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Abstract

Detecting pedestrians that are partially occluded re-
mains a challenging problem due to variations and uncer-
tainties of partial occlusion patterns. Following a common-
ly used framework of handling partial occlusions by part
detection, we propose a multi-label learning approach to
jointly learn part detectors to capture partial occlusion pat-
terns. The part detectors share a set of decision trees via
boosting to exploit part correlations and also reduce the
computational cost of applying these part detectors. The
learned decision trees capture the overall distribution of all
the parts. When used as a pedestrian detector individually,
our part detectors learned jointly show better performance
than their counterparts learned separately in different oc-
clusion situations. The learned part detectors can be further
integrated to better detect partially occluded pedestrians.
Experiments on the Caltech dataset show state-of-the-art
performance of our approach for detecting heavily occlud-
ed pedestrians.

1. Introduction

Occlusions present a great challenge for pedestrian de-
tection in real-world applications. Most state-of-the-art
pedestrian detection approaches [20, 36, 34, 4] train a full-
body detector and show promising performance for detect-
ing pedestrians which are non-occluded or slightly occlud-
ed. These approaches would often suffer when pedestrians
are heavily occluded. For example, RPN+BF [34] achieves
a log-average miss rate of 9.6% on the Reasonable subset
of the Caltech dataset [8], but its performance drops dra-
matically to 74% on the Heavy subset in which pedestrian
examples are heavily occluded. Since most of the body of a
heavily occluded pedestrian is invisible, a full-body detector
would probably be misled by the background region inside
its detection window so that it tends to miss the pedestri-
an. As shown in Fig. 1(a-b), a heavily occluded pedestrian

(Blue bounding box) is only ranked at 5th among five de-
tections by a full-body detector.

A common solution to occlusion handling for pedestrian
detection is to learn a set of part/occlusion-specific detectors
which can be properly integrated to detect partially occlud-
ed pedestrians [10, 9, 16, 14, 19, 17, 37, 26]. When a full-
body detector fails to detect a partially occluded pedestrian,
the detectors of the parts which are still visible may give
high detection scores (See Fig. 1(b-c)). For this solution,
the reliability of part detectors is of great importance, since
part detectors are its building blocks. Usually, part detectors
are learned independently [10, 9, 16, 14, 19, 37, 26]. This
way of learning part detectors has two drawbacks: (1) Cor-
relations among parts are ignored during learning, which
would affect the reliability of the learned part detectors; (2)
The computational cost of applying a set of part detectors
increases linearly with the number of parts. In [17], part
detector learning and integration are done in a single con-
volutional neural network. However, this approach only us-
es class labels and part detectors are learned implicitly in a
weakly supervised fashion. We believe part-level supervi-
sion can be exploited to further improve its performance.

In this paper, we propose a multi-label learning approach
to jointly learn part detectors. The goal of joint learning
is to (1) improve the part detectors by exploiting correla-
tions among parts, e.g. some parts of the body tend to ap-
pear/disappear together, and (2) reduce the computational
cost of applying the learned part detectors for pedestrian
detection. Since the combination of boosting and decision
trees works well for pedestrian detection [6, 36, 5, 34], we
choose decision trees to form our part detectors. Howev-
er, instead of training a set of decision trees for each part
detector, we only construct one set of decision trees which
are shared by all the part detectors. To exploit part correla-
tions, these decision trees are learned and combined to cap-
ture the overall distribution of all the parts. We adapt Ad-
aBoost.MH [22], which is a multi-class, multi-label version
of AdaBoost, to learn these decision trees. When used for
pedestrian detection individually, the part detectors learned
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Figure 1. Occlusion handling. (a) Top five detections of a full-body detector. The heavily occluded pedestrian (Blue bounding box) is only
ranked at 5th. (b) Scores of the five detections in (a) given by 20 part detectors. Each curve shows the 20 scores of one detection in the
same color. The first detector is the full-body detector. Figure 2 shows the 20 parts. (c) The five detections in (a) are re-ranked by properly
integrating the 20 part detectors. The heavily occluded pedestrian (Blue bounding box) is ranked at 2nd.

