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Abstract—Local binary pattern (LBP) and its variants have
been widely used in many visual recognition tasks. Most ex-
isting approaches utilize pre-defined LBP structures to exact
LBP features. Recently, data-driven LBP structures have sbwn
promising results. However, due to the limited number of traning
samples, data-driven structures may overfit the training sanples,
hence could not generalize well on the novel testing sampleto
address this problem, we propose two structural regularizéion
constraints for LBP-structure optimization: symmetry constraint
and uniformity constraint. These two constraints are inspred
by pre-defined LBP structures, which convey the human prior
knowledge on designing LBP structures. The LBP-structure p-
timization is casted as a binary quadratic programming prodem
and solved efficiently via the branch-and-bound algorithm.The
evaluation on two scene-classification datasets demonstes the
superior performance of the proposed approach compared wit
both pre-defined LBP structures and unconstrained data-drven
LBP structures.

Index Terms—LBP-Structure Optimization, Structural Regu-
larization, Symmetry Constraint, Uniformity Constraint, Scene
Classification

I. INTRODUCTION

structure. Lei et al. learnt discriminant image filters adi-o
mal neighborhood sampling strategy in a data-driven way. [18
More recently, Ren et al. optimized the LBP structures based
on the maximum-joint-mutual-information (MJMI) criterio
using binary quadratic programming via the branch-andadou
algorithm [10]. The data-driven LBP structures could well
capture the image characteristics of the target applicabiat
they may have the risk of overfitting due to the limited number
of training samples.

To address these problems, we propose a new way to incor-
porate the human knowledge into LBP-structure optimizatio
We first cast the structure optimization as a point-selectio
problem based on the maximal-joint-mutual-informatioitecr
rion [10]. We then extract two design rules from handcrafted
LBP structures, i.e. symmetry rule and uniformity rule. Mos
handcrafted LBP structures are symmetric about the haiaton
axis, the vertical axis and the center pixel. They are also
uniformly distributed in different directions at differescales,
not closely clustered. This work converts these two design
rules into structural regularization constraints for thBR-
structure optimization problem, in the form that could be

OCAL binary pattern and its variants have a wide rangslved efficiently using binary quadratic programming Via t

of applications, e.g. texture classification [1]—[3], dyma
ic texture recognition [4]-[6], scene recognition [7]-]L€a-
cial analysis [11]-[19], human detection [20]-[22], andnya

branch-and-bound algorithm. As a result, the final proposed
LBP-structure optimization problem with structural coastts
could be solved using binary quadratic programming.

others [23]-[30]. LBP is popular because of its simplicity, The proposed approach is evaluated on two scene-
ability to capture image micro-structures and robustness dlassification datasets: the 21-land-use dataset [36]ten8-t

illumination variations.
Traditionally, a handcrafted LBP structure was often zidl
to extract LBP features [7], [9], [11], [28], [31]-[35]. Thmost

event dataset [37]. It demonstrates superior performanice ¢
pared with pre-defined LBP structures, unconstrained data-
driven LBP structures and other state-of-the-art appresch

popular LBP structure consists of 8 nearest neighbors 97], [

or P neighbors in a circle [11], [28], [31]. Other geometries

such as line and disc were explored in local quantized patter _
(LQP) [35]. Handcrafted LBP structures are designed basgd OVerview
on the human prior knowledge on images, and they may workThe block diagram of the proposed approach is presented

Il. PROPOSEDAPPROACH

well across different applications. However, such hartieda

in Fig. 1. It consists of two steps: LBP-structure optimiaat

LBP structures may not optimally capture the intrinsic immagand LBP feature generation. After deriving the optimal LBP

characteristics of the target application.

structures, they are used to generate LBP features. Cothpare

Recently, researchers aim to derive the optimal LBP strueith previous data-driven LBP structures [10], we have adde

tures in a data-driven manner. In [14], Maturana et al.zddi
a heuristic hill-climbing technique to select the suitabBP
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two structural regularization constraints: symmetry ¢@ist
and uniformity constraint.

