
HOPE: Hierarchical Object Prototype Encoding for Efficient Object Instance

Search in Videos

Tan Yu1, Yuwei Wu1,2∗, Junsong Yuan1

1 ROSE Lab, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
2 Beijing Laboratory of Intelligent Information Technology, Beijing Institute of Technology, Beijing

{tyu008, jsyuan}@ntu.edu.sg, wuyuwei@bit.edu.cn

Abstract

This paper tackles the problem of object instance search

in videos. To effectively capture the relevance between a

query and video frames and precisely localize the partic-

ular object, we leverage the object proposals to improve

the quality of object instance search in videos. However,

hundreds of object proposals obtained from each frame

could result in unaffordable memory and computational

cost. To this end, we present a simple yet effective hierar-

chical object prototype encoding (HOPE) model to acceler-

ate the object instance search without sacrificing accuracy,

which exploits both the spatial and temporal self-similarity

property existing in object proposals generated from video

frames. We design two types of sphere k-means methods,

i.e., spatially-constrained sphere k-means and temporally-

constrained sphere k-means to learn frame-level object pro-

totypes and dataset-level object prototypes, respectively. In

this way, the object instance search problem is cast to the

sparse matrix-vector multiplication problem. Thanks to the

sparsity of the codes, both the memory and computational

cost are significantly reduced. Experimental results on two

video datasets demonstrate that our approach significantly

improves the performance of video object instance search

over other state-of-the-art fast search schemes.

1. Introduction

With the advent of the era of Big Data, a huge body

of visual resources can be easily found on the multimedia

sharing platforms such as YouTube, Facebook, and Flickr.

Object instance search is attracting considerable attention

in the multimedia and computer vision literature. Given a

specific object as query, it aims to retrieve which frames of

videos contain a specific object instance and localize where

is the object in retrieved frames. Designing an effective ob-

ject instance search system, however, is a challenging task

due to the query usually only occupies a small area in the
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Figure 1. The framework of our hierarchical object prototype en-

coding. The features of the object proposals from frame fi are first

decomposed into the product of frame-level object prototypes Ci

and the frame-level sparse codes Hi illustrated by dashed lines.

The frame-level object prototypes of all the frames [C1, ...,Cn]
are further decomposed into the product of dataset-level object

prototypes G and the dataset-level sparse codes [E1, ...,En] de-

picted by solid lines. By exploiting our model, we can acceler-

ate the object instance search without sacrificing accuracy, as val-

idated in Section 4.

reference frame and there is dense clutter around it. In this

paper, we present a hierarchical object prototype encod-

ing method which can achieve satisfactory search accuracy,

search efficiency, and memory cost simultaneously.

Different from the traditional image retrieval, the query

object only occupies a small portion of a frame in the ob-

ject instance search task. In this scenario, the relevance be-

tween the query object and the frame is not equivalent to the

global similarity between the query object and the whole

frame. Moreover, the object instance search task requires

to precisely localize the object in the frames. Hence the

global representation of the whole image/frame, e.g., Vec-

tor of Locally Aggregated Descriptor (VLAD) [16], max

pooling [27], cross-dimensional pooling [17] and bilinear

pooling [9], might be neither effective to capture the rele-

vance between the query object and frames nor applicable

for the object localization.



To tackle the drawbacks of global representation, many

efforts [27, 22] have been devoted to utilizing the sliding

windows which exhaustively crop patches at every location

across multiple scales to conduct the spatial search in the

reference frames. To precisely detect the object, it may re-

quire a large number of sliding windows especially when

the size of the query is very small. Instead, Bhattacharjee

et al. [4] exploited object proposals [28, 37] to enhance the

efficiency of object search and achieved state-of-the-art per-

formance in small object search. Nevertheless, hundreds of

object proposals serve as candidate regions of the objects in

each frame, which is still quite inefficient as it inevitably in-

volves hundreds of times memory and computational cost.

This means that the applicability of object proposals is lim-

ited for an efficient visual search. It motivates a question:

how can we better advance the object proposals for robust

visual search and achieve satisfactory search efficiency?

