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Abstract—Local binary pattern (LBP) and its variants have
been widely used in many visual recognition tasks. Most ex-
isting approaches utilize pre-defined LBP structures to extract
LBP features. Recently, data-driven LBP structures have shown
promising results. However, due to the limited number of training
samples, data-driven structures may overfit the training samples,
hence could not generalize well on the novel testing samples. To
address this problem, we propose two structural regularization
constraints for LBP-structure optimization: symmetry constraint
and uniformity constraint. These two constraints are inspired
by pre-defined LBP structures, which convey the human prior
knowledge on designing LBP structures. The LBP-structure op-
timization is casted as a binary quadratic programming problem
and solved efficiently via the branch-and-bound algorithm.The
evaluation on two scene-classification datasets demonstrates the
superior performance of the proposed approach compared with
both pre-defined LBP structures and unconstrained data-driven
LBP structures.

Index Terms—LBP-Structure Optimization, Structural Regu-
larization, Symmetry Constraint, Uniformity Constraint, Scene
Classification

I. I NTRODUCTION

L OCAL binary pattern and its variants have a wide range
of applications, e.g. texture classification [1]–[3], dynam-

ic texture recognition [4]–[6], scene recognition [7]–[10], fa-
cial analysis [11]–[19], human detection [20]–[22], and many
others [23]–[30]. LBP is popular because of its simplicity,
ability to capture image micro-structures and robustness to
illumination variations.

Traditionally, a handcrafted LBP structure was often utilized
to extract LBP features [7], [9], [11], [28], [31]–[35]. Themost
popular LBP structure consists of 8 nearest neighbors [7], [9]
or P neighbors in a circle [11], [28], [31]. Other geometries
such as line and disc were explored in local quantized pattern
(LQP) [35]. Handcrafted LBP structures are designed based
on the human prior knowledge on images, and they may work
well across different applications. However, such handcrafted
LBP structures may not optimally capture the intrinsic image
characteristics of the target application.

Recently, researchers aim to derive the optimal LBP struc-
tures in a data-driven manner. In [14], Maturana et al. utilized
a heuristic hill-climbing technique to select the suitableLBP
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structure. Lei et al. learnt discriminant image filters and opti-
mal neighborhood sampling strategy in a data-driven way [18].
More recently, Ren et al. optimized the LBP structures based
on the maximum-joint-mutual-information (MJMI) criterion
using binary quadratic programming via the branch-and-bound
algorithm [10]. The data-driven LBP structures could well
capture the image characteristics of the target application, but
they may have the risk of overfitting due to the limited number
of training samples.

To address these problems, we propose a new way to incor-
porate the human knowledge into LBP-structure optimization.
We first cast the structure optimization as a point-selection
problem based on the maximal-joint-mutual-information crite-
rion [10]. We then extract two design rules from handcrafted
LBP structures, i.e. symmetry rule and uniformity rule. Most
handcrafted LBP structures are symmetric about the horizontal
axis, the vertical axis and the center pixel. They are also
uniformly distributed in different directions at different scales,
not closely clustered. This work converts these two design
rules into structural regularization constraints for the LBP-
structure optimization problem, in the form that could be
solved efficiently using binary quadratic programming via the
branch-and-bound algorithm. As a result, the final proposed
LBP-structure optimization problem with structural constraints
could be solved using binary quadratic programming.

The proposed approach is evaluated on two scene-
classification datasets: the 21-land-use dataset [36] and the 8-
event dataset [37]. It demonstrates superior performance com-
pared with pre-defined LBP structures, unconstrained data-
driven LBP structures and other state-of-the-art approaches.

II. PROPOSEDAPPROACH

A. Overview

The block diagram of the proposed approach is presented
in Fig. 1. It consists of two steps: LBP-structure optimization
and LBP feature generation. After deriving the optimal LBP
structures, they are used to generate LBP features. Compared
with previous data-driven LBP structures [10], we have added
two structural regularization constraints: symmetry constraint
and uniformity constraint.

The most popular LBP structure used for scene classification
consists of 8 nearest neighbors [7], [9] highlighted in yellow
in Fig. 2. Such a structure could not capture the image
characteristics at a larger scale. If we extend it to a larger
5 × 5 neighborhood shown in Fig. 2, the feature dimension
dramatically increases to224 = 16, 777, 216, which is too
high to handle. We thus treat the binarized-pixel-difference
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Fig. 1. Block diagram of the proposed approach to extract LBPfeatures.

features shown in Fig. 2 as potential candidates, and selecta
pre-defined number of points from them to form an optimal
LBP structure that could well capture the image characteristics
of the target application.

