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Abstract

Recent advances in the joint processing of images have
certainly shown its advantages over the individual process-
ing. Different from the existing works geared towards co-
segmentation or co-localization, in this paper, we explore
a new joint processing topic: co-skeletonization, which is
defined as joint skeleton extraction of common objects in
a set of semantically similar images. Object skeletoniza-
tion in real world images is a challenging problem, because
there is no prior knowledge of the object’s shape if we con-
sider only a single image. This motivates us to resort to the
idea of object co-skeletonization hoping that the common-
ness prior existing across the similar images may help, just
as it does for other joint processing problems such as co-
segmentation. Noting that skeleton can provide good scrib-
bles for segmentation, and skeletonization, in turn, needs
good segmentation, we propose a coupled framework for
co-skeletonization and co-segmentation tasks so that they
are well informed by each other, and benefit each other
synergistically. Since it is a new problem, we also con-
struct a benchmark dataset for the co-skeletonization task.
Extensive experiments demonstrate that proposed method
achieves very competitive results.

1. Introduction
Our main objective in this paper is to exploit joint pro-

cessing [30, 13, 6] to extract objects’ skeletons in images
of the same category. We call it object co-skeletonization.
By objects, we mean something which interests the im-
age viewer more compared to the stuff like sky, roads,
mountains, sea, etc, in its presence. Automatic skele-
tonization of such objects has many applications such as
image search, image synthesis, generating training data
for object detectors, etc. However, it is difficult to solve
this problem as a standalone task, because it requires ob-
jects shape information as well. Existing methods either
need pre-segmentation [3, 21] of the object in the im-
age or groundtruth skeletons for the training images to
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Figure 1. Object co-skeletonization with co-segmentation. Skele-
tons are in yellow.

learn [25, 20] to perform skeletonization on test images.
The recent deep learning based method [22] requires not
only the skeleton location information but also the skeleton
scale information that accounts for shape information. The
skeleton scale is basically the distance between a skeleton
point and the nearest boundary point of the object.

In contrast, in this paper we consider the skeletoniza-
tion problem with weak supervision, i.e. co-skeletonization,
which does not need pre-segmentation or groundtruth
skeletons of training images. Particularly, we leverage
the existing idea of object co-segmentation to help co-
skeletonization. It turns out that co-skeletonization can also
help co-segmentation in return by providing good scribbles.
In this way, both co-skeletonization and co-segmentation
benefit each other synergistically. We couple these two
tasks to achieve what we call “Object Co-skeletonization
with Co-segmentation” as shown in Fig. 1.

There are several challenges involved in performing
co-skeletonization and the coupling with co-segmentation.
First, existing skeletonization algorithms [21, 17, 3, 19]
can yield a good skeleton if a good and smooth shape is
provided, but they are quite sensitive to the given shape,
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Figure 2. Example challenges of co-skeletonization. The quality
of segmentation affects the quality of skeletonization. (b) The re-
sult of [21] for (a). (c) Our result. Skeletons lie on homogeneous
regions, such as in (d) and (e), which are difficult to be detected
and described.

as shown for the image in Fig. 2(a) which has unsmooth
segmentation. The skeleton produced by [21] in Fig. 2(a)
has too many unnecessary branches, while a more desirable
skeleton to represent the cheetah would be the one obtained
by our method in Fig. 2(c). Thus, the quality of the provided
shape becomes crucial, which is challenging for the con-
ventional co-segmentation methods because their complex
way of co-labeling many images may not provide good and
smooth shapes. Second, joint processing of skeletons across
multiple images is quite tricky. Because most of the skele-
ton points generally lie on homogeneous regions as shown
in Fig. 2(d) and (e), it is not easy to detect and describe
them for the purpose of matching. Third, how to couple the
two tasks so that they can synergistically assist each other
is another challenge.

Our key observation is that we can exploit the inher-
ent interdependencies of two tasks to achieve better results
jointly. For example, in Fig. 3, although the initial co-
segmentation produces a poor result, most of the skeleton
pixels still remain on the horse, which gradually improve
the segmentation by providing good seeds for segmentation
in the subsequent iterations of joint processing. In turn, co-
skeletonization also becomes better as the co-segmentation
improves. Our another observation is that we can exploit
the structure-preserving quality of dense correspondence to
overcome the skeleton matching problem.