The most popular LBP structure used for scene classification
consists of 8 nearest neighbors [7], [9] highlighted in gwll
in Fig. 2. Such a structure could not capture the image
characteristics at a larger scale. If we extend it to a larger
5 x 5 neighborhood shown in Fig. 2, the feature dimension
dramatically increases t@%* 16,777,216, which is too
high to handle. We thus treat the binarized-pixel-differen
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LBP Structure Optimization: number of joint states to be estimated. In [10], a maximal-

. i conditional-mutual-information (MJMI) criterion was litied
Symmetry Sparsity H L. K L. .
constraint constraint : for LBP structure optimization. Instead of maximizing in-
tractable/(x,,;c), the goal is to find a subset,, C x that
)i mMmaximizes its approximatioh,_; I(z;, z;;c), i.e.
Potential MIMI Point- Binary quad- Optimal | :
i de.g;f terion | Selection = raticpro- LBP | y
i [fcandicates Griieen problent gramming structure | ; X,, = argmax Z Iz, xj;0). 4)
e Y S e @i €xm it
= v s i . . : To derive a globally optimal solution, Egn. (4) is converted
Teture [ | dimensionlity | | ftares | | INtO @ binary quadratic programming problem. Denate-

: T indicati
. LBP Feature Genoration - .((11,(12, cey Q) ;i € {0,1} as the indication yector fox,
ettt ereeeea e e ereomaaeeeeeneaeeeeneanaaaeteennananernnannnaaaenennannn : i.e.a; = 1 meansy; is selected and; = 0 otherwise. Eqn. (4)

is equivalent to:
Fig. 1. Block diagram of the proposed approach to extract f&fures. q

a* = argmaxa’ Ma, s.t. Z a; =m, (5)
features shown in Fig. 2 as potential candidates, and salect : i=1
pre-defined number of points from them to form an optimglhere M < R™*" and its diagonal elements are zero and
LBP structure that could well capture the image charadiesis off-diagonal element®/; ; = I

. . Ly T3 C).
of the target application.

The joint probability mass functiomw(z;,z;,c) can be
estimated efficiently. Denoté,, , as the joint histogram for
X9 | X10 [X11 | X12 [ X13 featuresz;, x; usingg-th sample ofp-th class.p(z;, z;|c) is
estimated as:

X24| X1 | X2 | X3 | X14

1
X253 | xs | I | x1 | X15 p(xi, zj]c = p) «— N th,qa (6)
X22| X7 | X6 | X5 | X16 P
X1 | 20 | x10 | X8 | 17 where N, is the number of samples for clags Then,
p(xi, x5, ¢ = p) = plas,zj|lc = p)p(c = p), wherep(c =
Fig. 2. Potential candidates for scene classification. p) = Np/N and N is the total number of samples.

Formally, denotez; = C; — I. as the pixel difference

between the neighboring pix€l; and the center pixel.. The C. Sructural Constraints

binarized pixel difference is defined as: The optimal LBP structure derived by Eqgn. (5) may overfit
_ the training samples due to the limited number of training
= {1 if z; >0, 1) samples. To solve this problem, we propose two reguladzati
' 0 if z; <O. constraints: symmetry constraint and uniformity constrai

. . . L ) ) 1) Symmetry Constraint: Most handcrafted LBP structures
Point C;; is now represented by its binarized pixel dlfferencgre symmetric about the horizontal axis, the vertical axis

x;. We cast the LBP-structure optimization as a point-sedecti
problem: given a set of potential candidates= {z;,i =
1,2,...,n} and target classification variable the goal is
to find a subset ofn candidatesx,, C x that optimally

and the center pixel. We thus enforce the data-driven LBP
structures to be symmetric. Formally, we define thaxis

(the horizontal axis) symmetry matriR, € R"*" as:

characterizes. o 1if 2; andx; arez-axis symmetric,

P.(i,j) = : (7

0 otherwise.

B. LBP Structure Optimization by Using MJMI Criterion . I
v pll I ) I_ y. sSnd _ I_ ! Take the candidates in Fig. 2 as an examplgand z; are
For feature selection, it is desirable to maximize the depep.axis symmetric. ThusP,(3,5) = 1. Clearly, P = P,..

dency of selected features on classification variab(®&ax- The indicate vectoa, that isz-axis symmetric ta can be

Dependency) [38]. We use mutual information to characterigptained bya, = P,a. We then define the-axis symmetry
the dependency. The goal is to firg, C x so that: measure as:

Xy, = argmax I (X; ¢), (2) S, = —(a, —a)T(a, — a)
XT/’[, —~
=-a'P,a, (8)
. _ p(x'rm C) — T . . . .
I(xp;c) = P(Xm, c) log mdxmd& (3) whereP, = (P, —1)7(P, — 1), andI is the identity matrix.
pXm)p If a is symmetric about the-axis, a, will be the same as,
It is difficult to reliably estimatep(x,,) and p(x,,,c) due and hences, = 0. Otherwise,S, will be a negative value. A

to the limited number of samples available and the lardarger S, indicates a higher symmetry about theaxis.
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Similarly, we define the symmetry measu$g about the D. LBP Structure Optimization with Structural Constraints

y-axis andS.. about the center pixel as follow: Eqn. (5), Eqn. (12) and Eqn. (15) are three objective func-
S, = ,an)ya’ 9) tions that could be solved via binary quadratic programming
S, — —aTP.a, (10) We thus combine them as one objective function:
where P, and P.. are similarly defined a®,. The final a* = argmaxa’” (M — A\, P + X\;D)a, s.t. Zaz =m, (17)
symmetry measure is: a i=1
S=85,+8,+85:.= —a’Pa, (11) where \; and )\, are weighting factorsM, D and P are

normalized by dividing by its maximum value. For simpligity
we setA; = Ay = ), i.e. two regularization constraints are
equally important. As most entries & are zeros, we expect

