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Abstract
This paper addresses the problem of video-level
object instance search, which aims to retrieve the
videos in the database that contain a given query
object instance. Without prior knowledge about
“when” and “where” an object of interest may ap-
pear in a video, determining “whether” a video
contains the target object is computationally pro-
hibitive, as it requires exhaustively matching the
query against all possible spatial-temporal loca-
tions in each video that an object may appear. To
alleviate the computational and memory cost, we
propose the Reconstruction-based Object SEarch
(ROSE) method. It characterizes a huge corpus
of features of possible spatial-temporal locations
in the video into the parameters of the reconstruc-
tion model. Since the memory cost of storing re-
construction model is much less than that of stor-
ing features of possible spatial-temporal locations
in the video, the efficiency of the search is sig-
nificantly boosted. Comprehensive experiments on
three benchmark datasets demonstrate the promis-
ing performance of the proposed ROSE method.

1 Introduction
Given a query object and a database of videos (e.g., video
clips collected by mobile robots), video-level object search
aims to retrieve the videos containing this object instance
without concerning about ”when” and ”where” it may ap-
pear in these videos (i.e., its spatio-temporal locations). It is
an important problem which can serve as the stepping stone
for many vision and robotics problems that involve fine level
video analytics such as object sensing and identification.

Because the object of interest can be small and appear at
any spatio-temporal location in a video, to find out whether a
video contains the target object, matching the query directly
with the entire video usually does not work. Therefore, pre-
vious works try to first produce a set of candidate locations
in a video where an object may appear, using either frame-
wise sliding windows [Tolias et al., 2016] or object proposals
[Bhattacharjee et al., 2016]. Then the relevance of a video
to the query can be measured by the matching score of the
best-matched candidate location of the query.

However, matching candidate locations is neither neces-
sary nor efficient. First, our goal is to identify ”whether” an
object of interest is in a video, instead of finding ”where”
exactly it locates. Second, even with the help of object pro-
posals, it is still computationally prohibitive to perform an
exhaustive search for all object proposals as the number of
object proposals per video can be extremely large. For exam-
ple, a short video clip of half a minute can generate tens of
thousands of object proposals in order to maintain a high re-
call of the objects. Hence it is considerably time-consuming
to match the query with each individual object proposal, espe-
cially if we need to handle a big video database of thousands
of video clips.

Fortunately, although the number of object proposals per
video is huge, the object proposals in a video tend to have
high redundancy because of their large spatio-temporal over-
laps [Tu et al., 2014]. Thus one plausible solution to speed
up the search and reduce the memory cost of storing all the
object proposals is to first select the representative ones for
each video [Meng et al., 2016a]. Then we only need to match
the query with the selected representatives instead of all. Ac-
cording to [Meng et al., 2016a], 10 percent selected represen-
tatives can achieve excellent performance in shot-level object
instance search. However, to guarantee a reasonable recall,
the selection ratio cannot be too small. Therefore, the re-
duction in memory and computational cost by representative
selection is limited.

Different from representative selection, we propose the
Reconstruction-based Object SEarch (ROSE) method to fur-
ther improve the efficiency and accuracy of video-level object
instance search, without exhaustively comparing the query
with each object proposal. Specifically, for each video, in-
stead of storing all of its object proposals that may capture the
query object, we train a compact model for each video to re-
construct all of its object proposals. Then in the search phase,
the reconstruction model of each video can answer whether
it has ever seen the query object, by trying to reconstruct the
query. As the query is not directly compared with individ-
ual object proposals, our proposed solution brings a signifi-
cant reduction in both computational and memory cost, while
achieving comparable search accuracy to exhaustive search,
due to the following properties:

• Instead of locating all instances of the query accurately
in the videos, video-level object search only cares about
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Figure 1: In the training phase, for each video, we extract object pro-
posals serving as candidate object locations of the query in the video.
We further train a reconstruction model using the set of features of
the object proposals generated from each video. In the search phase,
given a query object, for each video, we calculate the query’s recon-
struction error using its reconstruction model. The videos are ranked
according to the reconstruction errors.

whether the query object is contained in a video or not.
As will be shown in our experiments, such an identifica-
tion problem can be addressed by a simple reconstruc-
tion model.

• If a video contains an instance of the query object, more
often than not, it will generate many spatio-temporally
overlapping object proposals that capture the instance.
Therefore, instead of “finding a needle in a haystack”,
we are actually checking whether there are “a bunch
of needles” in a haystack. Although the reconstruction
model may not be able to capture a single needle, it is
likely to capture ”a bunch of needles”. Therefore, when
the query object comes, the reconstruction model will
not miss it.