To the best of our knowledge, there is only one dataset
where co-skeletonization could be performed in a weakly
supervised manner, i.e. WH-SYMMAX dataset [20], and
it only contains horse images. To extensively evaluate
co-skeletonization, we construct a new benchmark dataset
called CO-SKEL dataset, which consists of images rang-
ing from animals, birds, flowers to humans with total 26
categories. Extensive experiments show that our approach

Figure 3. Inherent interdependencies of co-skeletonization and co-
segmentation can be exploited to achieve better results through a
coupled iterative optimization process.

achieves state-of-the-art co-skeletonization performance in
the weakly supervised setting.

2. Related Work
Skeletonization: The research on skeletonization can

be divided into three categories. First, there are some al-
gorithms [17, 3, 19] which can perform skeletonization if
the segmentation of an object is given. Generally, these al-
gorithms are quite sensitive to the distortions of the given
shape. However, this problem can be tackled through re-
cent methods such as [21]. Second, there are also some tra-
ditional image processing methods [28, 29, 11] which can
generate skeletons by exploiting gradient intensity maps.
They generate skeletons even for stuffs like sky, sea, etc,
which usually need some object prior to be suppressed.
Third, there are also some supervised learning based meth-
ods which require groundtruth skeletons of training images
for learning. This class of methods includes both tradi-
tional machine learning based methods [25, 20] and the
recent deep learning based methods [27, 22]. The perfor-
mance of the traditional machine learning based methods is
not satisfactory due to the limited feature learning capabil-
ity in homogeneous regions. On the other hand, the recent
deep learning based methods have made great progress in
the skeletonization process as reported in [22] at the cost of
requiring complex training process on a substantial amount
of annotated data. In contrast, our method is a weakly su-
pervised one, although it can utilize the annotated data as
well, if available.

Segmentation: Image segmentation is a classical prob-
lem, and there are many types of approaches like interac-
tive segmentation [15, 24], image co-segmentation [4, 7, 5],
semantic segmentation [18], etc. While interactive segmen-
tation needs human efforts, image co-segmentation exploits
weak supervision in the form of requiring the association of
same category images and uses an inter-image prior to help
segment each individual image. Semantic image segmenta-



tion not only segments objects but also provides a label for
each pixel. In the past few years, deep learning based meth-
ods such as fully convolution networks (FCN) have greatly
advanced the performance of semantic image segmentation.
Recently, [10] proposed a joint framework to combine in-
teractive segmentation with FCN based semantic segmen-
tation [18] so as to help each other. In a similar spirit, in
this work, we propose coupling of co-skeletonization and
co-segmentation to assist each other.

3. Proposed Method
In this section, we discuss our joint framework of co-

skeletonization and co-segmentation in detail.

3.1. Overview of Our Approach

Given a set of m similar images belonging to the same
category, denoted by I = {I1, I2, · · · , Im}, we aim to
provide two output sets: K = {K1,K2, · · · ,Km} and
O = {O1, O2, · · · , Om}, comprising skeleton masks and
segmentation masks, respectively, where Ki(p), Oi(p) ∈
{0, 1} indicating whether a pixel p is a skeleton pixel
(Ki(p) = 1) and whether it is a foreground pixel (Oi(p) =
1).

Our overall objective function for an image Ii is defined
as

min
Ki,Oi

λψpr(Ki, Oi|Ni) + ψin(Ki, Oi|Ii) + ψsm(Ki, Oi|Ii)

s.t. Ki ⊆ma(Oi)
(1)

where the first term ψpr accounts for the priors from the set
of neighbor images denoted as Ni, the second term ψin is
to enforce the interdependence between the skeletonKi and
the shape / segmentation Oi in image Ii, the third term ψsm
is the smoothness term to enforce smoothness, and λ is a
parameter to control the influence of the inter-image prior
term. The constraint in (1) means the skeleton must be a
subset of medial axis (ma) [3] of the shape.