To achieve this goal, we start from the following ob-

servations. Hundreds of proposals from the same frame

heavily overlap, leading to the fact that cropped patches

perhaps are similar to each other. In addition, it is well

known that the consecutive frames are also very similar

with each other and thus they tend to share multiple ob-

ject instances. In other words, object proposals gener-

ated from video frames possess the spatio-temporal self-

similarity property and self-representation principle may

well apply to them [36]. Thanks to the self-representation

property, we propose a hierarchical object prototype encod-

ing (HOPE) model to expedite the object proposal based

object instance search.

Driven by the emergence of large-scale data sets and fast

development of computation power, features based on con-

volutional neural networks (CNN) have proven to perform

remarkably well on visual search [3, 2, 34, 35]. In this

work, we exploit CNN features to represent object propos-

als. Given a query object represented by q ∈ R
d, directly

computing the similarity between the query and m object

proposals Pi ∈ R
d×m from the frame fi is unaffordable be-

cause both the number of object proposals m and the num-

ber of the frames n are large. Therefore, we design two

types of sphere k-means methods, i.e., spatially-constrained

sphere (SCS) k-means and temporally-constrained sphere

(TCS) k-means to accelerate the object instance search

without sacrificing the search accuracy.

In order to exploit the self-similarity property in the spa-

tial domain, for the frame fi, SCS k-means learns frame-

level object prototypes Ci ∈ R
d×t1(t1 ≪ m) and fac-

torizes Pi into CiHi where each column of Hi is the

frame-level sparse code for the object proposal. Similarly,

to exploit the self-similarity property in temporal domain,

TCS k-means further factorizes all the frame-level object

prototypes [C1,C2, ...,Cn] into G[E1,E2, ...,En], where

G ∈ R
t2(t2 ≪ nt1) denotes the dataset-level object proto-

types and Ei denotes the dataset-level sparse codes for the

frame-level object prototypes from frame fi. Therefore, the

object proposals Pi will be hierarchically decomposed into

GEiHi as shown in Figure 1. In this scenario, rather than

directly storing the features of all the object proposals of all

the frames [P1, ...,Pn] ∈ R
d×nm , we only need to store

the dataset-level object prototypes G ∈ R
d×t2 , the dataset-

level sparse codes {Ei}
n
i=1

and the frame-level sparse codes

{Hi}
n
i=1

. Since t2 ≪ nm and both Ei and Hi are sparse,

the proposed HOPE model leads to a dramatic reduction in

terms of memory and computational cost. In fact, as demon-

strated in our experiments, the memory cost of storing the

HOPE model is less than 1% of that of storing {Pi}
n
i=1

.

2. Related Work

Object Instance Search. A main challenge in object

instance search [39, 41, 40, 43, 42] is that the query ob-

ject only occupies a small area in the reference image and

there may be dense clutters around it. In order to tackle this

challenge, Tolias et al. [27] and Mohedano et al. [22] uni-

formly sampled tens of regions in reference images. The

best-matched region of the reference image is considered

as the search result. However, tens of sampled regions are

not enough to capture the small object in the reference im-

age. Bhattacharjee et al. [4] utilized the object proposals

as candidate regions of the query object in reference images

and achieved state-of-the-art performance in small object

instance search. Nevertheless, hundreds of object proposals

brought huge amount of memory and computational cost. In

order to speed up the search, Meng et al. [20] selected the

“keyobjects” from all the object proposals. To preserve the

search precision, the selection ratio can not be too small,

which limits its usefulness. Recently, Cao et al. [5] pro-

posed a query-adaptive matching method. But it requires

solving a quadratic optimization problem, which is compu-

tationally demanding. In contrast, our HOPE scheme only

requires calculating the sparse matrix-vector multiplication,

which is more efficient.

Efficient Search Methods. In object instance search

tasks, the visual features, e.g., VLAD and CNNs, are usu-

ally compressed to binary aggregated descriptors by hash-

ing [6, 11, 31, 7, 24, 38] because the binarized one allows

for fast Hamming distance computation as well as light stor-

age of visual descriptors. However, the hashing algorithms

are only able to produce a few distinct distances result-

ing in limited ability to describe the distance between data

points. Parallelly, another scheme termed product quanti-

zation (PQ) [15, 10, 1, 33, 29, 19] is also widely used in

fast nearest neighborhood (NN) search which decomposes

the space into a Cartesian product of subspaces and quan-

tizes each subspace individually. It is worth noting that PQ

and its variants are closely related to sparse coding. They

can be seen as a special case of block-wise sparse coding

[32], where coefficients are only valued by 0 or 1. More re-



cently, inspired by sparse coding, Jain et al. [13] extended

the product quantilization by adding the coefficients and

achieved higher accuracy in NN search. As a contempo-

raneous work with [13], Iscen et al. [12] formulated the

NN search as a matrix factorization problem also solved

by sparse coding and achieved state-of-the-art performance.

