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Abstract

Recently, global features aggregated from local convolutional
features of the convolutional neural network have shown to
be much more effective in comparison with hand-crafted fea-
tures for image retrieval. However, the global feature might
not effectively capture the relevance between the query ob-
ject and reference images in the object instance search task,
especially when the query object is relatively small and there
exist multiple types of objects in reference images. Moreover,
the object instance search requires to localize the object in the
reference image, which may not be achieved through global
representations. In this paper, we propose a Fuzzy Objects
Matching (FOM) framework to effectively and efficiently
capture the relevance between the query object and reference
images in the dataset. In the proposed FOM scheme, object
proposals are utilized to detect the potential regions of the
query object in reference images. To achieve high search ef-
ficiency, we factorize the feature matrix of all the object pro-
posals from one reference image into the product of a set of
fuzzy objects and sparse codes. In addition, we refine the fea-
ture of the generated fuzzy objects according to its neighbor-
hood in the feature space to generate more robust representa-
tion. The experimental results demonstrate that the proposed
FOM framework significantly outperforms the state-of-the-
art methods in precision with less memory and computational
cost on three public datasets.

The task of object instance search, is to retrieve all the
images containing a specific object query and localize the
query object in the reference images. It has received a
sustained attention over the last decade, leading to many
object instance search systems (Meng et al. 2010; Jiang,
Meng, and Yuan 2012; Jiang et al. 2015; Tolias, Avrithis,
and Jégou 2013; Tao et al. 2014; Razavian et al. 2014a;
2014b; Tolias, Sicre, and Jégou 2016; Meng et al. 2016;
Bhattacharjee et al. 2016b; 2016a; Mohedano et al. 2016;
Cao et al. 2016; Wu et al. 2016). Since the query object only
occupies a small part of an image, the global representation
may not be effective to capture the relevance between the
query object with reference image. Therefore, the relevance
between the query object and one reference image is not de-
termined by the overall similarity between the query and the
reference image.
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Figure 1: Hundreds of object proposals tend to overlap with
each other. Through clustering, the object proposals contain-
ing the similar objects will be assigned to the same group.
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Figure 2: Hundreds of object proposals can be approximated
by a compact set of fuzzy objects product the corresponding
sparse codes.

Inspired by the success of the object proposal scheme
(Zitnick and Dollár 2014) in object detection, we utilize ob-
ject proposals as potential object candidates for object in-
stance search. A few hundreds of object proposals with high-
est objectness scores are selected for each image. In this
case, the relevance between the query object and a reference
image is determined by the best matched object proposal. At
the same time, the best-matched object proposal is then iden-
tified as the detected location of the query object in the ref-
erence image. However, exploring the benefits of hundreds
of proposals for each reference image demands the storage
of all object proposals and high computational cost to match
them. It may be unaffordable when the dataset is large.

An important fact to note that, the object proposals from
the same reference image can overlap with each other and
thus produce much redundancy among features representing
these object proposals. Since the object proposals contain-



ing the similar objects are close to each other in the feature
space, through clustering, similar object proposals can be
assigned to the same cluster, as shown in Figure 1.

Based on above the observations, we utilize k-mediods
clustering (Park and Jun 2009) to generate a small set of
fuzzy objects which are treated as the atoms of an image-
specific dictionary. Thereafter the features of all object pro-
posals generated from the reference image are encoded into
a set of sparse locality-constrained linear codes, as illus-
trated in Figure 2. In this scenario, the similarity scores of
the object proposals can be computed through multiplying
the similarity scores of the fuzzy objects by the correspond-
ing sparse codes. We define Fuzzy Objects Matching (FOM)
as the above process. Benefiting from the sparsity of the lin-
ear codes, the FOM scheme requires much less memory and
computational cost than exhaustively comparing the query
object with all object proposals while achieving compara-
ble object instance search precision. For example, given n
object proposals with d-dimensional features from the ref-
erence image, exhaustive search in all object proposals of
the reference image demands O(nd) time complexity. In
contrast, the time complexity of the proposed FOM is only
O(td + nz), where t ∼ 0.1n is the number of fuzzy ob-
jects and z ∼ 0.01d is the number of non-zero elements in
the sparse code of each object proposal. Thereby the com-
putational cost of the FOM is significantly reduced. Given
the fact that any standard object proposal extraction scheme
generates hundreds of object proposals for each image and
current visual search tasks usually need to deal with a large
amount of images in a database, such a computational re-
duction holds a big promise.