Fig. 2. Potential candidates for scene classification.

Formally, denotezi = Ci − Ic as the pixel difference
between the neighboring pixelCi and the center pixelIc. The
binarized pixel difference is defined as:

xi =

{

1 if zi ≥ 0,

0 if zi < 0.
(1)

Point Ci is now represented by its binarized pixel difference
xi. We cast the LBP-structure optimization as a point-selection
problem: given a set of potential candidatesx = {xi, i =
1, 2, . . . , n} and target classification variablec, the goal is
to find a subset ofm candidatesxm ⊆ x that optimally
characterizesc.

B. LBP Structure Optimization by Using MJMI Criterion

For feature selection, it is desirable to maximize the depen-
dency of selected features on classification variablec (Max-
Dependency) [38]. We use mutual information to characterize
the dependency. The goal is to findxm ⊆ x so that:

x∗m = argmax
xm

I(xm; c), (2)

I(xm; c) =

∫ ∫

p(xm, c) log
p(xm, c)

p(xm)p(c)
dxmdc. (3)

It is difficult to reliably estimatep(xm) and p(xm, c) due
to the limited number of samples available and the large

number of joint states to be estimated. In [10], a maximal-
conditional-mutual-information (MJMI) criterion was utilized
for LBP structure optimization. Instead of maximizing in-
tractableI(xm; c), the goal is to find a subsetxm ⊆ x that
maximizes its approximation

∑

i6=j I(xi, xj ; c), i.e.

x
∗
m = argmax

xm

∑

xi,xj∈xm,i6=j

I(xi, xj ; c). (4)

To derive a globally optimal solution, Eqn. (4) is converted
into a binary quadratic programming problem. Denotea =
(a1, a2, . . . , an)

T , ai ∈ {0, 1} as the indication vector forx,
i.e.ai = 1 meansxi is selected andai = 0 otherwise. Eqn. (4)
is equivalent to:

a
∗ = argmax

a

a
T
Ma, s.t.

n
∑

i=1

ai = m, (5)

whereM ∈ Rn×n, and its diagonal elements are zero and
off-diagonal elementsMi,j = I(xi, xj ; c).

The joint probability mass functionp(xi, xj , c) can be
estimated efficiently. Denotehp,q as the joint histogram for
featuresxi, xj using q-th sample ofp-th class.p(xi, xj |c) is
estimated as:

p(xi, xj |c = p)←−
1

Np

∑

q

hp,q, (6)

where Np is the number of samples for classp. Then,
p(xi, xj , c = p) = p(xi, xj |c = p)p(c = p), wherep(c =
p) = Np/N andN is the total number of samples.

C. Structural Constraints

The optimal LBP structure derived by Eqn. (5) may overfit
the training samples due to the limited number of training
samples. To solve this problem, we propose two regularization
constraints: symmetry constraint and uniformity constraint.

1) Symmetry Constraint: Most handcrafted LBP structures
are symmetric about the horizontal axis, the vertical axis
and the center pixel. We thus enforce the data-driven LBP
structures to be symmetric. Formally, we define thex-axis
(the horizontal axis) symmetry matrixPx ∈ R

n×n as:

Px(i, j) =

{

1 if xi andxj arex-axis symmetric,

0 otherwise.
(7)

Take the candidates in Fig. 2 as an example.x3 and x5 are
x-axis symmetric. Thus,Px(3, 5) = 1. Clearly,PT

x = Px.
The indicate vectorax that isx-axis symmetric toa can be

obtained byax = Pxa. We then define thex-axis symmetry
measure as:

Sx = −(ax − a)T (ax − a)

= −aT P̃xa, (8)

whereP̃x = (Px − I)T (Px − I), andI is the identity matrix.
If a is symmetric about thex-axis,ax will be the same asa,
and henceSx = 0. Otherwise,Sx will be a negative value. A
largerSx indicates a higher symmetry about thex-axis.
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Similarly, we define the symmetry measureSy about the
y-axis andSc about the center pixel as follow:

Sy = −aT P̃ya, (9)

Sc = −a
T
P̃ca, (10)

where P̃y and P̃c are similarly defined as̃Px. The final
symmetry measure is:

S = Sx + Sy + Sc = −a
T
P̃a, (11)

where P̃ = P̃x + P̃y + P̃c. Our target is to maximize the
symmetry measureS, i.e.