• Training a model to reconstruct all object proposals can
be time consuming, but it is performed offline for only
once thus does not affect runtime efficiency. In the
search phase, we only need to reconstruct the query to
tell whether it is contained in the video, and the same
reconstruction model works for different queries.

As illustrated in Figure 1, our Reconstruction-based Object
SEarch (ROSE) method converts the set of object proposals
into the parameters of the reconstruction model. The learned
reconstruction model is a higher-level abstraction of the set
of features of object proposals, which is not only compact but
also shows better generalization ability. We conduct exper-
iments on three benchmark datasets and compares the state-
of-the-art methods to verify the effectiveness and efficiency
of our ROSE method.

2 Related Work
Object Instance Search in Videos. In the past decade,
the problem of object instance search has been widely ex-
ploited on image datasets [Jiang et al., 2015; Tao et al., 2015;
Tolias et al., 2016; Bhattacharjee et al., 2016; Yu et al.,
2017a] but not as much on video dataset [Meng et al., 2016b;
Yu et al., 2017b]. A pioneer work for object instance search
in videos is Video Google [Sivic and Zisserman, 2009], which
treats each video keyframe independently and ranked the
video shots by its best-matched keyframes. Some follow-
ing works [Zhu and Satoh, 2012; Yang and Satoh, 2013] also
process the frames individually and ignore the redundancy
across the frames in videos. Until very recently, [Meng et
al., 2016a] create a pool of object proposals for each video
shot and further utilize the representative selection which ex-
ploits the spatio-temporal redundancy in the videos in order
to speed up the search.

Reconstruction Model. Reconstruction model has been
widely used in outlier/anomaly detection [Cong et al., 2011;
Xia et al., 2015]. In this case, a reconstruction model imple-
mented by sparse coding or auto-encoder is trained and the
data samples with larger reconstruction errors can be treated
as the anomaly/outlier samples. Meanwhile, the reconstruc-
tion model has also been used in video highlights detection
[Yang et al., 2015] in which the samples reconstructed accu-
rately from the reconstruction model are identified as the sam-
ples to summarize the video. Furthermore, the reconstruction
model has also been used as classifier [Wright et al., 2009;
Hayat et al., 2015]. In this case, the class-specific reconstruc-
tion models are trained and the test sample is assigned to the
class for which the best reconstruction is obtained.

3 Reconstruction-based Object Search
We denote by rθi(·) : Rd → Rd the reconstruction model
learned by the set of object proposals Si = {x1

i , ...,x
m
i } from

the video Vi, where θi is the parameters of the reconstruction
model which are learned by reconstructing all object propos-
als in the training phase:

θi = argmin
θ

∑
x∈Si

‖x− rθ(x)‖22. (1)

In the search phase, for each video Vi, we calculate the
query’s reconstruction error ‖rθi(q) − q‖2 using the recon-
struction model learned from the video. We use the recon-
struction error as a similarity measurement to determine the
relevance between the query q and the whole video Vi:

dist(q, Vi) = ‖q − rθi(q)‖2 (2)
The smaller the reconstruction error ‖q − rθi(q)‖2 is, the
more relevant the query is to the video Vi.

If the query object is similar to some object proposals
from the video (training data), its reconstruction error should
be small. After training the reconstruction model for the
video Vi, we no longer rely on the object proposals Si =
{x1

i , ...,x
m
i } and only need to store the parameters θi, which

is more compact than Si. Meanwhile, rather than comparing
the query q with all the object proposals in the set Si, the re-
construction model only need to compute ‖q − rθi(q)‖2 to



obtain the relevance between q and Si, which can be calcu-
lated very efficiently.

The Reconstruction-based Object SEarch (ROSE) method
characterizes the set of object proposals Si extracted from
each video Vi by the reconstruction model rθi trained from
Vi. The reconstruction error of the query ‖q−rθi(q)‖2 serves
as a relevance measurement to rank the videos. It should be
avoided to build the reconstruction model which can perfectly
reconstruct any input vector since it will make the reconstruc-
tion error meaningless. This can be achieved by adding con-
straints or regularization terms in training the reconstruction
model. We attempt multiple methods to implement the re-
construction model rθi(·). It includes subspace projection,
auto-encoder and sparse dictionary learning.

