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Abstract

We propose a novel formulation to find representatives in data samples via

learning with structured sparsity. To find representatives with both diversity and

representativeness, we formulate the problem as a structurally-regularized learning

where the objective function consists of a reconstruction error and three structured

regularizers: (1) group sparsity regularizer, (2) diversity regularizer, and (3)

locality-sensitivity regularizer. For the optimization of the objective, we propose

an accelerated proximal gradient algorithm, combined with the proximal-Dykstra

method and the calculation of parametric maximum flows. Experiments on image

and video data validate the effectiveness of our method in finding exemplars with

diversity and representativeness and demonstrate its robustness to outliers.
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1. Introduction

Representative selection is the problem of finding exemplar samples from

a data collection, where the selected exemplars serve to summarize the data

collection. This problem has recently been actively discussed in data analysis

and processing because it holds several advantages over analyzing the dataset as

a whole. First, the selected exemplars are expected to be more interpretable than

the entire dataset. Second, the memory cost for storing information on the data can

be significantly reduced, and the computational efficiency for data modeling, such

as classifier training, and for the application of the model can also be improved.

For example, in computer vision, representative selection has been used for video

anomaly detection and video summarization [1, 2, 3, 4].

While knowing class labels of training data, a variety of selection strategies

have been proposed to reduce the number of training data for some specific

classifiers [5, 6, 7, 8, 9, 10, 11]. In addition to this family of methods that

require extra knowledge for representative selection [12, 13, 14], there has also

been increasing interest in unsupervised approaches to find representatives.

As for unsupervised schemes, one naı̈ve approach is the application of the k-

medoids algorithm [15] to find k medoid centers as representatives. The selected

representatives achieve the minimum total distance from all samples. With such a

method, however, it is difficult to determine the optimum number of centers, and

the performance heavily depends on the initialization of these centers. To alleviate

these issues, a soft variant of k-medoids algorithm has been proposed in [16, 17].

Instead of expressing one sample using one center as in the k-medoids algorithm,

it allows us to represent one sample using a sparse group of centers. Similar to

the k-medoids algorithm, Affinity Propagation [18, 19] is another approach to

clustering-based exemplar selection methods that does not need to initialize the
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center positions or specify the number of centers. These clustering-based methods

usually perform well when the data are distributed to groups around a few centers.

Another strategy is the one based on a low-rank representation of data. For

example, the Rank Revealing QR approaches [20, 21] aim to find k columns

from the data matrix such that the column submatrix is well conditioned and

approximates the original data matrix in a projection sense. The data samples

corresponding to the k columns are then selected as representatives. It is also

feasible to use randomized or greedy methods [22, 23, 24, 25] to produce the well-

conditioned column submatrix from a low-rank data matrix. For these methods,

the number of representatives k usually still needs to be preset.

Recently, relying on dictionary selection, some methods have taken the

original dataset as a dictionary of atoms so that representatives are required to

approximately express all the data by linear combination [1, 26, 3, 27]. To avoid

setting up the number of representatives, sparse constraints have been exploited

in most methods, which has led to some promising results in anomaly detection

and visual summarization. To make sure selected samples meet some specific

properties, some methods have been proposed using auxiliary information and

additional constraints. For example, affine constraints have been applied for

translation invariance of representatives in [2, 28]. In [29], a temporal location

based weight matrix has been designed for each given video to prevent too

close frames being selected simultaneously, thus guaranteeing diverse locations of

extracted key-frames. To summarize videos into key objects, the proposed method

in [4] can incorporate prior knowledge of objects with existing object proposal

approaches such as Edge Boxes [30] and Adobe Boxes [31].

Similar to traditional sparse dictionary selection, exemplars are required to

sparsely reconstruct original data by leveraging a row sparsity regularizer in our

method. In addition, we design a novel regularizer for representative selection
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to encourage dissimilar samples to be selected simultaneously, thus enforcing a

diverse selection of exemplars. It is worth noting that, however, we do not mean

to determine diverse locations of video frames in temporal domain as mentioned

in [29], but to select samples with diverse features. To further guarantee the

representativeness of selected exemplars, we also develop a locality-sensitivity

regularizer to consider the dependent information among similar data samples.

We thus formulate our objective as a dictionary selection problem with structured

sparse regularization, which aims to find a selection matrix with the properties

of low data reconstruction error, row sparsity, diversity and locality-sensitivity.

Because this formulation involves the calculation of a difficult optimization, we

propose an accelerated proximal gradient algorithm combined with the proximal-

Dykstra method [32] and the efficient calculation of parametric maximum flows.

Finally, we demonstrate the effectiveness and robustness of the proposed method

on several real-world datasets.

Notation. Scalars are denoted by lowercase italic Roman or Greek letters (e.g.,

x, α). Boldface letters refer to matrices if written in uppercase (X) and vectors

otherwise (x). Given a matrix A ∈ Rr×c, we decompose A into columns of

vectors [a1,a2, . . . ,ac] or rows of vectors [a1,a2, . . . ,ar]T. Matrix and vector

elements are represented by lowercase italic letters with indexing subscripts (aij ,

xi). In addition, we denote by ‖s‖q the lq-norm of s for q ≥ 1.