In order to further boost the performance of our FOM,
we refine the feature of fuzzy objects via their neighbor-
hoods in the feature space. After neighborhood refinement,
the representation of the fuzzy object fusing the informa-
tion from other relevant images will be much more robust.
The entire process of neighborhood refinement being com-
pletely offline does not affect the time cost in search, while
providing a significant improvement in search accuracy. Im-
pressive results are achieved in comprehensive experiments
which significantly outperform the state-of-the-art methods.

Related Work
In (Mopuri and Babu 2015), the authors max-pooled all the
proposal-level deep features from the reference image into
a global feature. However, the global feature may be dis-
tracted when the query object only occupies a small area in
the reference image and there exist dense clutters around it.
(Razavian et al. 2014a; 2014b) cropped both query image
and the reference image into k patches. In their framework,
the similarity between the query and the reference image is
computed by the average similarity of best matched pairs of
patches. The patch-based cross-matching requires k2 times
comparisons which are relatively huge (e.g., k2 = 1024). Be-
sides, it requires k times feature extraction for k patches of
the query online, resulting in computationally demanding.
In addition, it can not support object localization.

In (Tolias, Sicre, and Jégou 2016; Mohedano et al. 2016),
the authors conducted spatial search by uniformly sampling
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Figure 3: Local convolutional features of each proposal are
extracted from the last convolutional layer of CNN and they
are further pooled or aggregated into a global feature.

overlapped candidate regions in different scales in reference
images. Tens of candidate regions are selected to compare
with the query object and the best-matched region of the
reference image determines the relevance of the reference
image with the query object. However, tens of sampled re-
gions are not enough to capture the small object in the refer-
ence image. In (Cao et al. 2016), the query-adaptive match-
ing kernel was proposed to match query with a set of base
image regions. Nevertheless, the query-adaptive matching
kernel requires to solve a quadratic programming problem
which is quite computationally demanding and it is not ap-
plicable for the object localization in the reference image.

In contrast, the proposed FOM scheme is efficient as the
set of fuzzy objects is of relatively small scale and the codes
matrix is sparse. In the proposed FOM scheme, the relevance
of the reference image is determined by the estimated sim-
ilarity score of the estimated best-matched object proposal.
The location of the estimated best-matched object proposal
will be further utilized to localize the query object in the
reference image.

Fuzzy Objects Encoding and Matching

Given a set of reference images, the ultimate task of object
instance search is to identify a subset of reference images
containing the similar instances of objects to the query. This
also involves localizing the object’s region within the un-
derlying reference image up to the bounding box. In order
to achieve this goal, we design an effective representation
scheme which simultaneously considers the effectiveness
and efficiency of the matching phase. We then discuss the
proposed fuzzy objects encoding and matching in details.

Fuzzy Objects Encoding

Given an image I , a set of object proposals P = {pi}
n
i=1

are
generated by Edge Boxes (Zitnick and Dollár 2014). The
extracted object proposals will represent the potential object
candidates in the reference image.

The flow of feature extraction for each object proposal
pi is illustrated in Figure 3. Particularly, after being resized
into a fixed scale, each object proposal pi will be fed into the
convolutional neural network (CNN) (Simonyan and Zisser-
man 2014) and a tensor Ti ∈ R

w×h×d will be obtained
from last convolutional layer of CNN. The tensor Ti is fur-
ther split into a set of local features Ti = {tim ∈ R

d}wh
m=1

.
Finally, pi, the global deep feature for pi is generated by
pooling or aggregating the local convolutional features in
Ti. In this paper, four types of aggregation or pooling meth-
ods: max-pooling, sum-pooling, bilinear-pooling (Gao et al.