Inspired by the success of the sparse coding in NN search,

the proposed HOPE model generates hierarchical sparse

codes to exploit the self-similarity property among object

proposals in videos.

3. Hierarchical Object Prototype Encoding

3.1. Problem Statement

Given a query represented by the ℓ2-normalized feature

q ∈ R
d and a dataset consisting of n frames {fi}

n
i=1

, the

object instance search is to retrieve all the relevant frames

and localize the query object in the relevant frames. In most

cases, the interested object normally takes up a small area in

the whole frame. To capture the relevance of the frame with

the query, for each frame fi, we extract m object proposals

serving as potential regions of the query object in the frame.

We denote by pij ∈ R
d the ℓ2-normalized feature of the j-

th object proposal from the i-th frame and denote by Pi =
[pi1, ...,pim] ∈ R

d×m the ℓ2-normalized features of all the

object proposals from the i-th frame. In this scenario, the

relevance score of the frame fi with the query is determined

by the similarity S(q,pij) between the query and the best-

matched object proposal in the frame:

R(fi) = max
j

S(q,pij) = max
j

q⊤pij . (1)

Here, the best-matched object proposal is used to localize

the query object in the relevant frame.

In order to obtain the relevance scores of all the frames,

we need to compare the query with all the object proposals

in all the frames, which is equivalent to calculating

s0 = q⊤[P1, ....,Pn]. (2)

It should be emphasized that computing s0 in Eq. (2) re-

quires O(nmd) complexity. In this case, the key problem

of the object instance search is how to efficiently obtain s0.

3.2. Framelevel Object Prototype Encoding

As mentioned in Section 1, the proposals from the same

frame tend to overlap with each other which brings a great

amount of redundancy. Redundancy means that there exists

self-similarity among the object proposals. To exploit the

self-similarity property, we propose to factorize the features

Pi of object proposals from the frame fi using the frame-

level object prototypes Ci. The formulation is given by

Pi → CiHi, (3)

where Ci = [ci1, ..., cit1 ] ∈ R
d×t1 is generated

by our spatially-constrained sphere k-means and Hi =
[hi1, ...,him] ∈ R

t1×m consists of frame-level sparse codes

of the object proposals generated from soft-assignment cod-

ing. We will introduce how to solve Ci and Hi in details.

Spatially-constrained Sphere (SCS) K-means is an ex-

tension of sphere k-means [13] by taking the spatial in-

formation of the object proposals into consideration. The

spatial relationship can provide valuable information. In-

tuitively, if two object proposals are heavily overlapped,

they are inclined to share the objects. For convenience, we

drop the index i in Pi,Ci,Hi, which identifies a specific

frame because the following spatially-constrained sphere k-

means is applied to each frame independently. We denote

by B = {b1, ..., bm} the bounding boxes of the object pro-

posals. We develop the spatially-constrained sphere (SCS)

k-means which iteratively updates the frame-level object

prototypes (ℓ2-normalized centroids of the clusters) and the

assignment of the object proposals by

Assign : Au = argmax
k

p⊤
u ck +

λs

|Ak|

∑

v∈Ak

IoU(bu, bv),

Update : ck =
∑

v∈Ak

pv/‖
∑

v∈Ak

pv‖2,

(4)

where Au denotes the cluster index which u-th object pro-

posal is assigned to, ck denotes the k-th frame-level object

prototypes, Ak denotes the set of object proposals assigned

to the k-th cluster and IoU(·, ·) computes the intersection

over union ratio of two bounding boxes. λs is the param-

eter controlling the weight of the spatial constraint. When

λs = 0, the SCS k-means will degrade to the original sphere

k-means. The iteration stops when the frame-level object

prototypes do not change or the maximum iteration num-

ber is reached. Actually, our experiments show that SCS

k-means converges within 20 iterations.