by our approach show better performance than their coun-
terparts learned separately in different occlusion situation-
s. By proper integration, the learned part detectors can be
used to handle occlusions, which further improves the per-
formance for detecting partially occluded pedestrians. The
effectiveness of our approach is demonstrated on the Cal-
tech dataset [8]. We apply the proposed multi-label learn-
ing approach to channel features [15] and features learned
by a convolutional neural network [34] respectively. Using
channel features our approach improves state-of-the-arts for
detecting pedestrians in different occlusion situations while
using deep learning features our approach shows compa-
rable performance for detecting pedestrians that are non-
occluded or slightly occluded and achieves the best per-
formance for detecting partially occluded pedestrians, es-
pecially the heavily occluded ones.

2. Related work

In the past decade, many efforts have been made to
improve pedestrian detection [8, 2, 29]. Two major cat-
egories of pedestrian detection approaches are channel-
feature based approaches [7, 1, 14, 6, 35, 20, 15, 36]
and deep-learning based approaches [16, 17, 12, 32, 27,
26, 4, 3, 34]. For the former, decision trees are usually
learned by applying boosting to channel features to form
a pedestrian detector. Pedestrian detection is carried out
in a sliding-window fashion. For the latter, a deep neu-
ral network is trained to either form a pedestrian classifier
[16, 17, 12, 27, 26, 3] or generate features which are com-
bined with other types of classifiers for pedestrian detection
[32, 4, 34]. This category of approaches usually perform
detection by classifying a set of pedestrian proposals.

Many approaches have been proposed to handle occlu-
sions for pedestrian detection. The approach in [13] adopt-
s an implicit shape model to generate a set of pedestrian
hypotheses which are further refined using local and glob-

al cues to obtain their visible regions. In [30], a pedestri-
an template is divided into a set of blocks and occlusion
reasoning is conducted by estimating the visibility status of
each block. A probabilistic framework [18] is proposed to
exploit multi-pedestrian detectors to aid single-pedestrian
detectors, which can handle partial occlusions especially
when pedestrians occlude each other. In [25, 21], a set of
occlusion patterns are discovered to capture occlusions of
single pedestrians and multiple pedestrians and then a de-
formable part model [11] is employed to learn a mixture
of occlusion-specific detectors. A widely used occlusion
handling strategy for pedestrian detection is to learn a set
of part detectors which are then fused properly for detect-
ing partially occluded pedestrians [31, 23, 10, 9, 16, 14, 19,
17, 37, 26]. In these approaches part detectors are usual-
ly learned separately, while in our approach part detectors
are learned jointly so as to exploit part correlations for im-
proving these detectors and reduce the computational cost
of applying multiple part detectors for pedestrian detection.

3. Joint learning of part detectors
3.1. Part representation

We model the whole body of a pedestrian as a rectan-
gular template without distinguishing different viewpoints.
The template is divided into an H × W grid. Any rect-
angular sub-region in the template is considered as a part.
Mathematically, a part can be expressed as a 4-tuple p =
(l, t, r, b), where (l, t) and (r, b) are the coordinates of the
top-left and bottom-right corners of the part respectively
with 0 ≤ l < r ≤ W and 0 ≤ t < b ≤ H . In our im-
plementation, we set H = 6 and W = 3. According to
prior knowledge that pedestrians are usually occluded from
the left, right or bottom, we manually design a pool of part-
s as shown in Figure 2. The part pool can be expressed
as P = {pk|1 ≤ k ≤ K}, where pk = (lk, tk, rk, bk)
and K = 20. For pedestrian detection, images are usually



Figure 2. Part pool. Green regions denote parts. The first part is
the whole body which is modeled as a template of 6×3 cells. Parts
2 to 17 are designed to handle situations where occlusions occur
from the left, right or bottom and the last three parts are used for
detecting the lower body.

represented by a set of feature maps, e.g. locally decorrelat-
ed channel features (LDCF) [15] and convolutional channel
features (CCF) [32]. To represent a part on a pedestrian, a
natural way is to crop regions that correspond to the part
from the feature maps. One drawback of this representation
is that small parts on a pedestrian are difficult to be reliably
detected as the information from the small parts is relative-
ly limited compared with that from large parts, especially
when the pedestrian is small. Instead, we represent a part
using features from the whole body. Features from the sur-
rounding region of the part can be taken as its context. In
this way, all the parts are represented by the same features.