2016) and vector of locally aggregated descriptors (VLAD)
(Arandjelovic and Zisserman 2013) are implemented for lo-
cal convolutional features pooling/aggregation to generate
the object proposal representation and their performance are
evaluated respectively in the experiment section.

We denote by P = [p1, ...,pn] ∈ R
d×n the ℓ2-

normalized d-dimensional features of n object proposals
from the reference image. Given a query represented by ℓ2-
normalized feature q, the similarity scores of all the object
proposals from the reference image can be computed by

s = q⊤P. (1)

In order to efficiently obtain the similarity scores for the
object proposals, we group the features of all the proposals
{fi}

n
i=1

from the same image into t clusters {Cl}
t
l=1

by k-
mediods clustering (Park and Jun 2009), which achieves bet-
ter performance than k-means clustering in our experiments.
Given the ℓ2-normalized centroid of cluster Cl, a fuzzy ob-
ject ol is obtained by

cl =
1

|Cl|

∑

f∈Cl

f ,

ol = cl/‖cl‖2.

(2)

We treat the set of fuzzy objects O = [o1, ...,ot] ∈ R
d×t as

a dictionary and further learn a matrix consisting of sparse
codes H = [h1, ...,hn] ∈ R

t×n such that

P ≈ OH. (3)

While this process is similar to (Iscen, Rabbat, and Furon
2016) in spirit, the fundamental difference is that the pro-
posed encoding process being at the image level instead of
the dataset level, offers a more compact object description
scheme. The image-specific fuzzy objects encoding scheme
is designed to extract a sparse yet discriminative object pro-
posal representation. It can successfully address the problem
of handling a huge number of object proposals without loss
of search precision, as will be shown in experiments.

Different from sparse coding used in (Iscen, Rabbat, and
Furon 2016) which learns the dictionary by solving the ℓ1-
norm penalty optimization problem, the fuzzy objects are
simply learned by k-mediods clustering. At the same time,
we reconstruct the feature of the object proposal using only
the fuzzy objects which are close to the object proposal in
the feature space. This process is closely related to Locality-
constrain Linear Coding (LLC) (Wang et al. 2010). How-
ever, LLC is employed to extract features for classification.
In contrast, we use it to achieve efficient object instance
search. Given the feature of the object proposal pi, we use
its z nearest neighbours in fuzzy objects set O as the local
bases Oi and obtain the codes by solving the linear system

min
hi∈Rz

‖pi − hiOi‖2 s.t., 1⊤hi = 1. (4)

The solution of Eq. (4) can be derived analytically by

ĥi = (Oi − pi1
⊤)(Oi − pi1

⊤)⊤\1,

hi = ĥi/(1
⊤ĥi).

(5)

Fuzzy Objects Matching

After obtaining the fuzzy object sets O and sparse codes H,
the estimated similarity scores between the query object and
all the object proposals from the reference image is com-
puted by

s̃ = q⊤OH. (6)

The relevant between the query object and the reference im-
age is then determined by the maximum item in the esti-
mated similarity scores vector s̃:

R(q, I) = max
l=1,...,n

s̃(l). (7)

The reference images in the dataset will further be ranked
according to their relevance scores.

The complexity of computing q⊤OH is only O(dt+zn),
where z is the number of non-zero elements in each sparse
code. Due to the information redundancy observed in the
generated proposals from an image, the number of clusters t
is chosen to be much smaller compared with the total num-
ber of proposals n. Typically t ∼ 0.1n works excellent in
our experiments. In addition, the codes are very sparse and
the typical choices of z is less than 0.01d. This yields a sig-
nificant reduction in computation and memory cost. We will
show that the object instance search precision obtained by
the FOM is comparable with exhaustive matching the query
object with all the object proposals but with much less mem-
ory and computational cost.