We resort to the typical alternative optimization strategy
to solve (1), i.e., dividing (1) into two sub-problems and
solve them iteratively. In particular, one sub-problem is as
follows. Given the shape Oi, we solve co-skeletonization
by

min
Ki

λψkpr(Ki|Ni) + ψkin(Ki|Oi) + ψksm(Ki)

s.t. Ki ⊆ma(Oi).
(2)

The other sub-problem is that given the skeleton Ki, we
solve co-segmentation by

min
Oi

λψopr(Oi|Ni) + ψoin(Oi|Ki, Ii) + ψosm(Oi|Ii). (3)

If we treat both the inter-image prior term ψkpr and the shape
prior term ψkin as a combined prior, (2) turns out to be a

skeleton pruning problem and can be solved using the ap-
proach similar to [21], where branches in the skeleton are
iteratively removed as long as it reduces the energy. Sim-
ilarly, if we combine both the inter-image prior ψopr and
the skeleton prior ψoin as the data term, (3) become a stan-
dard MRF-based segmentation formulation, which can be
solved using GrabCut [15]. Thus, compared with the ex-
isting works, the key differences of our formulation lie in
the designed inter-image prior terms as well as the interde-
pendence terms, which link the co-skeletonization and co-
segmentation together.

Iteratively solving (2) and (3) requires a good initial-
ization. We propose to initialize O by Otsu thresholded
saliency maps and K by the medial axis mask [3]. Alg. 1
summarizes our approach, where (ψpr +ψin+ψsm)(t) de-
notes the objective function value of (1) at the tth iteration
and ψpr = ψkpr+ψ

o
pr, ψin = ψkin+ψ

o
in, ψsm = ψksm+ψosm.

Algorithm 1: Our approach for solving (1)
Data: An image set I containg images of the same

category
Result: Sets O and K containing segmentations and

skeletons of images in I
Initialization: ∀Ii ∈ I, O(0)

i = Otsu thresholded
saliency map and K(0)

i = ma(O
(0)
i );

Process: ∀Ii ∈ I,
do

1) Obtain O(t+1)
i by solving (3) using [15] with

O(t) and K(t)
i .

2) Obtain K(t+1)
i by solving (2) using [21] with

K(t) and O(t+1)
i , s.t. K(t+1)

i ∈ma(O
(t+1)
i ).

while
(λψpr +ψin+ψsm)(t+1) ≤ (λψpr +ψin+ψsm)(t);
O ← O(t) and K ← K(t)

3.2. Object Co-skeletonization

As shown in Alg. 1, the step of object co-skeletonization
is to obtain K(t+1) by minimizing (2), given the shape
O(t+1) and the previous skeleton set Kt. Considering the
constraint of K(t+1)

i ∈ ma(O
(t+1)
i ), we only need to

search skeleton pixels from the medial axis pixels. We build
up our solution based on [21], but with our carefully de-
signed individual terms for (2) as explained below.

Prior Term (ψkpr): In the object co-skeletonization, a
good skeleton pixel will be the one which is repetitive
across images. To account for this repetitiveness, we need
to find corresponding skeleton pixels in other images. How-
ever, skeleton pixels usually lie on homogeneous regions
(see Fig. 2(d)&(e)) and are thus difficult to match. Thus,
instead of trying to match sparse skeleton pixels, we make
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Figure 4. Dense correspondences preserve the skeleton and seg-
mentation structures roughly. Here (a) is warped to generate (b) to
be used as a prior for (c).

use of dense correspondences using SIFT Flow [12], which
preserve the skeleton and segmentation structures well, as
shown in Fig. 4.

Once correspondence is established, we utilize the
warped skeleton pixels from neighboring images to develop
the prior term. Particularly, we align all the neighboring im-
ages’ tth iteration’s skeleton maps to the concerned image
Ii, and generate a co-skeleton prior at the (t+1)th iteration
as

K̃
(t+1)
i =

K
(t)
i +

∑
Ij∈Ni

Wi
j(K

(t)
j )

|Ni|+ 1
(4)

where we align other skeleton maps using a warping func-
tion Wi

j [12] and then average them with Ii’s own skele-
ton map. Note that the neighborhood Ni is developed sim-
ply based on the GIST distance [14]. For simplicity, we
drop the superscriptions such as (t+ 1) in all the following
derivations.