a
∗ = argmax

a

−aT P̃a, s.t.
n
∑

i=1

ai = m. (12)

2) Uniformity Constraint: The goal of the uniformity con-
straint is to uniformly distribute the selected points, in order
to avoid the scenario that many selected points are closely
clustered. DenoteD ∈ Rn×n as the distance matrix, and
its entryDij = D(xi, xj) is the Euclidean distance between
point xi and pointxj . For example,D(x3, x14) = 1 for the
candidates shown in Fig. 2. We achieve the uniformity by
maximizing the following objective function,

x
∗ = argmax

x

m
∑

i=1

min
xj

D(xi, xj), xi, xj ∈ xm. (13)

This criterion maximizes the sum of the distances of all
selected candidates to their nearest candidates, which ensures
all selected candidates are well separated. However, to derive
a globally optimal solution to Eqn. (13) is NP-hard. We thus
propose an alternative objective function:

x
∗ = argmax

x

∑

xi,xj

D(xi, xj), xi, xj ∈ xm. (14)

This objective function maximizes the sum of the distances
of all pairs of selected candidates. Eqn. (14) can be rewritten
into matrix form:

a
∗ = argmax

a

a
T
Da, s.t.

n
∑

i=1

ai = m. (15)

Eqn. (15) can be solved as a binary-quadratic-programming
problem. Approximately, it uniformly distributes the selected
candidates in the neighborhood. However, the selected candi-
dates tend to be all boundary neighbors under this criterion. It
may not select the inner candidates. As such, the derived LBP
structure is not as uniform as we expect by using Eqn. (13).

Therefore, we propose a new definition of the distance
matrixD in Eqn. (15). By enforcing the symmetry constraint,
we expect the derived LBP structures to be symmetric. We
thus defineD as:

Dij = min
yj∈Θ(xj)

D(xi, yj), (16)

whereΘ(xj) is the group of candidates that arex-axis, y-
axis or center symmetric toxj . Θ(xj) includes xj itself.
The distance matrixD can be pre-computed. By using the
symmetry constraint (Eqn. (12)) and the uniformity constraint
(Eqn. (15) with the distance matrix Eqn. (16)), we could derive
the LBP structures shown in Fig. 3(b).

D. LBP Structure Optimization with Structural Constraints

Eqn. (5), Eqn. (12) and Eqn. (15) are three objective func-
tions that could be solved via binary quadratic programming.
We thus combine them as one objective function:

a
∗ = argmax

a

a
T (M− λ1P̃+ λ2D)a, s.t.

n
∑

i=1

ai = m, (17)

where λ1 and λ2 are weighting factors.M, D and P̃ are
normalized by dividing by its maximum value. For simplicity,
we setλ1 = λ2 = λ, i.e. two regularization constraints are
equally important. As most entries of̃P are zeros, we expect
λ ≫ 1. In the experiments, we setλ = 100. The objective
function Eqn. (17) is a binary-quadratic-programming prob-
lem, which can be efficiently solved by the branch-and-bound
algorithm [39]. More details can be found in [10].

III. E XPERIMENTAL RESULTS

We conduct the experiments on the 21-land dataset [36] and
the 8-event dataset [37]. We compare the proposed approach
with pre-defined LBP structures, unconstrained data-driven
LBP structures and other state-of-the-art approaches.

A. Scene Recognition on the 21-Land-Use Dataset

The 21-land-use dataset [36] contains 21 classes of aerial
orthoimagery. Each class has 100 images of256× 256 pixels.
We utilize the spatial pyramid [40]. The image is hierarchically
divided into 31 patches as shown in Fig. 3. One optimal LBP
structure is derived for each patch. We follow the same setup
as in [7], [10], [36], [41]. For each class, the images are
randomly split into five equal-sized sets. Four of them are
used for training and the held-out set is used for testing.

We use CENTRIST [7] as the baseline algorithm, which
utilizes 8 nearest neighbors as the LBP structure. We also
construct the optimal LBP structures using 8 points. Some
examples of the optimal LBP structures derived without using
structural constraints, by using structural constraints only and
by the proposed approach are shown in Fig. 3(a), (b) and (c),
respectively. Without using structural constraints, the optimal
structures are not symmetric, or clustered in some directions,
as shown in Fig. 3(a). The optimal structures in Fig. 3(b) are
solely determined by structural constraints, and hence they are
the same for all patches. The optimal LBP structures derived
by the proposed approach in Fig. 3(c) are different for different
patches, which better capture the intrinsic image characteristics
of different image patches.