3.2. Multilabel formulation

Let X be an instance space which consists of image re-
gions. For each part pk ∈ P , we want to learn a detec-
tor dk : X → R such that for an image region x ∈ X ,
dk(x) > 0 if the image region contains pk and dk(x) ≤ 0
otherwise. A direct solution is to learn the K part detec-
tors separately. However, this solution ignores correlations
among the parts. For example, according to the part defi-
nition in Section 3.1, if a part appears in an image region,
any smaller part within this part should also be visible. To
exploit potential correlations among the parts, we propose
a multi-label learning approach to learn the part detectors
jointly.

Specifically, we learn a function F : X → 2P to predict
an arbitrary set of parts P ⊆ P which appear in an given
image region x. Let D = {(xi, li, B

v
i , B

f
i )|1 ≤ i ≤ N}

be a set of training examples, where xi ∈ X is an image
region, li ∈ {−1, 1} indicates whether the image region
contains a pedestrian and if so, Bv

i and Bf
i are two bound-

ing boxes specifying the visible portion and full body of the
pedestrian respectively. To learn F , we need to construct
for each instance xi a label vector Yi = (yik) ∈ {−1, 1}K
for 1 ≤ k ≤ K, where yik indicates whether the image re-
gion xi contains the part pk. When a part is only partially
visible on a pedestrian, it is not trivial to assign 1 or -1 to the
part. Wrong assignment of part labels may cause the learn-

Figure 3. Example labeling. The blue and red bounding boxes are
the visible portion and full body of the pedestrian example respec-
tively. The green bounding box is the standardized full body and
the yellow bounding box is the new visible portion inside the s-
tandardized full body. The purple bounding box shows the image
region of the upper-body part on the pedestrian example. The cost
vector is calculated based on the purple and yellow bounding box-
es.

ing of part detectors to fail. So, we introduce a cost vector
Ci = (cik) ∈ RK for 1 ≤ k ≤ K to soften the label as-
signment, where cik (0 ≤ cik ≤ 1) defines the cost incurred
if a wrong prediction is made on xi for pk. For li = −1,
we set yik = −1 and cik = 1. For li = 1, we set yik = 1
and determine the cost cik based on Bv

i and Bf
i . We first

standardize the full-body bounding box Bf
i as in [8]: the

bounding-box is adjusted such that after the adjustment the
ratio of its width to its height is 0.41 with its height and
center coordinates unchanged. Denote by Rf

i the standard-
ized full body. Then, any image contents inside the visible
portion Bv

i but outside the standardized full body Rf
i are

discarded to obtain a new visible portion Rv
i . Let Rp

ik be
the image region of the part pk on the instance xi. We cal-
culate the intersection over union (IOU) between Rp

ik and
Rv

i denoted by Iik, and the proportion of Rp
ik covered by

Rv
i denoted by Oik. Finally, the cost cik is determined as

follows:

cik =

 Oik Oik ≥ 0.7;
Iik Oik < 0.7 and Iik ≥ 0.5;
0 otherwise.

(1)

In the first case, the majority of the part pk is visible on
the instance xi, so a large cost is set to prevent the part
from being wrongly predicted. In the second case, the IOU
between the part and visible portion is over 0.5. We thus
consider the part to be visible on the instance and the cost of
wrongly classifying it depends on the IOU. In the third case,
the part is largely occluded. We set cik = 0 to discard this
training example for the k-th part. Figure 3 illustrates how
a pedestrian example is labeled. DF = {(xi,Yi,Ci)|1 ≤
i ≤ N} forms the training set for learning F . We identify
F with a two-argument function H : X ×P → R such that



pk ∈ F (x) if H(x, pk) > 0 and pk /∈ F (x) otherwise. For
any predicate π, let [π] be 1 if π holds and 0 otherwise. We
learn H by minimizing the following loss function:

L(H,DF ) =
1

N

N∑
i=1

K∑
k=1

cik[sign(H(xi, pk)) ̸= yik], (2)

where sign(H(xi, pk)) = 1 if H(xi, pk) > 0 and
sign(H(xi, pk)) = −1 otherwise.