Considering that the corresponding skeleton pixels from
other images may not exactly align with the skeleton pixels
of the considered image, we define our inter-image prior
term as

ψkpr(Ki|Ni) =
∑

p∈ma(Oi)

−Ki(p) log
(
1 +

∑
q∈N(p)

K̃i(q)
)
.

(5)
(5) essentially measures the consistency among image Ii’s
own skeleton mask and the recommended skeleton mask
from its neighbor images. Note that we accumulate the
co-skeleton prior scores in a certain neighborhood N(p) for
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Figure 5. Shape reconstruction from skeleton. Compared to the
reconstructed shape from the medial axis (2nd column), the recon-
structed shape (3rd column) from our simplified skeleton is sim-
pler and smoother while still preserving the main structure. Nev-
ertheless, we do not want an over-simplified skeleton, which will
result in missing important parts in the corresponding shape recon-
struction (4th column).

each pixel p to account for the rough skeleton alignment
across the images.

Interdependence Term (ψkin): Our interdependence
term is similar to the traditional data term in skeleton prun-
ing, i.e., it enforces that the skeleton should provide a good
reconstruction of the given shape, which medial axis al-
ready does well. However, a medial axis often contains
spurious branches, while the noisy shapes obtained from
imperfect co-segmentation only make this worse. To avoid
spurious branches, we prefer a simplified skeleton, whose
reconstructed shape is expected to be smooth while still pre-
serving the main structure of the given shape (see Fig. 5
for example). On the other hand, we do not want an over-
simplified skeleton, whose reconstructed shape is likely to
miss some important parts (see the 4th column of Fig. 5).

Therefore, we expect the reconstructed shape from the
skeleton to match the given shape, but not necessary to be
exactly the same as the given shape. In this spirit, we define
our interdependence term ψkin as

ψkin(Ki|Oi) = −α log
|R(Ki, Oi) ∩Oi|
|R(Ki, Oi) ∪Oi|

(6)

where we use IoU to measure the closeness between the re-
constructed shape R(Ki, Oi) and the given shape Oi, and
α is the normalization factor as defined in [21]. The recon-
structed shape R(Ki, Oi) is basically the union of maximal
disks at skeleton pixels [21], i.e.,

R(Ki, Oi) =
⋃

p∈ma(Oi)

d(p,Oi) (7)

where d(p,Oi) denotes the maximal disk at skeleton pixel
p for the given Oi, and the maximal disk is the disk that
exactly fits within Oi with skeleton pixel p as the center.

Smoothness Term (ψksm): To ensure a smoother and
simpler skeleton, we aim for a skeleton whose: (i) branches
are less in number and (ii) branches are long. Our criteria
discourage skeletons with spurious branches while at the
same time encouraging skeletons with structure-defining



branches. This is different from the criteria in [21] which
only aims for less number of skeleton pixels. Specifically,
we define the smoothness term ψksm as

ψksm(Ki) = |b(Ki)| ×
|b(Ki)|∑
u=1

1

length
(
bu(Ki)

) (8)

where b(Ki) = {b1(Ki), · · · , b|b(Ki)|(Ki)} denotes the
set of branches of the skeleton Ki. In this way, we pun-
ish skeletons with either large number of branches or short-
length branches.

3.3. Object Co-segmentation

The object co-segmentation problem here is as follows.
Given the skeleton Ki, find the optimal Oi that minimizes
the objective function defined in (3). The individual terms
in (3) are defined in the following manner.