3.1 Subspace Projection
We define the reconstruction model based on subspace pro-
jection as:

rθi(x) = θ
>
i θix, s.t. θiθ>i = I, (3)

where θ>i θi is the projection matrix and θi ∈ Rl×d consists
of the bases of the projected subspace. To avoid rθi(x) = 0
for any x ∈ Rd, we must set l < d. Otherwise, if l = d,
rθi(x) = x.

In the training phase, we seek to learn θi by optimizing the
following problem:

θi = argmin
θ∈{A∈Rl×d|AA>=I}

∑
x∈Si

‖x− θ>θx‖22

= argmin
θ∈{A∈Rl×d|AA>=I}

‖Xi − θ>θXi‖2F ,
(4)

where Xi = [x1, ...,xm] ∈ Rd×m is the matrix consisting
of features of all the object proposals from the video Vi. The
optimal θi is obtained by the singular value decomposition.
The singular value decomposition of Xi is defined as Xi =
UiΣiV

>
i . It can be proven that the optimal θi ∈ Rl×d can be

simply obtained by choosing the first l columns of the matrix
Ui, i.e., the left singular vectors of the l largest eigen-values.

In the testing phase, the reconstruction error of q using
the reconstruction model learned from each set Si can be ob-
tained by ‖q − θ>i θiq‖2. Intuitively, it measures the shortest
euclidean distance between the query object q and the data
points which lies in the subspace spanned by the bases θi.

Compared with exhaustively comparing the query q with
all the object proposals Si = {x1

i , ...,x
m
i }, the reconstruction

model implemented by subspace projection is much more ef-
ficient, since l � m. Nevertheless, how to choose l is not
a trival problem. On one hand, if l is too small, it will fail
to capture the information embeded in the batch of data. On
the other hand, if l is too large, considering an extreme case
when l = d, i.e., rθ(x) = x, it can perfectly reconstruct
any d-dimensional vector since θi>θi = I . The above situa-
tion limits the usefulness of the reconstruction model imple-
mented by subspace projection.

3.2 Auto-encoder
We define the reconstruction model implemented by auto-
encoder as:

rθi(x) = f2(W
2
i f1(W

1
i x+ b1i ) + b

2
i ), (5)

where b1i ∈ Rl and b2i ∈ Rd are the bias vectors,W 1
i ∈ Rl×d

and W 2
i ∈ Rl×d are the weight matrices, l is the number

of hidden units, f1(·) is the encoding activation function and
f2(·) is the decoding activation function.

In the training phase, θi = {W 1
i ,W

2
i , b

1
i , b

2
i } can be ob-

tained by optimizing the following problem:

θi = argmin
θ

∑
x∈Si

‖x−f2(W 2f1(W
1x+b1)+b2)‖22. (6)

In the test phase, the reconstruction error of q for each set Si
can be calculated by ‖q − f2(W 2

i f1(W
1
i q + b

1
i ) + b

2
i )‖2.

Based on the reconstruction model implemented by the
auto-encoder, for each video Vi, we only need to store θi =
{W 1

i ,W
2
i , b

1
i , b

2
i }, which require O(dl) memory complex-

ity. Meanwhile, the computational cost for calculating the
reconstruction error for each video is O(dl), which is mainly
cost on the matrix-vector productW 2

i f1(·) andW 1
i q.

In fact, auto-encoder is similar to the subspace projection
implemented by singular value decomposition except for the
nonlinear activation function f1(·) and f2(·) and the bias vec-
tor b1i and b2i . It can be proven that if the input vector x
is zero-mean and both the encoder activation function and
decoder activation function are linear functions, optimizing
auto-encoder will be equivalent to singular value decomposi-
tion. Note that, when the number of hidden units l is large,
it tends to be capable of reconstructing any input vector like
the situation we encounter in the reconstruction model imple-
mented by the subspace projection. To tackle this problem,
a natural solution is adding sparsity constraint. We imple-
ment two types of sparsity constraint auto-encoder. They are
sparse auto-encoder [Ng, 2011] and k-sparse auto-encoder
[Makhzani and Frey, 2013].

Sparse Auto-encoder In order to constrain the sparsity
of the activation of the hidden units, sparse auto-encoder
adds KL(ρ‖ρ̂j), the Kullback-Leibler(KL) divergence be-
tween average activation of hidden units and sparsity parame-
ter ρ, as a penalty term in the object function in Eq. (6), where
ρ̂j is the average activation of j-th hidden unit.

K-sparse Auto-encoder [Makhzani and Frey, 2013] pro-
posed the k-sparse autoencoder with linear activation func-
tion. In the feedforward phase, after computing the hidden
code z =W1x+ b, rather than constructing the output from
all of the hidden units, it identifies the k largest hidden units
in z and set the others to zero.

