a novel intra-prediction method 
for disk-shaped pixel clusters is proposed. An L1 
minimization of the prediction residuals is performed 
followed by clustering of the predictors, leading to an 
optimized set of predictors for the macro-pixels. 
Furthermore, directional intra-prediction modes based on 
HEVC are devised for the macro-pixels. Experimental results 
obtained on the EPFL light field image dataset demonstrate 
that the proposed coding scheme yields an average of 3.22 dB 
and 1.45 dB gain in PSNR, and 59.6% and 30.88% average 
rate savings compared to HEVC and the state-of-the-art in 
light field image coding respectively. 

Index Terms— light field images, intra prediction, 
directional mode, L1 optimization, image compression 

 
1. INTRODUCTION 

 
As introduced in [1], the concept of light fields refers to 

the amount of light traveling in every direction through every 
point in space. In contrast to conventional cameras, which 
only capture incoming light rays at a given location, plenoptic 
cameras record the high-dimensional light field data, 
accounting for both intensity and directional information.  

An example of such a device, capturing 4D light field 
data, is the Lytro plenoptic camera, combining microlens 
arrays with high-resolution image sensors [2]. Plenoptic 
cameras provide sufficient information to enable a broad 
range of applications, such as re-focusing [3], image-based 
rendering [4], computer graphics [5], [6], free-viewpoint 
video [7], and many more. 

As illustrated in Fig. 1, plenoptic cameras record the 
directional light intensity distributions onto the image plane 
using a microlens array. The Lytro microlenses, having a disk 
shape in the ‘microlens plane’, produce disk-shaped pixel 
clusters, sometimes referred to as ‘macro-pixels’–see e.g. [8].                                                                                        

 
Figure 1. (left) The lens focuses the light from the object onto the 
microlens plane; (right) a macro-pixel corresponding to a microlens. 
 
The light field image resolution depends on the number of 
microlenses and the pixel count in each macro-pixel. In Lytro 
II cameras, there are nearly 200,000 microlenses, with 199 
pixels per macro-pixel [9], leading to a vast spatial resolution 
for light field images. To enable large-scale use of such 
devices, storing, processing and transmitting of the produced 
light field images needs to be efficient and user-friendly. 
These requirements call for the design of an efficient 
compression system for light field image data.  

The HEVC standard is the state-of-the-art in video 
coding, substantially improving compression performance 
over all its predecessors [10]. However, the existing HEVC 
encoder is designed with the assumption of local spatial and 
temporal continuities in video, which is incompatible with the 
systematic spatial discontinuities between macro-pixels in 
light field images.  

A novel HEVC-based approach for light field images 
based on self-similarity compensated prediction was recently 
presented in [11], in which patch-match based compensated 
prediction identifies, for a given block, the most similar block 
from the neighboring reconstructed regions. This 
compensated prediction method works well for holoscopic 
images using a regular grid of rectangular macro-pixels. In 
[12], an HEVC-based coding framework is devised, 
operating on multiview video that is derived from light field 
images. This method yields state-of-the-art performance in 
light field image compression.   

In our work [13], we exploit the fact that pixels with the 
same spatial coordinates within neighboring macro-pixels are 
spatially correlated. Based on this observation, we proposed 
an L1-optimized prediction algorithm that linearly predicts 
the macro-pixels based on the neighboring reconstructed 
ones. In this paper, novel HEVC based directional intra-
modes are designed and a competition between the 
directional prediction and L1-optimized linear prediction is  
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Figure 2. The proposed compression framework whereby 
directional and L1-optimized prediction modes are competing. 
 
proposed to further reduce spatial redundancies in light field.   

In summary, the contributions in this paper are as 
follows: (i) we establish novel directional intra-modes for the 
macro-pixels, considered as the coding unit instead of 
conventional block-based structures used in HEVC; (ii) one 
proposes an innovative method to fill-in reference samples, 
accounting for the specific type of circular structures 
employed in directional intra prediction; (iii) we perform 
optimized linear prediction by minimizing the L1 residual 
between the prediction and the original light field image; (iv) 
one determines the optimized intra-prediction mode among 
directional and L1-optimized modes; (v) we adapt the HEVC-
based coding tools to encode the residuals. 
 

2. PROPOSED LIGHT FIELD COMPRESSION 
SYSTEM COMBINING DIRECTIONAL AND L1-

OPTIMIZED LINEAR PREDICTION 
 

In the proposed compression framework, illustrated in 
Fig. 2, the directional and L1-optimized linear prediction 
modes are competing in order to minimize the residual.  