The spatial information is especially useful to handle the

situation in which multiple different but similar instances

appear in the frame. Figure 2 visualizes the clustering re-

sults of the object proposals from the sphere k-means and

the spatially-constrained sphere k-means. It can be ob-

served that the sphere k-means groups the object proposals

containing different types of cars into the same clustering

(red bounding boxes). In contrast, the spatially-constrained

sphere k-means groups the object proposals containing dif-

ferent cars into different clusterings (red bounding boxes

and purple bounding boxes).

Given an object proposal p ∈ R
d and the frame-level ob-

ject prototypes generated from spatially-constrained sphere

k-means C ∈ R
d×t1 , the soft-assignment coding (SAC)

first finds z closest object prototypes of p which we denote



(a) Sphere k-means. (b) SCS k-means.

Figure 2. The comparison between sphere k-means and SCS k-

means. Sphere k-means group two different types of cars into

the same cluster (red bounding boxes). In contrast, SCS k-means

groups different types of the cars in two clusters (red bounding

boxes and purple bounding boxes).

by Ĉ = [ck1
, .., ckz

] ∈ R
d×z and further obtains the codes

h ∈ R
t1 by

ĥ(i) =

{

exp(βc⊤i p), i = k1, ..., kz

0, otherwise

h = ĥ/ĥ⊤1,

(5)

where β controls the softness of the assignment. The spar-

sity of the codes from SAC is strictly controlled by z. The

soft-assignment coding was traditionally used as a feature

extraction method for image classification [18] while we

use it as a sparse coding method to achieve high efficiency

for object instance search.

Complexity Analysis in Search Phase. Both the SCS

k-means and the soft-assignment coding can be conducted

offline, which does not affect the search time. In the search

phase, the similarity scores for all the object proposals of all

the frames can be efficiently achieved by

s1 = q⊤[C1H1, ...,CnHn]. (6)

We denote by z1 the number of non-zeros elements in

each column of Hi. Computing s1 in Eq. (6) only requires

O(nt1d + nmz1) complexity. This is because we can first

compute [x1, ...,xn] = q⊤[C1, ...,Cn] taking O(nt1d)
complexity and then compute s1 = [x1H1, ...,xnHn]
which is a sparse matrix-vector multiplication (SpMV)

problem [30] takingO(nmz1) complexity. In fact, t1 ≪ m
and z1 ≪ d, which means nt1d + nmz1 ≪ nmd. There-

fore, computing s1 is much more efficient than directly

computing s0 in Eq. (2). In addition, to store the sparse ma-

trix Hi, we only need to store its non-zero elements. There-

fore, the memory cost for storing {Ci}
n
i=1

and {Hi}
n
i=1

is

only O(nt1d+ nmz1) which is much less than that of stor-

ing {Pi}
n
i=1

. However, when n is huge considering the fact

that a video consists of enormous frames, the computational

cost of calculating s1 as well as the memory cost of storing

{Ci}
n
i=1

and {Hi}
n
i=1

are still considerable. It motivates us

to exploit the self-similarity across the frames further.

3.3. Datasetlevel Object Prototype Encoding

It is well known that the consecutive frames are very

similar to each other. To further speed up the object in-

stance search in videos, we propose to encode the frame-

level object prototypes again using the self-similarity prop-

erty across multiple different frames. We denote by

[C1, ...,Cn] ∈ R
d×nt1 the frame-level object prototypes

of all the frames in the dataset. The dataset-level pro-

totype encoding factorizes [C1, ...,Cn] into GE, where

G = [g1, ...,gt2 ] ∈ R
d×t2 comprises dataset-level ob-

ject prototypes generated from the proposed temporally-

constrained sphere k-means and E = [E1, ...,En] =
[e11, ..., e1t1 , e21, ..., ent1 ] ∈ R

t2×nt1 is composed of

the dataset-level sparse codes generated from the soft-

assignment coding. In what follows, we show the whole

encoding flow of the proposed HOPE model.

Algorithm 1 Hierarchical Object Prototype Encoding

Input: Object proposals from n frames {Pi}
n
i=1

, the num-

ber of frame-level object prototypes per frame t1, the

number of dataset-level object prototypes t2, the num-

ber of non-zero elements in each frame-level code z1,

the number of non-zero elements in each dataset-level

code z2.

Output: Dataset-level object prototypes G, dataset-level

codes {Ei}
n
i=1

, frame-level codes {Hi}
n
i=1

.