Fuzzy Objects Refinement

In order to further improve the accuracy of object instance
search, we refine the features of all the fuzzy objects of all
the reference images according to their neighborhood in-
formation. In our neighborhood refinement scheme, every
fuzzy object ol is treated as a pseudo query and m most
similar fuzzy objects {ok

l }
m
k=1

in the dataset are retrieved
to refine the feature of the fuzzy object. The refined fuzzy
object õl is computed by

õl =
(ol +

∑m

k=1
ok
l )

m+ 1
. (8)

The proposed neighborhood refinement follows the spirit
of the average query expansion (Chum et al. 2007). How-
ever, the average query expansion only refines the feature of
the query which is conducted online when the query comes.
In contrast, the proposed neighborhood refinement scheme
is to refine the features of the fuzzy objects which can be
carried out offline and does not effect the search time. It is
worth noting that our neighborhood refinement can work in
parallel with average query expansion to further boost ob-
ject instance search precision. In the experiment section, we
will evaluate the influence of neighborhood refinement and
average query expansion, respectively.

In fact, ok
l can be generated from different reference im-

ages in the dataset. As õl generated from Eq.(8) fuses the
information from different reference images, we term õl as
inter-image fuzzy object. In contrast, the fuzzy object ol

in Eq.(2) are generated from fusing the features of propos-
als from the same reference image, therefore, we term ol



as intra-image fuzzy object. After õl is generated, the ap-
proximated similarity between query and all proposals will
be computed by

s̃ = q⊤ÕH, (9)

where Õ = [õ1, ..., õt] represent the refined fuzzy objects.
Here, the neighbourhood refinement only adjusts O for each
reference image and keeps the codes H unchanged.

Experimental Results

In this section, we carry out comprehensive experiments
on three benchmark datasets, i.e., Oxford5K (Philbin et
al. 2007) , Paris6K (Philbin et al. 2008) and Sculptures6k
(Arandjelović and Zisserman 2011). Object search perfor-
mance of the proposed framework is evaluated by mean av-
erage precision (mAP) which is widely used in evaluating
the effectiveness of the image retrieval system.

In this work, the CNN model we used is the 16-layer
VGG network (Simonyan and Zisserman 2014) pre-trained
on the ImageNet dataset. Each proposal is resized to the size
448 × 448 prior to being fed into the network. The 512-
dimensional local features are extracted from the last con-
volutional layer conv5 3. In this scenario, the spatial size of
conv5 3 layer is w × h = 28× 28.

We evaluate our FOM scheme using features from four
different aggregation methods: max-pooling, sum-pooling,
bilinear-pooling and VLAD. To be more specific, the clus-
ter number of VLAD is set to be 64 and we conduct
intra-normalization proposed in (Arandjelovic and Zisser-
man 2013) to post-process VLAD features. In the VLAD
and bilinear pooling aggregations, the dimension of the lo-
cal convolutional feature is reduced into 64 by principle
component analysis (PCA). Finally, all the global features
generated from max-pooling, sum-pooling, bilinear-pooling
and VLAD are further processed by PCA and whitening fol-
lowed by ℓ2 normalization and the dimensions of four types
of features are fixed as 512.

Compared with Exhaustive Object Proposals
Matching

In Table 1, we evaluate the performance of the proposed
Fuzzy Objects Matching (FOM) in comparison with Ex-
haustive Object Proposals Matching (EOPM) which directly
compares the query object with all the object proposals of
all the reference images as Eq.(1). We also show the per-
formance from the method using global feature to repre-
sent the whole image. It is worth noting that the fuzzy ob-
jects we evaluated in this section is the intra-image fuzzy
objects without neighborhood refinement. Since our intra-
image FOM is an estimation of EOPM, the performance of
EOPM should be better than that of the intra-image FOM.

We can observe from Table 1 that the proposed FOM
scheme using tens of fuzzy objects (FOs) can achieve com-
parable mAP with EOPM scheme using 300 object propos-
als (OPs) in object search. Moreover, comparing the mAP
of EOPM using 20 object proposals with the mAP of FOM
using 20 fuzzy objects, we find the FOM is much more ef-
fective than the EOPM when the memory and computational
cost are comparable. Besides, the mAP of the method using

global features is much lower than EOPM and FOM, which
verifies the effectiveness of the object proposals.