A > 1. In the experiments, we set = 100. The objective
function Eqgn. (17) is a binary-quadratic-programming prob
lem, which can be efficiently solved by the branch-and-bound

2) Uniformity Constraint: The goal of the uniformity con- algorithm [39]. More details can be found in [10].
straint is to uniformly distribute the selected points, ider

to avoid the scenario that many selected points are closely

clustered. Denotdd € R™*" as the distance matrix, and ]
its entry D;; = D(x;, ;) is the Euclidean distance between We conduct the experiments on the 21-land dataset [36] and

point z; and pointz;. For example,D(xs, z14) = 1 for the the 8-event dataset [37]. We compare the proposed approach
candidates shown in Fig. 2. We achieve the uniformity b{yith pre-defined LBP structures, unconstrained data-drive

whereP = P, + P, + P.. Our target is to maximize the
symmetry measurs, i.e.
a* = argmax —a’ Pa, s.t. Z a; = m. (12)
a i=1

Il1. EXPERIMENTAL RESULTS

maximizing the following objective function, LBP structures and other state-of-the-art approaches.
x" = argmaxz min D(x;, ), i, Tj € X, (13) A. Scene Recognition on the 21-Land-Use Dataset
x 4"

The 21-land-use dataset [36] contains 21 classes of aerial
This criterion maximizes the sum of the distances of adirthoimagery. Each class has 100 image8isf x 256 pixels.
selected candidates to their nearest candidates, whichemns\ye ytilize the spatial pyramid [40]. The image is hieraraltic
all selected candidates are well separated. However, toedelgjyided into 31 patches as shown in Fig. 3. One optimal LBP
a globally optimal solution to Eqn. (13) is NP-hard. We thustructure is derived for each patch. We follow the same setup
propose an alternative objective function: as in [7], [10], [36], [41]. For each class, the images are
(14) randomly split into five equal-sized sets. Four of them are
used for training and the held-out set is used for testing.

We use CENTRIST [7] as the baseline algorithm, which

This obj_ective function max?mizes the sum of the diStan.CPLﬁilizes 8 nearest neighbors as the LBP structure. We also
of all pairs of selected candidates. Eqn. (14) can be remritt . struct the optimal LBP structures using 8 points. Some

into matrix form: examples of the optimal LBP structures derived without gisin
structural constraints, by using structural constraimtiy and
by the proposed approach are shown in Fig. 3(a), (b) and (c),

: . respectively. Without using structural constraints, tip¢iroal
Eqgn. (15) can be solved as a binary-quadratic-programmi P Y d It

bl A . Vi iformly distrib h fuctures are not symmetric, or clustered in some dinastio
probiem. ppromma’ge y, It uniformly distributes the “~ as shown in Fig. 3(a). The optimal structures in Fig. 3(b) are
candidates in the neighborhood. However, the selectedi-ca

. S lely determined by structural constraints, and hencgdhe
dates tend to be all boundary neighbors under this critetion he same for all patches. The optimal LBP structures derived
may not select the inner candidates. As such, the derived L

: i b inq E 13 f/)the proposed approach in Fig. 3(c) are different for defife:
structure is not as unitorm as we eXp‘?C_‘_ y using £qn. ( 'atches, which better capture the intrinsic image chariatits
Therefore, we propose a new definition of the distan

. . . NG} different image patches.
matrix D in Eqn. (1.5)' By enforcing the symmetry constralnt, We compare the proposed approach with: 1) Direct feature
we expect the derived LBP structures to be symmetric.