Prior Term (ψopr): We generate an inter-image co-
segment prior, similar to that for co-skeletonization. In par-
ticular, we align segmentation masks of neighboring images
and fuse them with that of the concerned image, i.e.,

Õi =

Oi +
∑

Ij∈Ni

Wi
j(Oj)

|Ni|+ 1
(9)

where Wi
j is the same warping function from image j to

image i. Then, with the help of Õi, we define our inter-
image prior term as

ψopr(Oi|Ni) =
∑
p∈Di

−

(
Oi(p) log

( 1

|N(p)|
∑
q∈N(p)

Õi(q)
)

+
(
1−Oi(p)

)
log
(
1− 1

|N(p)|
∑
q∈N(p)

Õi(q)
))

(10)
which encourages the shape to be consistent with Õi. Here
again we account for pixel correspondence errors by neigh-
borhood N(p) (in the pixel domain Di) averaging.

Interdependence Term (ψoin): For the co-segmentation
process to benefit from co-skeletonization, our basic idea is
to build up foreground and background appearance models
based on the given skeleton Ki. Particularly, we use GMM
for appearance models. The foreground GMM model is
learned usingKi (i.e., treating skeleton pixels as foreground
seeds), whereas the background GMM is learned using the
background part ofKi’s reconstructed shape R(Ki, Oi). In
this manner, the appearance model is developed entirely us-
ing the skeleton. Note that at the beginning it is not robust
to build up the GMM appearance models in this manner
since the initial skeleton extracted based on saliency is not
reliable at all. Thus, at initialization, we develop the fore-
ground and background appearance models based on the
inter-image priors K̃i and Õi, respectively.

Denoting θ(Ki, Ii) as the developed appearance models,
we define the interdependence term ψoin as

ψoin(Oi|Ki, Ii) =
∑
p∈Di

− log

(
P
(
Oi(p) | θ(Ki, Ii), Ii(p)

))
(11)

where P
(
Oi(p) | θ(Ki, Ii), Ii(p)

)
denotes how likely a

pixel of color I(p) will take the labelOi(p) given θ(Ki, Ii).
ψoin is similar to the data term in the interactive segmenta-
tion method [15].

Smoothness Term (ψosm): For ensuring smooth fore-
ground and background segments, we simply adopt the
smoothness term of GrabCut [15], i.e.,

ψosm(Oi|Ii) = γ
∑

(p,q)∈Ei

[Oi(p) 6= Oi(q)]e
(−β||Ii(p)−Ii(q)||2)

(12)
where Ei denotes the set of neighboring pixel pairs in the
image Ii, and γ and β are segmentation smoothness related
parameters as discussed in [15].

3.4. Implementation Details

We use the saliency extraction method [2] for initializa-
tion of our framework in our experiments. We use the same
default setting as that in [15] for the segmentation parame-
ters γ and β in (12) throughout our experiments. For the pa-
rameters of SIFT flow [12], we follow the setting in [16] in
order to handle the possible matching of different semantic
objects. The parameter λ in both (2) and (3), which controls
the influence of joint processing, is set to 0.1.

4. Experimental Results
4.1. Datasets and Evaluation Metrics

Datasets: There is only one publicly available dataset,
i.e. WH-SYMMAX dataset [20], on which weakly super-
vised co-skeletonization can be performed, but it contains
only the horse category of images. In order to evaluate
the co-skeletonization task extensively, we develop a new
benchmark dataset called the CO-SKEL dataset. It con-
sists of 26 categories with total 353 images of animals,
birds, flowers and humans. These images are collected
from the MSRC dataset, CosegRep, Weizmann Horses and
iCoseg datasets along with their groundtruth segmentation
masks. Then, we apply [21] (with our improved terms) on
these groundtruth masks, in the same manner as the WH-
SYMMAX dataset has been generated from the Weizmann
Horses dataset [1]. Fig. 6 shows some example images, and
their skeletons using [21] and our improvement of [21]1. It
can be seen that our skeletons are much smoother and better
in representing the shapes.

1We will make our dataset with groundtruths and code publicly avail-
able.
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Figure 6. Given the shape, we improve skeletonization method [21] using our improved terms in their objective function. It can be seen
that our skeletons are much smoother and better in representing the shape. We use these improved results as groundtruths in our CO-SKEL
dataset.