1: for i = 1 ... n
2: Ci ← SCSKmeans(Pi, t1) using Eq. (4)

3: Hi ← SAC(Pi,Ci, z1) using Eq. (5)

4: end

5: G← TCSKmeans([C1, ...,Cn], t2) using Eq. (7)

6: for i = 1 ... n
7: Ei ← SAC(G,Ci, z2) using Eq. (5)

8: end

9: return G, {Ei}
n
i=1

, {Hi}
n
i=1

Temporally-constrained Sphere (TCS) K-means. In a

video, the temporal relationship among the frames can also

provide valuable information. One common sense is that

the consecutive frames will be prone to contain the similar

objects. We thus utilize the temporal information to weakly

supervise the clustering.

We divide the frames into multiple groups according to

their temporal location. For example, given a long video

consisting of M frames, we can equally divide the M
frames into τ groups. According to their group assignment,

the frame-level object prototypes will be divided into mul-

tiple temporal chunks {S1, ...,Sτ}. Sometimes, the dataset

also provides the shot information, i.e., it indicates which

frame is from which shot. In this case, we can directly

arrange the frame-level object prototypes from the same

video shot in the same temporal chunk. The temporally-



constrained sphere k-means iteratively updates the dataset-

level object prototypes and the assignment of the frame-

level object prototypes by

Assign : Au = argmax
k

c⊤u gk + λt

|Ak ∩ Scu
|

|Ak|
,

Update : gk =
∑

v∈Ak

cv/‖
∑

v∈Ak

cv‖2,
(7)

where Scu
denotes the temporal chunk containing the u-th

frame-level object prototype cu. Ak∩Scu
denotes the set of

the frame-level object prototypes assigned to the k-th clus-

ter and Scu
. λt is the parameter controlling the weight of

the temporal constraint. The temporally-constrained sphere

k-means will reduce to the original sphere k-means when

λt is 0. The iteration stops when the dataset-level object

prototypes do not change or the maximum iteration num-

ber is reached. Our experiments show that the iteration can

converge within 100 iterations.

Complexity Analysis in Search Phase. Utilizing the

generated dataset-level object prototypes G, the dataset-

level sparse codes {Ei}
n
i=1

and the frame-level sparse codes

{Hi}
n
i=1

, the similarity scores for all the proposals of all the

frames can be obtained by

s2 = q⊤G[E1H1, ...,EnHn]. (8)

We denote by z2 the number of non-zero elements in each

column of Ei and denote by z1 the number of non-zero ele-

ments in each column of Hi. We decompose computing s2

into following three steps:

1) : x← q⊤G Complexity : O(t2d)

2) : [y1, ...,yn]← [xE1, ...,xEn] Complexity : O(nt1z2)

3) : s2 ← [y1H1, ...,ynHn] Complexity : O(nmz1)

(9)

Both step 2) and step 3) in Eq. (9) are the sparse matrix-

vector multiplication (SpMV) problem [30] which take

O(nt1z2) and O(nmz1), respectively. In total, the com-

plexity of computing s2 is O(t2d+ nt1z2 + nmz1). Since

t2 ≪ nt1 and z2 ≪ d, computing s2 is much more effi-

cient than computing s1. Meanwhile, the total memory cost

of storing G, {Ei}
n
i=1

and {Hi}
n
i=1

is O(t2d + nt1z2 +
nmz1), which is much less than that of storing {Ci}

n
i=1

and {Hi}
n
i=1

in computing s1.

3.4. Nonexhaustive Search
The above analysis shows that computing s2 takes

O(t2d+ nt1z2 + nmz1) complexity. In the practical cases,

t1 ≪ m and t2d ≪ nmz1. Therefore, the most time-

consuming part of computing s2 is multiplying the sparse

codes hij for each object proposal. To further improve the

Table 1. The complexity analysis of different schemes. m is the

number of object proposals per frame, n is the number of frames. d

is the feature dimension. t1 ≪ m is the number of frame-level ob-

ject prototypes per frame. t2 ≪ nt1 is the number of dataset-level

object prototypes. z1 and z2 denote the number of non-zero ele-

ments in frame-level codes and dataset-level codes, respectively.