3.3. Learning via boosting

Since the combination of boosting and decision trees
has shown promising performance for pedestrian detection
[6, 36, 5, 34], we choose decision trees to form our part de-
tectors. We consider two approaches to minimizing the loss
function L(H,DF ) in Eq. (2) for learning the part detectors.

The first approach learns the part detectors separately.
Define the training loss related to the k-th part detector by

Lk(H,DF ) =
1

N

N∑
i=1

cik[sign(H(xi, pk)) ̸= yik]. (3)

L(H,DF ) can be decomposed as

L(H,DF ) =
K∑

k=1

Lk(H,DF ). (4)

L(H,DF ) can be minimized by minimizing Lk(H,DF ) for
1 ≤ k ≤ K separately. Let Qk =

∑N
i=1 cik. We normal-

ize the costs associated with the k-th part by Qk to obtain
Dk = (c1k/Qk, ..., cNk/Qk). Dk can be considered as a
distribution over the training examples of the k-th part in
DF . Boosting can be applied to learn and combine T deci-
sion trees to form a detector for the k-th part with example
weights initialized to Dk. This learning approach has two
limitations: (1) Correlations among the parts are ignored;
(2) The computational costs of training and testing increase
linearly with the number of parts.

To address the limitations of the separate learning ap-
proach, we propose another approach to learn the K part
detectors jointly. Instead of learning T decision trees for
each part detector, we only learn T decision trees which are
shared by all the part detectors. We adapt AdaBoost.MH
[22], which is a multi-class, multi-label version of Ad-
aBoost, to learn H of the form:

H(x, p) =
T∑

t=1

αtht(x, p), (5)

where ht : X × P → R is a weak classifier which is a
decision tree in our case and αt is a weight associated with
ht. First, we consider a simplified case in which cik = 1
for 1 ≤ i ≤ N and 1 ≤ k ≤ K. AdaBoost.MH can be

directly applied to minimize L(H,DF ). The idea of Ad-
aBoost.MH is to reduce the multi-label learning problem to
a binary classification problem for which AdaBoost can be
used to obtain H . Each training example (xi,Yi,Ci) ∈ DF

is replaced with K training examples ((xi, pk), yik) for 1 ≤
k ≤ K. Note that since cik = 1 for all i and k, Ci in the ex-
ample (xi,Yi,Ci) can be ignored. yik is the binary label for
(xi, pk). DB = {((xi, pk), yik)|1 ≤ i ≤ N, 1 ≤ k ≤ K}
forms the training set for the binary classification problem.
H is learned by minimizing the following loss function:

L(H,DB) =
1

N

N∑
i=1

K∑
k=1

1

K
[sign(H(xi, pk)) ̸= yik]. (6)

AdaBoost.MH maintains a sequence of weight matrices
(W 1, ...,W T ) through T stages where W t = (wt

ik) ∈
RN×K for 1 ≤ t ≤ T with wt

ik the weight of the training
example (xi, pk) at stage t. W 1 is initialized to w1

ik = 1
NK

for all i and k. At each stage t, AdaBoost.MH learns a weak
classifier ht and a weight αt based on W t. With ht, exam-
ple weights are updated as follows:

wt+1
ik =

wt
ikexp(−αtyikht(xi, pk))

Zt
, (7)

where Zt =
∑

i,k w
t
ikexp(−αtyikht(xi, pk)) is a normal-

ization factor. The training error of the learned H is bound-
ed by

L(H,DF ) ≤
T∏

t=1

Zt. (8)

Now we introduce how to minimize L(H,DF ) for the gen-
eral case. Note that when 1

K in Eq. (6) is replaced with
cik, the loss function in Eq. (6) is exactly the loss function
in Eq. (2). It is easy to verify that by initializing W 1 to
w1

ik = cik
N for all i and k, AdaBoost.MH can be used to

minimize L(H,DF ) in Eq. (2). The upper loss bound given
in Eq. (8) still holds.