The larger number of the fuzzy objects brings the higher
precision as well as higher memory and computational cost.
To balance the effectiveness and efficiency, we choose the
default number of fuzzy objects as 20. Therefore, for each
image, it requires 20 × 512 dimensions to store the fuzzy
objects, 300 × 3 × 2 dimensions to store the value and in-
dices of non-zero elements in H and 4× 300 dimensions to
cache the locations of 300 object proposals. In total, for each
reference image, it demands only around 13k dimensions to
store all the information required by the FOM. In contrast,
given 300 object proposals, the dimensions required by the
EOPM for each reference image is around 150k, which is
much larger than that from the FOM.

Compared with Other Fast Strategies

In this section, we compare the proposed FOM method with
other two alternative fast strategies. They are Representative
Object Matching and Sparse Coding Matching.

For each reference image, Representative Object Match-
ing (ROM) scheme selects representative proposals from all
the object proposals by k-mediods (Park and Jun 2009). To
be more specific, the features of n object proposals in the
matrix P ∈ R

d×n are grouped into t clusters by k-mediods
algorithm and the mediods of the clusters are selected to be
the representatives of the n object proposals. In this scenario,
we only need to compare the query object with the selected
object proposals and both the computational and memory
cost are reduced from O(nd) to O(td).

Sparse Coding Matching (SCM) (Iscen, Rabbat, and
Furon 2016) factorizes matrix P by sparse coding. The dic-
tionary D ∈ R

d×t is learned by solving the following ℓ1-
penalized optimization:

min
D

‖P−DC‖2F + λ‖C‖1,1. (10)

The sparsity of codes C is strictly controlled by orthogonal
matching pursuit and the number of non-zero elements in
each column of C is fixed as z. Computing q⊤DC only
requires O(td+nz) time complexity which is as efficient as
the proposed FOM.

We define complexity ratio as the computational complex-
ity of fast strategies over the computational complexity of
exhaustive object proposals matching. In this case, the com-
plexity ratio of ROM is t/n and the complexity ratio of FOM
and SCM is t/n+ z/d.

Figure 4 compares the performance of FOM with other
two fast strategies using max-pooling features on Oxford5K
and Paris6K datasets respectively. In the implementation, we
fix the number of non-zero elements z in both FOM and
SCM as 3 and changes the number of atoms t from 5 to 20.
We can observe that the performance of FOM is much better
than ROM. At the same time, the proposed FOM is also bet-
ter than SCM, which is attributed to the locality-constrained
property of the proposed FOM.



Method Exhaustive Object Proposals Matching Fuzzy Objects Matching Global Features

# of OPs/FOs 10 20 40 80 160 300 5 10 20 40 1
Max 49.5 57.7 62.8 68.3 71.9 73.9 68.8 72.1 73.2 74.5 31.5
Sum 57.5 62.9 67.3 71.1 75.1 77.0 65.1 69.7 72.2 74.4 40.9

Bilinear 50.8 56.4 63.2 68.9 72.5 74.5 59.7 65.4 67.8 71.5 37.6
VLAD 57.1 62.1 67.0 71.2 74.3 76.5 66.2 70.7 72.7 75.1 37.8

Table 1: The performance comparison of EOPM, FOM and the method using Global Features on the Oxford5K dataset. The
fuzzy objects are generated from 300 object proposals and the default number of fuzzy objects is 20.
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Figure 4: The performance comparison of FOM, SCM and
ROM on Oxford5K and Paris6K datasets. FOM gives the
best performance.

Dataset Oxford5K Paris6K

Feature Intra Inter Intra Inter

Max 73.2 83.1 74.6 83.8
Sum 72.2 76.4 77.6 83.5

Bilinear 67.8 74.8 74.3 80.7
VLAD 72.7 80.4 83.1 89.0

Table 2: The performance comparison of intra-image FOM
and inter-image FOM on Oxford5K and Paris6K datasets.