3.3 Sparse Dictionary Learning
We define the reconstruction model implemented by sparse
dictionary learning as :

rθi(x) = θihθi(x), (7)

where θi ∈ Rd×l consists of the atoms of the dictionary
learned from Si. hθi(x) is the sparse code of the vector x
based on θi satisfying ‖hθi(x)‖0 = z, where z is the num-
ber of non-zero elements of the code.



In the training phase, θi is learned by optimizing the fol-
lowing problem:

θi =argmin
θ

∑
x∈Si

‖x− θihθi(x)‖22

s.t. ‖hθi(x)‖0 = z,∀x ∈ Si.
(8)

The above l0-norm constrained optimization is normally con-
verted into l1-penalty problem given by

θi = argmin
θ

∑
x∈Si

‖x− θihθi(x)‖22 + λ‖hθi(x)‖1

= argmin
θ
‖Xi − θiHi‖2F + λ‖Hi‖1,1,

(9)

where l1-penalty on hθi(x) (sum of the magnitude of its
elements) encourages a sparse solution of hθi(x), Xi =
[x1, ...,xm] ∈ Rd×m is the matrix of all the data points from
the set Si, Hi = [hθi(x

1
i ), ...,hθi(x

m
i )] is the matrix con-

sisting of the sparse codes, ‖Hi‖1,1 =
∑m

j=1 ‖hθi(x
j
i )‖1

and λ is the parameter to control the sparsity of hθi(·). We
use online dictionary learning [Mairal et al., 2009] to solve
the above optimization problem since it is efficient to handle
large-scale high-dimensional data.

In the search phase, given a query point q, for each set Si,
we can efficiently obtain its sparse code hθi(q) using orthog-
onal matching pursuit (OMP):

hθi(q) = OMP(q,θi, z), (10)

The reconstruction error of q from the reconstruction model
rθi(x) is further obtained by ‖q − θhθi(q)‖2.

The reconstruction model implemented by sparse coding
only requires to store the dictionary atoms θi ∈ Rd×l which
takes O(ld) memory cost. The most time-consuming part in
the search phase is to obtain the sparse codes hθi(q) through
orthogonal matching pursuit. It takes O(zld) computational
complexity. In our experiments, we find the number of non-
zero element of the code z = 2 achieves excellent perfor-
mance in search precision as well as efficiency.

4 Experiments
4.1 Settings
In this paper, we adopt Edge Boxes [Zitnick and Dollár, 2014]
to generate 300 object proposals for each frame of the videos.
For each object proposal, we further extract its feature by
max-pooling the last convolutional layer of VGG-16 CNN
model [Simonyan and Zisserman, 2014] pre-trained on Im-
agenet dataset. The max-pooled 512-dimensional features
are further post-processed by principal component analysis
(PCA) and whitening in order to suppress the burstiness but
the dimension of the feature is kept as 512.

Observing that the object proposals from the same frame
tend to overlap with each other and there exist strong redun-
dancy among them. To boost the efficiency of the training
process, we use k-means clustering to group 300 object pro-
posals from every frame into 30 clusters and select the cen-
troids of the clusters as compact object proposals. In this
scheme, each frame will be represented by 30 compact object

(a) CNN2h

(b) Egocentric1

(c) Egocentric2

Figure 2: Query Objects Visualization.

proposals and the whole video will be represented by a pool
of 30m compact object proposals, where m is the number of
frames.

4.2 Evaluation Metric and Dataset

The effectiveness of the proposed method is evaluated by
mean average precision (mAP). We conduct the system-
atic experiments on CNN-2h [Araujo et al., 2014], Egocen-
tric1 [Chandrasekhar et al., 2014] and Egocentric2 [Chan-
drasekhar et al., 2014] datasets. The CNN-2h dataset con-
tains a long video of 72, 000 frames and we equally divide
them into 100 videos. Each video consists of 720 frames and
21600 object proposals. The Egocentric1 dataset consists of
19 long videos. We uniformly sample the keyframes per 20
frames, obtain 51804 keyframes and further equally divide all
the keyframes into 101 videos. Each video consists of around
500 keyframes and around 15000 object proposals. The Ego-
centric2 dataset consists of 21 long videos. We uniformly
sample the keyframes per 20 frames, obtain 57802 keyframes
and equally divide all the keyframes into 114 videos. Each
video consists of around 500 keyframes and around 15000
object proposals.