Scheme Complexity

s0 in Eq. (2) O(mnd)
s1 in Eq. (6) O(nt1d+ nmz1)
s2 in Eq. (8) O(t2d+ nt1z2 + nmz1)
s3 in Eq. (11) O(t2d+ nt1z2 + αnmz1)

efficiency, we propose the non-exhaustive search scheme to

avoid comparing the query with all the object proposals of

all the frames. Since the frame-level object prototypes are

the ℓ2-normalized centroids of the clusters of object propos-

als, they represent different types of objects in the frame. In

other words, they can be utilized as the representatives of

the object proposals. Therefore, the relevance score of the

frame with the query can be more efficiently calculated by

the best-matched frame-level object prototype:

R(fi) = max
j=1,...,t1

(q⊤cij) ≈ max
j=1,...,t1

(q⊤Geij). (10)

We rank all the frames in the dataset through the frame-level

relevance scores computed by Eq. (10). A candidate list of

frames F = [fr1, ..., frs] will be obtained by selecting a

portion of frames having high rankings. In this case, we

only need to conduct spatial localization of the query object

in the candidate list F by

s3 = q⊤G[Er1Hr1, ...,ErsHrs]. (11)

The best-matched object proposal of each frame will

serve as the detected region of the query object in the frame.

Computing s3 only requiresO(t2d+nt1z2+αnmz1) com-

plexity, where α is the ratio of the frames for further local-

izing the query object. It is much more efficient than com-

puting s2 as α ≪ 1. Overall, the frame-level object proto-

types Ci serve two roles: (1) the representatives of object

proposals to efficiently determine the relevance score of the

frame. (2) the prototypes to encode the features of object

proposals to speed up the object localization in the relevant

frames. In addition, the frame-level codes {Hi}
n
i=1

are only

used for object localization in the frame and irrelevant with

the relevance scores of the frames. Table 1 summarizes the

complexity of different schemes.

4. Experiment
4.1. Settings and Datasets

In this paper, we adopt Edge Boxes [37] to generate ob-

ject proposals serving as the potential regions of the ob-

ject instance. For each proposal, we extract its feature by

max-pooling the last convolutional layer of VGG-16 CNN

model [25] pre-trained on the Imagenet dataset. The max-

pooled 512-dimensional features are further post-processed



(a) Groundhong Day.

(b) NTU-VOI.

Figure 3. Query objects visualization.

by principle component analysis (PCA) and whitening in

order to suppress the burstiness [14] but the dimension of

the feature is kept as 512. The effectiveness of the proposed

method is evaluated by mean average precision (mAP).

We conduct the systematic experiments on the Ground-

hog Day [26] and NTU-VOI [21] datasets. Groundhog

Day dataset contains 5640 keyframes and six types of small

query objects: Red clock, Microphone, Black clock, Frame

sign, Phil sign and Digital clock. NTU-VOI dataset con-

tains 37340 frames and we use five types of query objects:

Ferrari, Kittyb, Kittyg, Maggi and Plane to evaluate the pro-

posed method. Figure 3 visualizes the query objects.

4.2. Effectiveness of Object Proposals

In this section, we evaluate the effectiveness of the object

proposals. The first algorithm (Baseline I) extracts features

for the whole frame and represents each frame with a global

feature. In this scenario, the frames are ranked according to

their cosine similarity to the query object. The second algo-

rithm (Baseline II) exhaustively compares the query object

with all the object proposals of all the frames, illustrated in

Eq. (2). In Baseline II, the best-matched proposal of each

frame, i.e., the proposal with the highest similarity scores,

determines the relevance between the query and the frame.

In other words, the frames are ranked according to the sim-

ilarity scores of their best-matched proposals.

Figure 4 shows the object instance search performance

of the Baseline I and Baseline II. It can be observed that

the performance of Baseline II is much better than Base-

line I. At the same time, the mAP of baseline II improves

as the number of object proposals n increases. However,

the increase rate is slower and slower. It makes sense as

in most cases, hundreds of object proposals are enough to

capture the location of the object instance in the frames. To

balance the effectiveness and efficiency, we set the default

number of object proposals as 300. We will use Baseline II

algorithm as the reference to further evaluate the proposed

hierarchical object prototype encoding method.