Intra-image Fuzzy Objects Versus Inter-image
Fuzzy Objects

To validate the performance of the proposed neighbor-
hood refinement, we compare the performance of intra-
image FOM and inter-image FOM using max-pooling, sum-
pooling, bilinear-pooling and VLAD features. The results
are shown in Table 2.

In the experiment, the number of proposals n to generate
fuzzy objects is set as 300, the number of fuzzy objects t is
set as 20 and the number of neighborhoods m in Eq.(8) is set
as 20. As can be seen from the Table 2, the performance of
inter-image FOM outperforms that from intra-image FOM
in all of four features on these datasets. For example, on
the Oxford5K dataset, inter-image FOM improves the mAP
of Max-pooling features from 73.2 to 83.1. On the Paris6K
dataset, inter-image FOM improves the mAP of VLAD fea-
ture from 83.1 to 89.0.

Average Query Expansion

We conduct average query expansion (AQE) (Chum et al.
2007) to further improve the performance of the FOM
scheme. For each query q, s fuzzy objects closest to q in the
feature space are retrieved. We further compute the mean
of feature of query q and features of the s fuzzy objects.

Dataset Oxford5K Paris6K

Feature Inter Inter+AQE Inter Inter+AQE

Max 83.1 88.9 83.8 90.7
Sum 76.4 84.8 83.5 88.5

Bilinear 74.8 82.3 80.7 85.4
VLAD 80.4 88.7 89.0 92.5

Table 3: The performance of Average Query Expansion on
Oxfrord5K and Paris6K datasets.

The generated mean vector will serve as the new feature of
the query in order to re-rank the reference images in the
database. Table 3 shows the performance of the proposed
search system with and without AQE. In our implementa-
tion, we set s as 20, which is equal to the number of fuzzy
objects. As it can be seen, AQE can effectively improve the
performance of the system. For example, on the Oxford5K
dataset, it improves the mAP of max-pooling feature by 5.8.
On the Paris6K dataset, it improves the mAP of VLAD fea-
ture by 3.5.

Comparison with State-of-the-art Methods

The first part of Table 4 shows the object instance search
performance from methods using hand-crafted local fea-
tures. (Perronnin et al. 2010) achieved 41.8 mAP by im-
proved Fisher vector encoding method on the Oxford5K
dataset and (Arandjelović and Zisserman 2011) achieved
55.5 mAP on the Oxford5K dataset by aggregating SIFT
features using VLAD. In contrast, ours can achieve 88.1
mAP using max-pooling features. In (Tolias, Avrithis, and
Jégou 2013), the authors proposed selective matching ker-
nel scheme and achieved excellent performance on both ox-
ford5K and Paris6K datasets with high memory cost. Ours
outperforms them with less memory and computation cost.

The second part of Table 4 compares our method with
other methods using CNN features. Neural Codes (Babenko
et al. 2014) adopt finetuned deep features and achieved
55.7 mAP on Oxford5K dataset. SPoc (Babenko and Lem-
pitsky 2015) achieved 65.7 mAP on Oxford5K dataset by
sum-pooling the local convolutional feature. (Ng, Yang, and
Davis 2015) aggregated the local convolutional features us-
ing VLAD. Note that (Babenko et al. 2014; Babenko and
Lempitsky 2015; Ng, Yang, and Davis 2015) all represented
the whole image as a global feature and thus might be
incapable of handling the scenarios when there are mul-
tiple objects in the reference image. We can observe in
the Table 4 that the methods in (Babenko et al. 2014;



Babenko and Lempitsky 2015; Ng, Yang, and Davis 2015)
are not competitive with that from (Razavian et al. 2014b;
Tolias, Sicre, and Jégou 2016; Cao et al. 2016).