Directional prediction (Fig. 2) consists of two phases; 
first, the disk-shaped reference samples are interpolated to 
form squares; secondly, a directional linear prediction is 
performed, based on the aligned square-shaped samples. 
Essentially, the pixels of neighboring reconstructed macro-
pixels are placed in the reference buffer to enable weighted 
pixel-wise prediction associated with different directions.  

The L1-optimized linear prediction (Fig. 2) integrates (i) 
an offline phase, whereby the prediction weights expressing 
the linear relationship between the target macro-pixel and the 
neighboring macro-pixels are trained, and (ii) an online 
phase, by which the weights are employed for linear 
prediction. A more detailed description of the different steps 
is given below. 
 
2.1. Directional intra-prediction modes 

The main goal of directional intra-prediction is to remove 
the spatial redundancies by estimating the samples in the 
target macro-pixel based on a linear prediction from specific 
reference samples. As mentioned, the inherent spatial 
discontinuities between neighboring macro-pixels in light 
field images break the assumption of local spatial continuity 
which is exploited by the HEVC standard. 

 
Figure 3. Interpolated and aligned squares: the reference macro-
pixels 1 2 3, ,L L L  are located around the target macro-pixel T . 
 
Hence, directly applying HEVC’s directional intra-prediction 
is inefficient. To solve this problem, we symmetrically place 
the reconstructed reference macro-pixels in squares, and 
interpolate the margin areas, as illustrated in Fig. 3. Moreover, 
except the DC and Planar modes, which are identical to those 
in HEVC, new directional modes are proposed to exploit 
spatial redundancies in various directions. Further details are 
given below. 
 
a. Reference samples filling 

In a first step, the reconstructed macro-pixels 1 2 3, ,L L L  
are interpolated to form the h h  ( 17h   for Lytro camera) 
squares ' ' '

1 2 3, ,L L L , as shown in Fig. 3. To this end, one 
utilizes vertical and horizontal extrapolation, whereby the 
pixels in blank areas are copied from the closest boundary 
pixels in 1 2 3, ,L L L . For instance, to obtain '

3L , a horizontal 
extrapolation of 3L  is performed: 
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where ( )a y  is the distance between the pixel '
3 ( , )L x y  and 

the closest available pixel of macro-pixel 3L  at row y . A 
similar extrapolation procedure is performed to determine 

'
1L  and '

2L . We note that, in this case, the first step is a 
vertical extrapolation procedure of 1L  and 2L  respectively, 
subsequently followed by a horizontal extrapolation, to cover 
the pixels which were not determined in the first 
extrapolation step. The resulting squares ' ' '

1 2 3, ,L L L  offer the 
necessary reference samples used in directional prediction. 

In a second step, directional prediction is performed. As 
illustrated in Fig. 4, the reference samples include a left-up 
pixel 0r , an above set 1 2 2:{c , , , }hC c c  and a left set 

1 2 2:{ , , , }hR r r r . The reference sets C  and R  are filled-in 
by the interpolated pixels of the above, left-up, and left square.  

The pixels of the above reference set 1 2 2{c , , , }hc c  are 
taken from the bottom line of '

1L  and '
2L , whereas the pixels 

of the left reference set are copied from the rightmost column 
of '

3L . Essentially, the above subsets 1 2{c , , , }hc c  and 
1 2 2{c , , , }h h hc c   , obtained from '

1L  and '
2L  respectively, 

are determined as: 
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The left subsets 1 2{ , , , }hr r r  and 1 2 2{ , , , }h h hr r r    are 
computed from '

3L  as: 
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Finally, the left-up pixel 0r  is set as the average of 1c and 1r . 
 
b. Directional prediction  

Directional prediction of a sample in 'T  at location 
( , )x y  - see Fig. 4, is expressed as a matrix multiplication:  

'( , ) [ ' ' 16] / 32k kT x y     C RP Q  .              (4)  
The vectors 'C  and 'R  denote column vectors collecting C  
and R , i.e. the above and left set of reference samples 
respectively. The thk parameter sets 1 2h

k
P  and 

1 2h
k

Q  ( k h y x   ), which contain two non-zero 
elements, are functions of the pixel’s coordinates 1 ,x y h   
and of the angle labeled by ig  for directional mode i .  