Since our method searches for k-nearest neighbors first
and then performs joint processing, our method can also
work in an unsupervised way as long as there are a suffi-
cient number of images of same category objects or visu-
ally similar objects. Thus, our method can also be applied
to datasets like the SK506 dataset [22], which consists of
many uncategorized images.

Metrics: For evaluation of skeletonization and segmen-
tation, we calculate F-measure (including precision and re-
call) and Jaccard Similarity, respectively. Considering it
is very difficult to get a resultant skeleton mask exactly
aligned with the groundtruth, if a resultant skeleton pixel is
nearby a groundtruth skeleton pixel, it should be considered
as a hit. Therefore, we consider a resultant skeleton pixel as
correct if it is at a distance of d ∈ {0, 1, 2, 3} pixels from a
groundtruth skeleton pixel, for which we denote F d as the
corresponding F-measure. Jaccard Similarity (denoted as
J) is basically the IoU of groundtruth and our segmentation
result.

4.2. Weakly Supervised Results

We report our overall co-skeletonization and co-
segmentation results on WH-SYMMAX and our CO-SKEL
datasets in Tables 1 and 2, respectively. Note that since we
do not perform any kind of training, we combine both train-
ing and test images of the WH-SYMMAX dataset, and then
obtain the results. It can be seen that our method greatly
improves over our initialization baseline. To demonstrate
the importance of considering the interdependence between
co-segmentation and co-skeletonization, we also compare
the proposed method with another baseline, Ours (w/o ψin),
where we remove the interdependence, i.e., running co-
segmentation first and then performing skeletonization from
the resultant foreground segments.

Method F 0 F 1 F 2 F 3 J

Ours(0) 0.095 0.229 0.282 0.319 0.412
Ours (w/o ψin) 0.168 0.337 0.391 0.434 0.649
Ours 0.189 0.405 0.464 0.506 0.721

Table 1. Comparisons of the co-skeletonization and co-
segmentation results of our method and its two baselines on the
WH-SYMMAX dataset. Ours(0): our initialization baseline us-
ing Otsu thresholded saliency maps [2] for segmentation and [21]
for skeleton. Ours (w/o ψin): our method without the interde-
pendence terms, i.e. running co-segmentation followed by skele-
tonization.

F 0 F 1 F 2 F 3 J

Ours(0) 0.129 0.306 0.371 0.416 0.600
Ours (w/o ψin) 0.236 0.426 0.484 0.522 0.725
Ours 0.237 0.435 0.495 0.535 0.741

Table 2. Comparisons of the co-skeletonization and co-
segmentation results of our method and its two baselines on our
CO-SKEL dataset.

It can be seen that our method outperforms this base-
line on both the datasets. Marginal improvement on the
CO-SKEL dataset may be due to already good initializa-
tion. Specifically, it can be seen that J for initialization is
already 0.600 in the CO-SKEL dataset compared to 0.412
in the WH-SYMMAX dataset, suggesting that there is rela-
tively less room for improvement.

We also evaluate how our method performs at differ-
ent iterations in Fig. 8 on the WH-SYMMAX dataset. It
can be seen that our method first improves the performance
swiftly and then it becomes somewhat steady. This sug-
gests that 2-3 iterations are good enough for our method.



Figure 7. Some examples of steadily improving skeletonization and segmentation after each iteration. The top-right example shows that
our model continues to reproduce similar results once the optimal shape and skeleton are obtained.