Next, we describe how to learn a decision tree ht at stage
t given example weights W t. Starting with a root node, we
construct ht greedily. At the beginning, all training exam-
ples fall in the root node with sample weights W t. We
examine one leaf node at a time. If a leaf node reaches a
predefined maximum depth or the training examples falling
in the node are pure enough, we stop branching the leaf n-
ode. Otherwise, we choose a feature and a threshold which
have the minimum weighted classification error on the train-
ing examples at the leaf node. With the chosen feature and
threshold, the training examples are split into two subsets
each of which is assigned to one new leaf node. The two
leaf nodes are the children of the current leaf node. Assume
ht has M leaf nodes and the instance space X is partitioned
into X1,...,XM with Xj the set of instances falling in the
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Figure 4. Part scores on top 5 scoring image regions. The number above each region denotes its ranking. For the fully visible pedestrian
(Red bounding box), all part detectors give high detection scores consistently (Red curve). For the partially occluded pedestrian (Blue
bounding box), only the detectors of visible parts (e.g. P3, P4, P5, P9, P10, P14 and P15) output high detection scores (Blue curve).
Background regions (Green, yellow and cyan bounding boxes) receive relatively low scores from all the part detectors (Green, yellow and
cyan curves).

j-th leaf node. For an instance x ∈ Xj , ht is defined to
output

ht(x, pk) =
1

2
ln(

S+
jk

S−
jk

), (9)

where S+
jk =

∑
xi∈Xj

wt
ik[yik = 1] and S−

jk =∑
xi∈Xj

wt
ik[yik = −1]. After the decision tree is con-

structed, it can be proved that ht defined in Eq. (9) mini-
mizes Zt with αt = 1 (See [22] for more details).

According to the above adaptation of AdaBoost.MH for
minimizing L(H,DF ), the costs C = (cik) ∈ RN×K af-
ter normalization can be considered as a distribution over
DB . The decision trees are learned to capture the overall
distribution of all the parts. Part correlations are exploited
by sharing the decision trees among these parts. When tak-
en as a pedestrian detector individually, the part detectors
learned jointly show better performance than those learned
separately as demonstrated in Section 5. For detection, ap-
plying the part detectors with shared decision trees is much
faster as it only involves a computational cost of K instead
of K × T decision trees.

4. Occlusion handling with part detectors
In a particular scene, pedestrians may be occluded by

each other or other objects. Simply applying a full body
detector usually does not work well when pedestrians are
heavily occluded. As we do not know in advance which
parts are occluded, a simple yet effective way to handle oc-
clusions is to apply a set of part detectors. For a candidate
region in an image, K part detectors would give K detection
scores. We need to integrate these detection scores proper-

ly to give a final score indicating how likely the candidate
region contains a pedestrian. We propose a heuristic inte-
gration method based on two observations: (1) For a par-
tially occluded pedestrian, detectors of those parts which
are inside or have large overlap with the visible region of
the pedestrian would probably give high detection scores,
while the other part detectors may give low detection scores
due to occlusions; (2) For a non-pedestrian region, part de-
tectors tend to output low detection scores. Figure 4 illus-
trates the two observations. To output a final score for a
candidate image region, we choose the top S scores from
the K detectors and then calculate the average of these S
scores (S is set to 15 in our experiments). We do not take
the maximum among the K scores as the final detection s-
core, as some detectors may produce noisy detection scores,
which would result in wrong detections. Choosing the top
S scores makes the prediction more robust.