4.3. Framelevel Object Prototype Encoding

The proposed hierarchical object prototype encoding

consists of two levels. We first evaluate the effectiveness of

the frame-level object prototypes encoding and do not con-
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Figure 4. The mAP of two baseline algorithms on Groundhog day

and NTU-VOI datasets. Benefited from object proposals, Baseline

II is much better than Baseline I and the performance of Baseline

II improves as the number of object proposals increases.
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Figure 5. The mAP comparison between K-means, Sphere K-

means and SCS K-means on Groundhog Day and NTU-VOI

datasets. SCS K-means achieves the best performance and it is

better than Baseline II when the number of object prototypes per

frame t1 surpasses 30.

duct the dataset-level object prototype encoding. We adopt

s1 scheme in Eq. (6) where we set the number of nonzero

elements in frame-level sparse codes z1 as 3.

Figure 5 compares the performance of the frame-level

object prototypes generated from k-means, sphere k-means

and spatially-constrained sphere k-means, respectively. In

our implementation, the object prototypes are generated

from 300 object proposals and λs is fixed as 3 on both

datasets. It can be observed that, in general, the sphere

k-means is slightly better than k-means. In comparisons,

the proposed spatially-constrained sphere k-means is better

than the sphere k-means. Interestingly, when the number of

frame-level object prototypes per frame t1 is over 30, the

performance achieved by the frame-level object prototypes

is even better than baseline II. Although a larger number of

frame-level object prototypes can bring higher mAP, the de-

fault number of the object prototypes is set as 30 to balance

the accuracy and efficiency.

Comparison with Representative Selection. We com-

pare the performance of the frame-level object prototypes

with the object representatives selected from K-mediods

[23] and the SMRS method [8] which select representative

object proposals from hundreds of object proposals for each

frame. In the representative selection scheme, we only need

to compare the query object with the selected representa-

tive objects and the exhaustive search can be avoided. The

fundamental difference of the proposed frame-level object

prototypes from the object representatives is that the object

representatives are selected from the original data samples

whereas the object prototypes are generated from the cen-
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Figure 6. Comparison of the proposed frame-level object proto-

types with the object representatives generated from K-mediods

[23] and SMRS [8].

troids of the clusters which are more robust. From Figure 6,

we can see that the performance of the proposed object pro-

totypes scheme is much better than that from representative

objects generated from SMRS and K-mediods.

4.4. Effectiveness of HOPE

In this section, we evaluate the whole HOPE model. We

adopt the non-exhaustive search scheme in Eq. (11) where

we set α as 0.05. We denote by Baseline III the implementa-

tion in Section 4.3 where the frame-level object prototypes

are generated from the SCS k-means, the number of frame-

level object prototypes t1 = 30 and the number of non-zero

elements in frame-level sparse codes z1 = 3. We fix the set-

tings of frame-level prototype encoding in HOPE model ex-

actly same as Baseline III and focus on testing dataset-level

object prototype encoding. On the Groundhog Day dataset,

we equally divide the 5640 keyframes into 50 groups to gen-

erate temporal chunks required by the TCS k-means. On

the NTU-VOI dataset, we directly use the shot information

provided by the dataset to obtain temporal chunks. On both

datasets, we set the λt = 2.

We first compare the performance of the dataset-level

object prototypes using the sphere k-means and the TCS k-

means, where the number of non-zero elements in the codes

z2 is set as 3. As depicted in Figure 7, the performance

of dataset-level object prototypes generated from the TCS

k-means is significantly better than that of generated from

the sphere k-means. Surprisingly, Figure 7 shows that the

mAP of from our HOPE model is much better than both

Baseline II and Baseline III, which can be attributed to the

denoising effect of the HOPE model. It is worth noting

that 800 dataset-level object prototypes can achieve 0.70
mAP on the Groundhog day dataset. In this scenario, stor-

ing the HOPE model ({Hi}
n
i=1

, {Ei}
n
i=1

,G) only requires

28.64 MB whereas the Baseline II costs 3.22 GB to store

{Pi}
n
i=1

. On the NTU-VOI dataset, 100 dataset-level ob-

ject prototypes can achieve 0.84 mAP, which only requires

176.47MB to store the HOPE model whereas the Baseline

II costs 21.36 GB. On both datasets, the memory cost from

HOPE is less than 1% of that of Baseline II.

Comparison with Sparse Coding. We compare our

object prototype encoding with sparse coding method pro-

posed in [12] to further validate the effectiveness of the
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Figure 7. The mAP comparison between sphere k-means and TCS

k-means on Groundhog Day and NTU-VOI datasets.
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Figure 8. The performance comparison between sparse coding

[12] and our dataset-level object prototype encoding.