The row vectors kP  and kQ  are initialized to zero; these 
vectors contain two nonzero elements located at index 

( ) 32in x y e      and 1n  , which are assigned values nd  
and 1 32n nd d   , with ( )n id f y e  , where ( )iy e  is the 
multiplication of the coordinate y  and the angular number 

ie . The function f  is defined as:   
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Here, ie  corresponds to an angle ig ; for example, the angles 
2 32g H   and 19 32g V  correspond to 2 32e    and 

19 32e    respectively (see Fig. 4). nd  is employed to 
determine which vector contains the two nonzero elements:  

, [ 27, 32], 2 18,
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The prediction of the macro-pixel, extracted from the 
predicted block, is subtracted from original macro-pixel to 
yield the residual. Subsequently, the optimized directional 
mode is selected by minimizing the residual of macro-pixel 
using the mean absolute difference criterion.  

 
Figure 4. Directional prediction modes for encoding macro-pixel T , 
the directional mode [2,36]i , the labelled angle ig . 

2.2. L1-optimized intra-prediction modes 
As for L1-optimized modes, a macro-pixel is regarded as 

the basic prediction unit, lying in contrast to conventional 
coding paradigms that rely on block-based coding structures. 
The target macro-pixel T  is modelled as a linear 
combination of its three neighboring reference macro-pixels 

1 2 3, ,L L L , depicted in Fig. 3. The weights 1 2 3( , , )w w w , 
satisfying the obvious constraint that they sum to 1, express 
the linear relation between the target and reference macro-
pixels. By using a standard L1-constrained optimization 
toolbox [14], the unknown 1 2 3( , , )w w wW is computed as 
solution of the L1 optimization problem: 
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where 1 2 3' ( , , ) 'L L LL  denotes the transpose of the matrix 
consisting of the reference macro-pixels 1 2 3, ,L L L  
surrounding the target T  ( 1 mT  , 1 3W  , 3' mL  , 
and 199m   is the number of pixels in a macro-pixel).  

The original weights obtained as the solution of (7) are 
clustered by means of a K-means clustering step [15], which 
allows for an efficient indexing of the weights according to 
each of the K cluster centers. During disk-based intra 
prediction, the K prediction modes are traversed and the best 
linear prediction mode is determined as follows: 

 
1 2{ , , , }

1'arg min
K

best


  
W W W W

W T W L  ,             (8)  

where ,1k k K W is the set of trained prediction weights 
corresponding to intra-mode k . One uses 2log K bits to index 
the best linear prediction mode bestW  for each target macro-
pixel T ; in our experiments K was set to 32. 

Finally, the proposed coding method selects the mode 
yielding the lowest residual between the directional and L1-
optimized modes. 

 
2.3. Entropy coding of the intra-prediction modes 

The compressed stream makes use of HEVC’s syntax 
elements of intra prediction and residual information [10]; we 
adapt them to the proposed codec and design the necessary 
syntax elements. The original syntax elements of HEVC intra 
prediction consist of the ‘CU_skip_flag’, the Most Probable  
Modes, and the block residual coefficients for intra prediction 
[16], [17]. Here, the skip flag, the directional mode index, and 
the residual coefficients are encoded using CABAC. 
Furthermore, the syntax element of L1-optimized modes is 
combined with that of directional modes named ‘mpm_idx’. 
The range of ‘mpm_idx’ is modified from [0,36]  to [0,68]    
( [37,68]  belongs to L1-optimized modes). Following the 
closed-loop coding paradigm, entropy decoding, inverse 
quantization and transformation, all parts of the encoder, are 
performed to generate the reconstructed macro-pixels. One 
notes that entropy coding and decoding are also parts of the 
loop, that is, to guarantee that, even if the processing unit is 
changed from a block to a macro-pixel, correct encoding is 
performed by matching the coder with the decoder.  
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TABLE I.  BD-PSNR OF THE PROPOSED METHOD  

 

Proposed Vs HEVC Proposed Vs [12] Proposed Vs [13] 

PSNR 
gain 
(dB) 

Bitrate 
saving 
(%) 

PSNR 
gain 
(dB) 

Bitrate 
saving 
(%) 

PSNR 
gain 
(dB) 

Bitrate 
saving 
(%) 