We compare the proposed approach with: 1) Direct feature
selection/extraction from the LBP-histogram bins: Adaboost
bin selection [33], k-means bin clustering by LQP [35] and
PCA dimension reduction by CENTRIST [7]. 2) Other LBP-
structure-learning approaches: discriminant face descriptor
(DFD) [18] and discriminative LBP structure learning usinga
heuristic hill-climbing technique [14]. 3) Other state-of-the-art
solutions for scene recognition: SPCK, SPCK+, SPCK++ [36]
and BRSP [41]. 4) The optimal LBP structures derived by
MJMI [10] without using structural constraints, and using
symmetry constraint or uniformity constraint only.
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(a) Without using structural constraints. (b) Using structural constraints only. (c) Using the proposed approach.

Fig. 3. The optimal LBP structures for the 21-land-use dataset without using structural constraints, using structuralconstraints only and using the proposed
approach are shown in (a), (b) and (c), respectively.

(a) Without using structural constraints. (b) Using the proposed approach.

Fig. 4. The optimal LBP structures for the 8-event dataset without and with using structural constraints are shown in (a)and (b), respectively.

The comparison results are shown in Table I. CENTRIST
utilizes 8 nearest neighbors highlighted in yellow. It achieves
fairly good performance. MJMI [10] optimizes the LBP struc-
tures in a data-driven way, and significantly outperforms other
compared approaches. By incorporating structural constraints
into the LBP-structure optimization, the proposed approach
significantly outperforms MJMI and all other approaches.
Compared to MJMI [10] without using structural constraints,
the proposed approach improves the recognition rate from
87.2% to 88.5%, which demonstrates the effectiveness of the
proposed approach.

TABLE I
COMPARISONS WITH THE STATE OF THE ART IN TERMS OF RECOGNITION

RATE ON 21-LAND -USE AND 8-EVENT DATASETS.

Method 21-land-use 8-event
AdaBoost Bin Selection [33] 82.7% 80.2%
LQP Disc3∗

5
[35] 83.0% 78.9%

CENTRIST [7] 85.9% 78.3%
DFD [18] 62.8% 75.7%
Discriminative LBP [14] 73.4% 66.5%
SPCK [36] 73.1% -
SPCK+ [36] 76.1% -
SPCK++ [36] 77.3% -
Scene/Object Model + SIFT [37] - 73.4%
BRSP [41] 77.8% 79.6%
MJMI [10] 87.2% 84.0%
Proposed MJMI + Symmetry 88.1% 84.5%
Proposed MJMI + Uniformity 87.6% 84.7%
Proposed MJMI + Symmetry + Uniformity 88.5% 85.5%

B. Scene Recognition on the 8-Event Dataset

The 8-event dataset [37] is composed of eight sport classes.
Each class has 137 to 250 high-resolution images. To capture
the image micro-structures at the same scale, we resize the
image so that its minimum dimension (height or weight) is

600. The experiments are repeated 5 times. For each trial,
we randomly select 70 images per class for training and 60
for testing, same as in [7], [10], [37], [41]. Other setups are
the same as for the 21-land-use dataset. Some examples of
the optimal LBP structures derived without using structural
constraints and by using the proposed approaches are shown
in Fig. 4(a) and (b), respectively. The structural constraints
regularize the LBP structures to be symmetric and scattered.

From the results shown in Table I, we can see that CEN-
TRIST does not perform well on the 8-event dataset. By opti-
mizing LBP structures, MJMI significantly outperforms other
compared approaches, including structure-learning approaches
such as DFD [18] and discriminative LBP [14]. The proposed
approach further boosts the performance by regularizing the
LBP structures using the structural constraints. It increases the
recognition rate of MJMI by 1.5%.

IV. CONCLUSION

Handcrafted LBP structures are designed using human
knowledge on images. They are simple and easy to use, but
they cannot optimally capture the intrinsic image character-
istics of the target application. On the other hand, previous
data-driven LBP structures are fine-tuned for the target appli-
cation, but they may overfit the training samples. To address
these problems, we propose a way to incorporate the human
knowledge into the LBP-structure optimization. We derive two
structural regularization constraints, symmetry constraint and
uniformity constraint, from handcrafted LBP structures. Those
two constraints are designed in such a way that they can
be solved efficiently by binary quadratic programming. The
proposed approach is evaluated on two scene-classification
datasets. It demonstrates superior performance compared with
other state-of-the-art approaches.
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