HOPE. To make a fair comparison, both the sparse cod-

ing and the dataset-level object prototype encoding are con-

ducted on the exactly same frame-level object prototypes

generated from SCS K-means and we fix z2 as 3 for both

sparse coding and dataset-level object prototype encoding.

From Figure 8, we can see the proposed dataset-level ob-

ject prototype encoding is much better than that of sparse

coding used in [12].

Comparison with Quantization. In order to further

validate the effectiveness of the dataset-level object pro-

totype encoding, we compare it with product quantization

(PQ) [15], optimized product quantization (OPQ) [10], and

product quantization with coefficients (α-PQ) [13]. In the

quantization scheme, we quantilize all the frame-level ob-

ject prototypes into the dataset-level quantilizers and the

relevance score of the frame-level object prototypes can be

efficiently obtained from the look-up table. In the imple-

mentation of PQ, OPQ and α-PQ, we vary m, the number

of sub-groups, from 2 to 16. We first set the number of clus-

ters of each sub-group as 256 which is the standard settings

of PQ. Then we set the number of clusters of each sub-group

as 800 on the Groundhog day dataset and 100 on the NTU-

VOI dataset which are the same settings as our dataset-level

object prototype encoding. We can observe from Figure 9

that the proposed dataset-level object prototype encoding

significantly outperforms PQ, OPQ and α-PQ.

Efficiency Comparison. We compare the memory and

time cost of the proposed prototype encoding (ours) with

Sparse Coding (SC) and Product Quantization (PQ) in Table

2. In implementation, we set z2 = 3 and t2 = 800 for ours

and SC. In PQ, we set the number of sub-codebooks m as

4 and the sub-codebook size is 800. As we can see from

Table 2 that ours significantly outperforms SC and PQ in

precision with comparable memory and time cost.



Method Memory Search Time mAP

Ours 28.6MB 218 ms 0.70
SC 28.6MB 218 ms 0.55
PQ 27.0MB 212 ms 0.62

Table 2. Efficiency comparison on the Groundhog Day.
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Figure 9. Comparison of our dataset-level object prototype encod-

ing with product quantization [15], optimized product quantization

[10] and product quantization with coefficients [13].

1 2 3 4 5
0.4

0.45

0.5

0.55

0.6

0.65

0.7

λ
t

m
A

P

(a) λt

1 2 3 4 5
0.45

0.5

0.55

0.6

0.65

0.7

0.75

z
2

m
A

P

(b) z2

2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

β

m
A

P

(c) β

Figure 10. The influence of parameters on the Groundhog Day.

Parameters Sensitivity. Figure 10 shows the influence

of the parameters. The mAP is relatively stable when λt ∈
[1, 5] . The bigger z2 brings better mAP but higher mem-

ory and computation cost. Particularly, when z2 = 1, the

soft-assignment becomes hard-assignment and it achieves

worse mAP than the soft-assignment when z2 > 1 . To

balance the precision and efficiency, we set z2 = 3. When

β = ∞, the soft-assignment will become hard-assignment,

so we should not set β to be too large. We set the default

value of β as 3.

Search Results Visualization. Finally, we visualize the

search results from the proposed HOPE model in Figure 11

and Figure 12. We can see that the query object only occu-

pies a very small area surrounded by very dense clutter but

our method can accurately find the frames containing the

query object and precisely localize it in the frames.

5. Conclusion
In this paper, we leverage the object proposals to im-

prove the quality of object instance search in videos. To

address the large memory and computational cost of using

object proposals, we propose to formulate the search into

a hierarchical sparse coding problem. By utilizing the spa-

tial and temporal self-similarity property of object propos-

als, we present SCS K-means and TCS K-means to learn

the frame-level object prototypes and dataset-level object

prototypes, respectively. Experimental results on two video

datasets demonstrate that our approach can achieve even

better performance than exhaustive search using all object

proposals within a fraction of complexity and significantly

(a) Black Clock.

(b) Microphone.

Figure 11. Visualization of top-16 search results on the Groundhog

dataset with query black clock and microphone.

(a) Kittyb.

(b) Maggi.

Figure 12. Visualization of top-16 search results on the NTU-VOI

dataset with query Kittyb and Maggi.

outperform other state-of-the-art fast methods.
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