In (Razavian et al. 2014a; 2014b), the authors cropped
both reference images and query images into patches and
the relevance between the query and reference images are
conducted by cross-matching between patches. Our meth-
ods outperform both of them, for example, we achieved
88.1 mAP on the Oxford5K dataset, whereas the mAP of
(Razavian et al. 2014b) is only 84.4. Moreover, we should
point out that, the cross-matching scheme in (Razavian et
al. 2014a) is much less efficient than ours. For example, it
need conduct 1024 comparisons between 32 patches from
the query and 32 patches from the reference image. In
contrast, we only need 20 comparisons between the query
and 20 fuzzy objects from the reference image. In (To-
lias, Sicre, and Jégou 2016; Mohedano et al. 2016), the au-
thors conducted re-ranking process through spatial search
in reference images and achieved much better performance
than global representation methods (Babenko et al. 2014;
Ng, Yang, and Davis 2015; Babenko and Lempitsky 2015).
A most recent work (Cao et al. 2016) achieved 77.3 mAP
on the Oxford5k dataset , 86.5 mAP on the Paris6K dataset
and 60.8 mAP on the Sculptures6K dataset. In contrast, our
FOM with VLAD feature achieved 88.7 mAP on the Ox-
ford5K dataset, 92.5 mAP on the Paris6K dataset and 73.1
mAP on the Sculptures6K dataset. Some visual results of our
FOM scheme using VLAD features are shown in Figure 5.
We show the estimated best-matched object proposal to val-
idate the performance of our scheme in object localization.

Conclusion

In this paper, we propose the Fuzzy Objects Matching
(FOM) scheme in order to achieve efficient and effective in-
stance search. We conduct comprehensive experiments us-
ing object proposal representation generated from four dif-
ferent aggregation methods on three public datasets. The
state-of-the-art precision and the efficient implementation
verifies the outstanding performance of our method.
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VLADInter+AQE 13k 88.7 92.5 73.1

Table 4: Performance comparisons with state-of-the-art
methods on Oxford5K, Paris6K and Sculptures6K datasets.
We compare the performance of ours with those methods us-
ing hand-crafted local features and CNN features. D denotes
the dimensionality of the features.

(a) Oxford5K

(b) Paris6K

  

(c) Sculptures6K

Figure 5: Selected results of top-10 retrievals of our FOM
scheme on the Oxford5K and Paris6K datasets. The bound-
ing box in the reference image correspond to the estimated
best-matched object proposal.



Babenko, A., and Lempitsky, V. 2015. Aggregating local
deep features for image retrieval. In Proc. of the IEEE Inter-
national Conference on Computer Vision, 1269–1277.

Babenko, A.; Slesarev, A.; Chigorin, A.; and Lempitsky, V.
2014. Neural codes for image retrieval. In European Con-
ference on Computer Vision, 584–599.

Bhattacharjee, S. D.; Yuan, J.; Hong, W.; and Ruan,
X. 2016a. Query adaptive instance search using object
sketches. In Proc. of the ACM on Multimedia Conference,
1306–1315.

Bhattacharjee, S. D.; Yuan, J.; Tan, Y.-P.; and Duan, L.-Y.
2016b. Query-adaptive small object search using object pro-
posals and shape-aware descriptors. IEEE Transactions on
Multimedia 18(4):726–737.

Cao, J.; Liu, L.; Wang, P.; Huang, Z.; Shen, C.; and Shen,
H. T. 2016. Where to focus: Query adaptive matching for
instance retrieval using convolutional feature maps. arXiv
preprint arXiv:1606.06811.

Chum, O.; Philbin, J.; Sivic, J.; Isard, M.; and Zisserman,
A. 2007. Total recall: Automatic query expansion with a
generative feature model for object retrieval. In Proc. of the
IEEE International Conference on Computer Vision, 1–8.

Gao, Y.; Beijbom, O.; Zhang, N.; and Darrell, T. 2016. Com-
pact bilinear pooling. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, 317–326.

Iscen, A.; Rabbat, M.; and Furon, T. 2016. Efficient large-
scale similarity search using matrix factorization. In Proc.
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2073–2081.