For the evaluation of object instance retrieval, we used
eight query objects for each dataset and skipped those scene
query images. Figure 2 visualizes the query objects. In fact,
the number of frames where query object appears is much
fewer than the total number of frames in the video. We de-
fine the frame ratio η(q, Vi) as the number of frames in Vi
which contain the query object q divided by the number of
total frames in the video Vi. Furthermore, we define η̂(q) as
the average frame ratio of q which is computed by:

η̂(q) =
∑
V ∈Vq

η(q, V )/|Vq|, (11)

where Vq denotes the set of videos which are relevant to q.
Table 1 shows the average ratio of all the queries on three
datasets. It can be seen that the average ratios of queries
are quite small. For example, on Egocentric1 dataset, the
average frame ratio of 5-th query is only 1.2%. Since each
video of Egocentric1 dataset contains around 500 keyframes,
it means that, on average, the query object only appears in
only 6 keyframes in the relevant videos.



1 2 3 4 5 6 7 8 Avg
CNN2h 5.0% 10.2% 3.9% 2.0% 3.5% 14.5% 5.6% 9.1% 6.7%

Egocentric1 2.0% 1.4% 1.6% 2.2% 1.2% 3.6% 0.8% 1.1% 1.7%
Egocentric2 1.6% 2.0% 1.8% 0.9% 1.8% 3.6% 4.1% 5.4% 2.7%

Table 1: Average frame ratios of 8 queries on three datasets.
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Figure 3: The reconstruction error decreases as the ratio of the query
increases.

4.3 Effectiveness of ROSE Method
We evaluate the performance of the proposed Reconstruct-
based Object SEarch (ROSE) method implemented by sub-
space projection, sparse autoencoder, k-sparse autoencoder
and sparse dictionary learning, in the video-level object in-
stance retrieval task in this section.

Before we evaluate the search precision of ROSE, we de-
sign an experiment to demonstrate the effectiveness of recon-
struction model in capturing the relevance of the query with
the video consisting of a set of object proposals. Particularly,
we choose the first query from the CNN2h dataset as our test
query. We choose the first video from the CNN2h dataset
consisting of 21000 (700 frames * 30 proposals / frame) ob-
ject proposals, as the training data to learn the reconstruction
model. We manually mix the original training data with mul-
tiple duplicates of the feature of the query object to form the
new training data. We adjust the ratio of the query in the new
training data from 0 to 0.02. For example, we add 420 dupli-
cates of the query object to original 21000 object proposals
to achieve 0.02 ratio. We can see from Figure 3 that, the re-
construction error of the query object decreases as the ratio of
the query object increases, which verifies the effectiveness of
the reconstruction error in characterizing the relevance of the
query object with the video.

Figure 4(a) shows the mAP from the reconstruction model
implemented by subspace projection. We vary the number
of singular vectors l from 10 to 500. It is interesting that
the mAP increases and then decreases as number of selected
singular vectors increase. Particularly, when l = 10 and
l = 500, the mAP is relatively low. This is because of the fact
that too few singular vectors can not capture enough informa-
tion contained in the set of the object proposals. Meanwhile
too many singular vectors will make the reconstruction model
easily reconstruct any input vectors, which makes it difficult
to discriminate different videos.

Figure 4(b) shows the mAP of the proposed reconstruction
model implemented by sparse autoenocoder. The encoder ac-
tivation function f1(·) is implemented by rectifier defined as
f1(x) = max(0, x). The decoder activation function is im-
plemented by the linear function f2(x) = x. We set the ex-
pected average activations ρ̂ of all the hidden neural nodes as
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Figure 4: The performance comparison of the reconstruction model
implemented by subspace projection and sparse autoencoder.
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Figure 5: The performance of the reconstruction model imple-
mented by k-sparse autoencoder.
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Figure 6: The performance of the reconstruction model imple-
mented by sparse coding.

0.05. It can be observed that from Figure 4(b) that, the re-
construction model implemented by sparse autoencoder can
achieve more stable performance compared with the recon-
struction model implemented by subspace projection. Partic-
ularly, it achieves 0.746 mAP on CNN-2h dataset when the
number of hidden units is 500, whereas the subspace pro-
jection can only achieves 0.443 mAP when the number of
singular vector is 500. The more stable performance can be
attributed to the sparse penalty term.