m F 0 F 1 F 2 F 3 J

bear 4 0.075 0.1714 0.213 0.246 0.846
iris 10 0.363 0.600 0.658 0.698 0.837
camel 10 0.224 0.353 0.395 0.432 0.674
cat 8 0.118 0.360 0.469 0.523 0.733
cheetah 10 0.078 0.221 0.287 0.335 0.735
cormorant 8 0.351 0.545 0.606 0.642 0.768
cow 28 0.142 0.437 0.580 0.669 0.789
cranesbill 7 0.315 0.619 0.670 0.696 0.935
deer 6 0.214 0.366 0.407 0.449 0.644
desertrose 15 0.360 0.662 0.721 0.759 0.934
dog 11 0.122 0.356 0.457 0.522 0.746
egret 14 0.470 0.642 0.669 0.693 0.760
firepink 6 0.416 0.685 0.756 0.805 0.918
frog 7 0.163 0.358 0.418 0.471 0.734
geranium 17 0.299 0.633 0.716 0.764 0.940
horse 31 0.217 0.435 0.490 0.529 0.726
man 20 0.144 0.246 0.274 0.295 0.385
ostrich 11 0.298 0.530 0.592 0.634 0.752
panda 15 0.037 0.102 0.140 0.174 0.696
pigeon 16 0.181 0.326 0.361 0.382 0.590
seagull 13 0.257 0.461 0.520 0.562 0.662
seastar 9 0.440 0.649 0.681 0.702 0.750
sheep 10 0.078 0.249 0.342 0.401 0.769
snowowl 10 0.089 0.222 0.268 0.306 0.543
statue 29 0.306 0.506 0.542 0.564 0.681
woman 23 0.305 0.463 0.503 0.533 0.674
variance 0.015 0.028 0.029 0.030 0.016

Table 3. Categorywise number of images and our weakly super-
vised results on the CO-SKEL dataset.
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Figure 8. Performance v/s Iteration plot. It can be seen that the
performance improves swiftly at first and then becomes steady.

Please refer to Fig. 7 for examples where the results im-
prove steadily with each iteration. Fig. 9 shows some sam-
ple results of our method along with groundtruths from the
WH-SYMMMAX and CO-SKEL datasets.

We also show our results on individual categories and the
variance in performance across the categories of our CO-
SKEL dataset in Table 3. Low variances for both F d and J
metrics suggest that our method is quite reliable.

4.3. Supervised Results

In the literature, since only the fully supervised skele-
tonization methods are available, for fair comparison, we
follow the original process but with a change in the initial-
ization. We replace the saliency initialization with ground
truth initialization for training images. This will help de-
velop better joint processing priors for remaining images
which are the test images. We do the comparisons on test
images of the WH-SYMMAX and SK506 datasets in Ta-
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Figure 9. Sample co-skeletonization results along with our final shape masks. It can be seen that both are quite close to the groundtruths.

Methods WH-SYMMAX SK506
[9] 0.174 0.218
[8] 0.223 0.252
[26] 0.334 0.226
[23] 0.103 -
[25] 0.365 0.392
[29] 0.402 -
Ours(0) 0.322 0.261
Ours 0.530 0.483
Ours (S) 0.594 0.523

Table 4. Comparisons of the results of F d of our methods with
supervised methods. Ours(0): our initialization baseline. Ours
(S): our method with groundtruth initialization on training images.
Note that here d = 0.0075×

√
width2 + height2 following [22].

ble 4. Note that to make the distinction between our su-
pervised method (groundtruth initialization) and our weakly
supervised method (with saliency initialization), we denote
the results of our supervised approach as “Ours (S)”. It can
be seen that not only our supervised method comfortably
outperforms all the traditional supervised methods, but also
our weakly supervised (unsupervised for SK506) approach
is able to do so. Note that the other performance values re-
ported here are directly taken from [22]. We would like to
point out that the recently developed deep learning based
supervised method [22] reports much better performance.
We did not compare with it since our method essentially is
a weakly supervised approach.

4.4. Limitations

Our method has some limitations. First, for initializa-
tion, our method requires common object parts to be salient
in general across the neighboring images if not in all. There-
fore, it depends on the quality of the neighboring images.
The second limitation lies in the difficulty during warping
process. For example, when the neighboring images con-
tain objects at different sizes or at different viewpoints, the
warping processing will have difficulty in aligning the im-
ages. Such a situation will not be crucial when there is a
large number of images to select from. Another issue is that
smoothing the skeleton may cause missing out some impor-
tant short branches.

5. Conclusion

The major contributions of this paper lie in the newly
defined co-skeletonization problem and the proposed joint
co-skeletonization and co-segmentation framework, which
effectively exploits inherent interdependencies between the
two to assist each other synerergistically. Extensive experi-
ments demonstrate that the proposed method achieves very
competitive results on a few benchmark datasets.
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