5. Experiments

We conduct two experiments using hand-crafted channel
features and features learned by a convolutional neural net-
work (CNN) respectively. We evaluate our approach on the
Caltech dataset [8] which is commonly used for evaluating
pedestrian detection approaches and provides both visible
portion and full body annotations. Following the standard
evaluation protocol, we use video sets S0-S5 for training
and video sets S6-S10 for testing. A log-average miss rate
is used to summarize the detection performance and is cal-
culated by averaging miss rates at 9 false positive per-image
(FPPI) points sampled evenly in the log-space ranging from
10−2 to 100. As the purpose of our approach is to han-
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(c) Heavy

Figure 5. Results of part detectors using different part representations.

dle occlusions, we evaluate it on three subsets: Reasonable,
Partial and Heavy. In the Reasonable subset, only pedestri-
ans with at least 50 pixels tall and under no or partial occlu-
sion are used for evaluation. This subset is widely used for
evaluating pedestrian detection approaches. In the Partial
and Heavy subsets, pedestrians are at least 50 pixels tall and
are partially occluded (1-35 percent occluded) and heavily
occluded (36-80 percent occluded) respectively.

5.1. Experiments with channel features

We choose locally decorrelated channel features (LDCF)
[15] which are frequently used for pedestrian detection in
recent years to represent the parts in our approach. We use
the same setting as in [15]: 4 filters of size 5×5 are learned
to locally decorrelate aggregated channel features (ACF) [6]
of 10 channels to generate LDCF of 40 channels. We sam-
ple training data from video sets S0-S5 at an interval of 3
frames. Pedestrian examples which are at least 50 pixels tal-
l and occluded not more than 70% are collected as positive
examples. Five rounds of bootstrapping are adopted to train
64, 512, 1024, 2048 and 4096 decision trees respectively.
The maximum depth of a decision tree is 5.

Figure 5 shows the results of part detectors learned using
different part representations. PR1 denotes the represen-
tation method in which a part is represented by the features
from its own image region. The part detectors using PR1 are
learned independently. PR2 is the representation method in
which all the parts share the features from the whole body.
The part detectors using PR2 are learned jointly using our
multi-label formulation. It can been seen that the perfor-
mances of the part detectors learned using PR1 vary largely
from part to part on the Reasonable, Partial and Heavy sub-
sets. The detectors of small parts (e.g. P5, P10 and P20)
usually perform worse than those of large parts (e.g. P1, P6
and P11) since with PR1, the information from the small
parts is relatively limited compared with that from the large
parts (See Fig. 2 for part correspondence). The part detec-
tors with PR2 perform much better than those with PR1.
The performances of different part detectors with PR2 do

Method Reasonable Partial Heavy
SL-P1 18.2 36.1 72.1
JL-P1 17.0 34.2 70.5
SL-P4 18.6 39.7 69.9
JL-P4 17.8 35.5 67.9
SL-P6 19.2 37.7 72.1
JL-P6 17.3 34.1 70.7
SL-P11 19.2 42.4 73.8
JL-P11 16.9 35.2 70.8
Avg. Imp. +1.6 +4.2 +2.0

Table 1. Comparison of separate learning (SL) and joint learning
(JL). P1, P4, P6 and P11 are four typical parts shown in Fig. 2.
The last row shows the average improvements on the three subsets
brought by joint learning.

not change much on the three subsets. Although these part
detectors show similar performances, they do behave differ-
ently. The example distribution of each part is captured by
its detector. When a pedestrian example is occluded, those
parts inside or have large overlap with the visible portion
usually get large detection scores while the other parts tend
to have low detection scores (See the blue curve in Fig. 4).

Table 1 shows the results of the detectors of four typ-
ical parts (P1, P4, P6 and P11) learned by two different
approaches, separate learning (SL) and joint learning (JL).
SL learns part detectors separately by minimizing Eq. (3),
while JL learns all part detectors jointly by minimizing E-
q. (2). For the four parts, the detectors learned by JL per-
form better than their counterparts learned by SL on all the
three subsets, which shows the effectiveness of sharing de-
cision trees to exploit correlations among the parts. The
average improvements on the three subsets brought by JL
are 1.6%, 4.2% , and 2.0% respectively.