Figure 5 shows the performance of the reconstruction
model implemented by k-sparse autoencoder. We vary the
number of nonzero activations of the hidden layer k among
10, 20 and 30. Compared with sparse autoencoder, the per-
formance of k-sparse autoencoder is much better and more
stable. Especially on Egocentric2 dataset, it can achieve mAP
= 1.00 when k = 10 and the number of hidden units is 200
whereas the sparse autoencoder only achieved around mAP
= 0.75 when the number of hidden units is 200.

Figure 6 shows the mAP from the reconstruction model
implemented by sparse dictionary learning as the number of
atoms and the number of non-zero element in the codes z
changes. It can be observed that the value of z does not in-
fluence the performance significantly when it varies between
2 and 4. Therefore, we set the default number of z as 2 on



Method CNN-2h Egocentric1 Egocentric2
Memory mAP Memory mAP Memory mAP

ROSE-SDL (ours) 400KB 1.00 400KB 0.94 400KB 1.00
SMRS 400KB 0.73 400KB 0.83 400KB 0.62
K-mediods 400KB 0.63 400KB 0.69 400KB 0.89
Exhaustive Search 42MB 1.00 30MB 1.00 30MB 1.00

Table 2: Comparison of our ROSE method with the representative
selection method and exhaustive search method.

all three datasets. Compared with the reconstruction model
implemented by sparse autoencoder or k-sparse autoencoder,
the reconstruction model implemented by sparse dictionary
learning is more accurate and stable. It can achieve mAP
= 1.00 on both CNN-2h and Egocentric2 datasets when the
number of atoms per video is only 150. We choose the sparse
dictionary learning as the default implementation of the pro-
posed reconstruction model.

4.4 Comparison with Baselines
In order to further demonstrate the effectiveness of the pro-
posed ROSE method, we compare it with exhaustive search
scheme and representative selection scheme [Elhamifar et al.,
2012]. Particularly, the exhaustive search scheme directly
compares the query with all the object proposals from each
video to determine the relevance of the video with the query.
The representative selection scheme selects a set of represen-
tative objects Oi from the set of object proposals Si for each
video Vi. The relevance of the video Vi with the query q is
determined by the similarity score of the best-matched repre-
sentatives as

R(q, Vi) = max
o∈Oi

sim(q,o) (12)

We compare with two types of representative selection
methods. They are k-mediods [Park and Jun, 2009] and
SMRS [Elhamifar et al., 2012]. The reconstruction model
we use for comparison is implemented by sparse dictionary
learning and the number of non-zero elements in the codes z
is set as 2. We conduct the comparison on the condition when
the number of atoms/representatives l is set to be 200, which
costs 400KB memory for each video.

From Table 2, we can see that our ROSE implemented by
sparse dictionary learning (ROSE-SDL) achieves compara-
ble search precision as exhaustive search but takes much less
memory. For example, on the CNN2h dataset, the exhaus-
tive search takes 42MB to achieve mAP = 1.00. In contrast,
to achieve mAP = 1.00, our ROSE-SDL only takes 400KB
memory, which is only around 1% as that for the exhaustive
search method. Meanwhile, using comparable memory cost,
our ROSE-SDL achieves significantly higher precision than
the representative selection implemented by k-mediods and
SMRS on all three datasets. For example, on CNN-2h dataset,
the proposed reconstruction model can achieve mAP = 1.00,
whereas the mAP of the representative selection scheme im-
plemented by k-mediods and SMRS are both less than 0.75.

We visualize the search results from our ROSE-DSL
method on CNN2h, Egocentric1 and Egocentric2 datasets in
Figure 7. For each dataset, we show one query and its top-3
retrieved videos. We can see that, in many cases the query
object only appears in few frames of the video and occupies a

(a) CNN2h

(b) Egocentric1

(c) Egocentric2

Figure 7: Visualization of top-3 search results of the proposed ROSE
method on three datasets.

very small area surrounded by dense clutter in the frame but
our method can still successfully retrieve the videos where
the query object appears.

5 Conclusion
Our work provides a novel perspective to video-level object
instance search and proposes the Reconstruction-based Ob-
ject SEarch (ROSE) method to achieve search efficiency. In
this method, a huge number of object proposals generated
from the frames of a video are compactly characterized by
the parameters of a learned reconstruction model. Then the
video-level object instance search is converted into comput-
ing the reconstruction error of the query object using the re-
construction model learned for each video. It is significantly
faster than exhaustively comparing the query object with all
the object proposals from the video. Meanwhile, storing the
reconstruction model of the video greatly reduces the mem-
ory cost. Comprehensive experiments on three benchmark
datasets verify the high efficiency and effectiveness of our
ROSE method.
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