I01 3.25 -54.48 0.32 6.37 0.5 -8.53 
I02 1.83 -37.19 0.52 -16.9 0.36 0.15 
I03 1.34 -28.48 0.52 -8.41 0.61 -2.75 
I04 1.62 -32.61 -0.01 26.95 0.38 1.16 
I05 3.12 -64.62 1.34 -40.78 0.62 -8.61 
I06 4.77 -88.76 0.53 -24.49 0.84 -9.27 
I07 2.66 -51.75 3.16 -61.39 0.39 -2.08 
I08 4.17 -91.36 2.86 -76.79 0.82 -29.51 
I09 4.85 -69.16 1.02 -21.87 0.66 -7.1 
I10 1.82 -49.06 2.1 -52.97 1.61 -26.16 
I11 5.61 -82.11 4.25 -72.65 0.54 -12.4 
I12 3.62 -65.64 0.78 -27.7 0.22 -0.94 
Avg. 3.22 -59.60 1.45 -30.88 0.63 -10.5 

 
3. EXPERIMENTAL EVALUATION 

 
3.1. Experimental Setup 

In the experimental evaluation of the proposed coding 
system, the conventional evaluation procedure of [18] is 
followed, whereby the EPFL test set [18] including 12 light 
field images, having a resolution of 7728x5368 pixels 
(requiring 51854880 bytes) is employed. We compare the 
PSNR and cost in bytes of the encoded light field images 
against the state-of-the-art methods, namely, HEVC operating 
in intra-mode [16], the pseudo-sequence-based compression 
of [12], and our previous method in [13]. The experiments are 
performed using 4 QPs, namely 22, 27, 32, and 37.  
 
3.2. Experimental results and analysis 

Table I reports the BD-PSNR and BD-BR computed 
using Bjontegaard’s evaluation tools [19]. In Fig. 5, the rate-
distortion curves are shown for light field images ‘I09_ 
Fountain’ and ‘I12_ ISO_Chart_12’ from the EPFL dataset. 
We notice from these results that the PSNR obtained with the 
proposed method is higher than that of HEVC. Moreover, at 
low and medium rates, the proposed method reaches much 
better compression performance compared to our work [13]. 

The results demonstrate that the proposed compression 
method achieves high rate savings compared to the state-of-
the-art. Overall, the average PSNR gain is 0.63dB, 1.45dB and 
3.22dB against [13], [12], and HEVC respectively, 
corresponding to 10.5%, 30.88%, and 59.6% rate savings 
respectively. Maximum gains in rate relative to [13] go as high 
as 29.5%. These large rate savings prove that the proposed 
macro-pixel-based directional and linear prediction 
approaches are particularly effective on this type of data. 

The lower PSNR at high rates relative to [13] is caused 
by the additional bit cost incurred by encoding the directional 
prediction modes. We also have to observe that we perform 
distortion optimization (and not rate-distortion optimization)  

 
Figure 5. Rate-distortion performance comparison.  
 
to select the best mode which has lower distortion between L1 
prediction and directional prediction. At high rates, distortion 
optimization turns out to not be efficient enough to select the 
best prediction mode for each macro-pixel. 

The complexity of the proposed method is evaluated by 
the average encoding time. Specifically, the average encoding 
time for the 4 QPs (22, 27, 32, and 37) is 204 seconds, while 
the encoding time for HEVC is 6927 seconds, which is 
approximately 28 times higher compared to that of the 
proposed method. The reason is that in HEVC, the best coding 
unit is selected between H  block sizes ( 64 64 , 32 32 ,    ,
4 4 ). For each coding unit, distortion optimization is used to 
obtain the best mode from intra directional predictions, which 
spends time on the calculation of block-wise distortion ( )O m  
and bit cost ( )O n . The time cost is ( ( ) ( ))H O m O n  . In the 
proposed method, the coding unit is fixed to be a macro-pixel, 
and the block-wise distortion is the only cost in time 
complexity, which is of the order ( )O m . 

 
4. CONCLUSIONS 

A novel compression system for light field image data 
has been proposed in this paper. Our approach exploits the 
spatial correlation amongst neighboring disk-shaped pixel 
clusters corresponding to each microlens in the light field 
image. We capture these correlations by assuming a linear 
dependency model between a target macro-pixel and its 
neighboring reference macro-pixels in the lenslet image. To 
further improve encoding efficiency, we propose new 
directional modes for this type of data. The competition 
between the directional and the L1-optimized intra prediction 
increases the efficiency of the subsequent residual encoding 
step performed using an adapted HEVC codec. The 
experimental results demonstrate that the proposed coding 
method achieves significantly higher PSNR and particularly 
higher rate savings compared to the state-of-the-art. 
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