Table 2 shows the results of different approaches using
channel features. LDCF-P1 is our implementation of LDCF
[15] which only uses fully visible pedestrian examples as
positive examples. SL-P1 and JL-P1 are two full-body de-
tectors learned by SL and ML respectively. LDCF-P1 and
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Figure 6. Comparison with state-of-the-art channel-feature based approaches.

Method Reasonable Partial Heavy
LDCF-P1 18.1 38.8 72.4
SL-P1 18.2 36.1 72.1
JL-P1 17.0 34.2 70.5
JL-Max 17.5 34.8 68.8
JL-TopS 16.6 32.7 69.6

Table 2. Results of different approaches using channel features.

SL-P1 have similar performances on the Reasonable and
Heavy subsets, but SL-P1 performs better than LDCF-P1
on the Partial subset since SL-P1 uses additional partial-
ly occluded pedestrian examples for training according to
the definition of the misclassification cost in Eq. (1). JL-P1
outperforms SL-P1 on Reasonable, Partial and Heavy by
1.2%, 1.9% and 1.6% respectively. JL-Max and JL-TopS
are two part detector integration approaches. JL-Max takes
the maximum from 20 detection scores, while JL-TopS av-
erages S highest detection scores. JL-TopS performs 0.8%
worse than JL-Max on Heavy but outperforms JL-Max on
Reasonable and Partial by 0.9% and 2.1% respectively.
Overall, JL-TopS works more robustly. JL-TopS outper-
forms JL-P1 on the three subsets by 0.4%, 1.5% and 0.9%
respectively, which demonstrates that the performance can
be further improved by properly integrating the part detec-
tors.

Figure 6 compares the proposed approach with state-
of-the-art approaches using channel features, ACF [6], In-
formedHaar [35], NAMC [28], LDCF [15], Katamari [2],
SpatialPooling+ [20], SCCPriors [33] and Checkerboards
[36]. Our approach achieves the best performance among
these channel-feature based approaches. Our full-body de-
tector (JL-P1) already outperforms Checkerboards on all the
three subsets. By properly integrating part detectors, JL-
TopS outperforms Checkerboards on the three subsets by
1.9%, 3.5% and 7.9% respectively. The advantage of our
approach over Checkerboards which only uses a full-body
detector is more significant on the Partial and Heavy subset-
s, which shows the effectiveness of learning and integrating

part detectors for occlusion handling. More results are pro-
vided in the supplementary material.

5.2. Experiments with CNN features

Recently, several approaches using CNN features have
achieved the state-of-the-art performance for pedestrian de-
tection [3, 34, 26, 4]. The proposed multi-label learning ap-
proach also applies to CNN features. We use a region pro-
posal network (RPN) from [34] for feature extraction and
then learn a set of part detectors jointly as described in Sec-
tion 3.3. RPN+BF [34] also adopts a similar framework in
which a set of decision trees are learned to form a full-body
detector using CNN features from the RPN. The major dif-
ferences between RPN+BF and our approach are two-fold:
(1) our approach jointly learns the full-body detector with
the other part detectors to exploit part correlations; (2) our
approach further integrates the part detectors to better han-
dle occlusions. We sample training data from video sets
S0-S5 at an interval of 3 frames as in [34]. Pedestrian ex-
amples which are at least 50 pixels tall and occluded not
more than 70% are collected as positive examples. These
positive examples are also used for training the RPN (See
[34] for the network architecture and training procedure of
the PRN). To speed up training and testing, we use the RP-
N to generate pedestrian proposals. About 1000 proposals
and 400 proposals per image are generated for training and
testing respectively. Six rounds of bootstrapping are adopt-
ed to train 64, 128, 256, 512, 1024 and 2048 decision trees
respectively. The maximum depth of a decision tree is 5.
On an NVIDIA K5200 GPU, it takes about 0.6s (0.5s for
feature extraction and 0.1s for detection) to test the jointly
learned part detectors on a 480 × 640 image, while it takes
about 2.2s (0.5s + 1.7s) to apply 20 separately learned detec-
tors. Excluding the time for feature extraction, the speedup
factor of the jointly learned part detectors is close to 20×.