Jiang, Y.; Meng, J.; Yuan, J.; and Luo, J. 2015. Random-
ized spatial context for object search. IEEE Transactions on
Image Processing 24(6):1748–1762.

Jiang, Y.; Meng, J.; and Yuan, J. 2012. Randomized vi-
sual phrases for object search. In Computer Vision and Pat-
tern Recognition (CVPR), 2012 IEEE Conference on, 3100–
3107. IEEE.

Meng, J.; Yuan, J.; Jiang, Y.; Narasimhan, N.; Vasudevan, V.;
and Wu, Y. 2010. Interactive visual object search through
mutual information maximization. In Proc. of the ACM In-
ternational Conference on Multimedia, 1147–1150.

Meng, J.; Yuan, J.; Yang, J.; Wang, G.; and Tan, Y.-P.
2016. Object instance search in videos via spatio-temporal
trajectory discovery. IEEE Transactions on Multimedia
18(1):116–127.

Mikulı́k, A.; Perdoch, M.; Chum, O.; and Matas, J. 2010.
Learning a fine vocabulary. In European Conference on
Computer Vision, 1–14.

Mohedano, E.; Salvador, A.; McGuinness, K.; Marques, F.;
O’Connor, N. E.; and Giro-i Nieto, X. 2016. Bags of local
convolutional features for scalable instance search. arXiv
preprint arXiv:1604.04653.

Mopuri, K., and Babu, R. 2015. Object level deep feature
pooling for compact image representation. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, 62–70.

Ng, J.; Yang, F.; and Davis, L. 2015. Exploiting local fea-
tures from deep networks for image retrieval. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, 53–61.

Park, H.-S., and Jun, C.-H. 2009. A simple and fast algo-
rithm for k-medoids clustering. Expert Systems with Appli-
cations 36(2):3336–3341.

Perronnin, F.; Liu, Y.; Sánchez, J.; and Poirier, H. 2010.
Large-scale image retrieval with compressed fisher vectors.
In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, 3384–3391.

Philbin, J.; Chum, O.; Isard, M.; Sivic, J.; and Zisserman, A.
2007. Object retrieval with large vocabularies and fast spa-
tial matching. In Proc. of the IEEE International Conference
on Computer Vision, 1–8.

Philbin, J.; Chum, O.; Isard, M.; Sivic, J.; and Zisserman,
A. 2008. Lost in quantization: Improving particular object
retrieval in large scale image databases. In Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition, 1–
8.

Razavian, A. S.; Azizpour, H.; Sullivan, J.; and Carlsson, S.
2014a. Cnn features off-the-shelf: an astounding baseline for
recognition. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 512–519.

Razavian, A. S.; Sullivan, J.; Maki, A.; and Carlsson, S.
2014b. A baseline for visual instance retrieval with deep
convolutional networks. arXiv preprint arXiv:1412.6574.

Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.

Tao, R.; Gavves, E.; Snoek, C. G.; and Smeulders, A. W.
2014. Locality in generic instance search from one example.
In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, 2091–2098.

Tolias, G.; Avrithis, Y.; and Jégou, H. 2013. To aggregate or
not to aggregate: Selective match kernels for image search.
In Proc. of the IEEE International Conference on Computer
Vision, 1401–1408.

Tolias, G.; Sicre, R.; and Jégou, H. 2016. Particular object
retrieval with integral max-pooling of cnn activations. In
Proc. of International Conference on Learning Representa-
tions.

Wang, J.; Yang, J.; Yu, K.; Lv, F.; Huang, T.; and Gong, Y.
2010. Locality-constrained linear coding for image classifi-
cation. In Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition, 3360–3367.

Wu, Y.; Wang, Z.; Yuan, J.; and Duan, L. 2016. A com-
pact binary aggregated descriptor via dual selection for vi-
sual search. In Proc. of the ACM on Multimedia Conference,
426–430.

Zitnick, C. L., and Dollár, P. 2014. Edge boxes: Locating
object proposals from edges. In European Conference on
Computer Vision, 391–405.