i V!%Iection/extraction from the LBP-histogram bins: Adadtoo
thus defineD as: bin selection [33], k-means bin clustering by L
: g by LQP [35] and
D;; = min D(x;,y;), (16) PCA dimension reduction by CENTRIST [7]. 2) Other LBP-
vi€O(z;5) structure-learning approaches: discriminant face detsori
where ©(x;) is the group of candidates that ageaxis, y- (DFD) [18] and discriminative LBP structure learning usiag
axis or center symmetric ta;;. ©(x;) includesz; itself. heuristic hill-climbing technique [14]. 3) Other state-tbie-art
The distance matriXD can be pre-computed. By using thesolutions for scene recognition: SPCK, SPCK+, SPCK++ [36]
symmetry constraint (Egn. (12)) and the uniformity coristra and BRSP [41]. 4) The optimal LBP structures derived by
(Egn. (15) with the distance matrix Eqn. (16)), we couldderi MIMI [10] without using structural constraints, and using
the LBP structures shown in Fig. 3(b). symmetry constraint or uniformity constraint only.

x* = argmax E D(x;,x5), 2, T € X
X

ZTi,Tj

n
a* = argmaxa’ Da, s.t. Z a; = m. (15)
a i=1
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Level 0 Level 0 Level 0

Level 1 Level 1 Level 1

 Level 2 .

(a) Without using structural constraints. (b) Using structural constraints only. (c) Using the proposed approach.

Fig. 3. The optimal LBP structures for the 21-land-use ddtasthout using structural constraints, using structwaistraints only and using the proposed
approach are shown in (a), (b) and (c), respectively.

x[x[x[x[x

(a) Without using structural constraints. (b) Using the proposed approach.

Fig. 4. The optimal LBP structures for the 8-event dataséiaut and with using structural constraints are shown inata (b), respectively.

The comparison results are shown in Table |. CENTRISB00. The experiments are repeated 5 times. For each trial,
utilizes 8 nearest neighbors highlighted in yellow. It &seis we randomly select 70 images per class for training and 60
fairly good performance. MJMI [10] optimizes the LBP strucfor testing, same as in [7], [10], [37], [41]. Other setupe ar
tures in a data-driven way, and significantly outperfornieot the same as for the 21-land-use dataset. Some examples of
compared approaches. By incorporating structural conssra the optimal LBP structures derived without using strudtura
into the LBP-structure optimization, the proposed apphnoaconstraints and by using the proposed approaches are shown
significantly outperforms MJMI and all other approache@ Fig. 4(a) and (b), respectively. The structural constsai
Compared to MJMI [10] without using structural constrajntgegularize the LBP structures to be symmetric and scattered
the proposed approach improves the recognition rate fromFrom the results shown in Table I, we can see that CEN-
87.2% to 88.5%, which demonstrates the effectiveness of thRIST does not perform well on the 8-event dataset. By opti-

proposed approach. mizing LBP structures, MJIMI significantly outperforms othe
TABLE | compared approaches, including structure-learning @uhes

COMPARISONS WITH THE STATE OF THE ART IN TERMS OF RECOGNITION SUCh as DFD [18] and dlscrlmlnatlve LBP [14] The pr_oposed

RATE ON 21-LAND-USE AND 8-EVENT DATASETS. approach further boosts the performance by regularizieg th
LBP structures using the structural constraints. It insesahe

Method 21-land-use | 8-event i 0

AdaBoost Bin Selection [33] 82.7% 80.2% recognition rate of MJMI by 1.5%.

LQP Disc3* [35] 83.0% 78.9%

CENTRIST [7] 85.9% 78.3%

DFD [18] 62.8% 75.7% IV. CONCLUSION

Discriminative LBP [14] 73.4% 66.5%

SPCK [36] 73.1% - Handcrafted LBP structures are designed using human

0, - . .

gggﬁﬁgle] ;%Q - knowledge on images. They are simple and easy to use, but

ScenelObject Model + SIET [37] — 73.4% they cannot optimally capture the intrinsic image characte

BRSP [41] 77.8% 79.6% istics of the target application. On the other hand, previou

M [1?1] TS g;-iz" gi-ggf’ data-driven LBP structures are fine-tuned for the targeti-app

ropose ymmetry 1% .5% . . .
Proposed MIMI + Uniformity 57 6% 8T 7% cation, but they may overfit the tramlng_ samples. To address
Proposed MJMI + Symmetry + Uniformity 88.5% 85.5% these problems, we propose a way to incorporate the human

knowledge into the LBP-structure optimization. We derive t

structural regularization constraints, symmetry comstrand

o uniformity constraint, from handcrafted LBP structureko$e

B. Scene Recognition on the 8-Event Dataset two constraints are designed in such a way that they can
The 8-event dataset [37] is composed of eight sport classks. solved efficiently by binary quadratic programming. The

Each class has 137 to 250 high-resolution images. To captpreposed approach is evaluated on two scene-classification

the image micro-structures at the same scale, we resize dlagasets. It demonstrates superior performance compatied w

image so that its minimum dimension (height or weight) isther state-of-the-art approaches.
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