Table 3 shows the results of different approaches us-
ing CNN features. RPN+BF-P1 is our implementation of
RPN+BF [34]. SL-P1 and JL-P1 are two full-body detec-
tors learned by separate learning (SL) and joint learning
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Figure 7. Comparison with state-of-the-art CNN-feature based approaches.

Method Reasonable Partial Heavy
RPN+BF-P1 10.1 18.9 58.9
SL-P1 10.3 18.0 56.6
JL-P1 9.9 17.2 50.5
JL-Max 10.3 17.2 48.4
JL-TopS 10.0 16.6 49.2

Table 3. Results of different approaches using CNN features.

(JL) respectively. SL-P1 outperforms slightly worse than
RPN+BF-P1 on the Reasonable subset but outperforms it
on the Partial and Heavy subsets. The use of some partial-
ly occluded pedestrian examples for training makes SL-P1
achieve better performance for occluded pedestrian detec-
tion. JL-P1 outperforms SL-P1 on the three subsets by 0.4%
(Reasonable), 0.8% (Partial) and 6.1% (Heavy) respective-
ly. The performance improvement on Heavy is significant.
In our multi-label learning approach, the full-body detec-
tor (JL-P1) is learned jointly with the other part detectors
by sharing decision trees. These decision trees are learned
to capture the overall distribution of pedestrian examples in-
cluding heavily occluded ones. When the full-body detector
is learned independently, most heavily occluded pedestrian
examples are ignored, which makes SL-P1 perform rela-
tively poorly on Heavy. JL-Max and JL-TopS are two part
detector integration approaches which take the maximum
from 20 detection scores and the average of top S detec-
tion scores as the final detection score respectively. JL-Max
has better performance on Heavy, while JL-TopS performs
better on Reasonable and Partial. Compared with JL-P1,
JL-TopS performs slightly worse (0.1%) on Reasonable but
achieves performance gains of 0.6% and 1.3% on Partial
and Heavy respectively. Since JL-P1 already works well
for detecting pedestrians which are non-occluded or slightly
occluded, integrating the other part detectors with the full-
body detector does not help. The improvement of JL-TopS
over JL-P1 on Partial and Heavy justifies that the other part
detectors provide complementary information for handling
occlusions.

Figure 7 compares our approach with some state-of-the-
art CNN-feature based approaches, TA-CNN [27], CCF
[32], CCF+CF [32], DeepParts [26], CompACT-Deep [4],
MS-CNN [3] and RPN+BF [34]. On the Reasonable subset,
JL-P1 performs comparably to the top two approaches RP-
N+BF and MS-CNN which also only use a single full-body
detector. This is because the three approaches use similar
deep convolutional neural networks (variants of VGG-16
[24]). On the Partial and heavy subsets, JL-P1 outperform-
s the most competitive approach MS-CNN by 2.0% and
9.4% respectively. The advantage of JL-P1 over MS-CNN
on Heavy is significant, which shows the effectiveness of
learning the full-body detector with the other part detectors.
By properly integrating the jointly learned part detectors,
JL-TopS further improves the performance for partially oc-
cluded pedestria detection. JL-TopS achieves the same per-
formance on Reasonable as MS-CNN and outperforms MS-
CNN on Partial and heavy by 2.6% and 10.7% respectively.
More results are provided in the supplementary material.

6. Conclusions

In this paper, we propose a multi-label learning approach
to learn part detectors jointly. AdaBoost.MH is adapted to
learn a set of decision trees which are shared by all the part
detectors. Thanks to the sharing of decision trees, part cor-
relations are exploited and the computational cost of ap-
plying these part detectors is reduced. The learned deci-
sion trees capture the overall distribution of all parts. The
effectiveness of our approach is validated on the Caltech
dataset. The proposed approach is applied to channel fea-
tures and CNN features and shows promising performance
for detecting partially occluded pedestrians, especially the
heavily occluded ones. The part detectors learned jointly by
the proposed approach also perform better than their coun-
terparts learned separately.
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