2. Problem Statement

Let X = [x1,x2, · · · ,xn] ∈ Rd×n be the data matrix of n samples in Rd.

Many works on dictionary learning focus on decomposing X into the product of a

dictionary matrix D = [d1,d2, · · · ,dm] ∈ Rd×m of m atoms and a coding matrix

A = (aij) = [a1,a2, · · · ,an] ∈ Rm×n, which enables us to reconstruct each
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Figure 1: Structured representative selection using a selection matrix V with the properties of (a)

low data reconstruction error, (b) row sparsity, (c) diversity and (d) locality-sensitivity.

sample xi using the learned atoms in such a way that xi ≈ Dai =
∑m

k=1 akidk.

In sparse dictionary learning, there can only be sparse non-zero entries in the

coding coefficients a1i, a2i, · · · , ami, which will finally determine a few atoms to

linearly express xi. Inspired by selecting atoms from a dictionary to reconstruct

each single data, it is of great interest to select a universal set of atoms for the

whole dataset. Furthermore, we can regard the original data to be a dictionary

so that representative data will be selected to compress and summarize the entire

dataset [1, 2].

To this end, we can compose the loss function with a regularized reconstruction
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error:

` (V) = E (V) +R (V) =
1

2
‖X−XV‖2F +R (V) , (1)

where V ∈ Rn×n is the coding matrix used to linearly combine the data in X,

‖ · ‖2F is the squared Frobenius norm to define the reconstruction error E (V) =

1
2

∑n
i=1 ‖xi −Xvi‖22 =

1
2 ‖X−XV‖2F, andR (V) is the regularizer that ensures

V can select representative samples.

The reader may notice that the loss function (1) is similar to those of subspace

clustering, e.g., [33] and [34], where the reconstruction error is minimized to

generate a self-representation matrix V, and the regualrizer is designed to build

a meaningful affinity matrix from V for the input of spectral clustering [35].

However, we do not target at obtaining an affinity matrix for data clustering, but

selecting representative samples by V from a data collection.

To be concrete, when minimizing the loss function (1), we will use XV =∑n
i=1 xiv

i to reconstruct X, as shown in Fig. 1 (a). Thus, a subset {xi|vi 6= 0}

can be used as a set of exemplar samples to represent the whole dataset {xi|i =

1, 2, · · · , n}. If R(V) = 0, then a trivial solution to the problem of minimizing

` (V) will be V = I (identity matrix), which gives rise to zero loss, i.e., ` (V) = 0.

In such a case, each data sample can be perfectly reconstructed by itself. In other

words, all the data samples are selected as representatives. In contrast, a well-

designed R(V) 6= 0 will make V row sparse, allowing us to select representative

samples.

Here, we design the regularizer R(V) to select exemplars with sparisity,

diversity, and locality-sensitivity. It consists of three sub-regularizers: the

regularizer for row sparsity R1(V), the regularizer for diversity R2(V), and the

regularizer for locality-sensitivity R3(V). We combine these sub-regularizers
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together in the following:

R(V) =

3∑
i=1

λiRi(V), (2)

where each λi ≥ 0 is a parameter to balance the reconstruction error and

regularizers.

2.1. Row Sparsity Regularizer

First, to construct the matrix V that will be used to select exemplar samples,

we encourage some rows of V to be zero vectors, i.e., let V be row sparse. The

columns of X corresponding to the nonzero rows of V will be used to recover X.

To this end, we follow Sparse Dictionary Selection (SDS) [1] and Sparse Modeling

Representative Selection (SMRS) [2] to define the l1/lq-norm regularizer of V:

R1 (V) = ‖V‖1,q =
n∑
i=1

‖vi‖q, (3)

where q > 1. Throughout this paper, we set q = 2.

Because of the sparsity-inducing property of the l1-norm [36], R1(V) will

make the vector (‖v1‖2, ‖v2‖2, · · · , ‖vn‖2)T sparse. As a result, V will have a

sparse non-zero row entries.

2.2. Diversity Regularizer

Considering the sample, xi, which is selected as an exemplar, it is difficult to

represent xj that is very dissimilar to xi. Therefore, for a diverse selection, it is

preferred to also select xj as an exemplar. To this end, we design the following

diversity regularizer over V:

R2 (V) =
n∑
i,j

θij
∥∥vi − vj

∥∥
1

(4)
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with penalty weights

θij =

 dSim(xi,xj), if dSim(xi,xj) ≥ max(dSimi,l, dSimj,l)

0, otherwise
, (5)

where dSim(xi,xj) measures the dissimilarity of selected samples, and dSimi,l

denotes the lth largest element in {dSim(xi,xj)|j = 1, 2, · · · , n}. In practice,

we define dSim(xi,xj) using the squared Euclidean distance dij between xi and

xj . We can further normalize the corresponding dissimilarities by dSim(xi,xj) =

dij/max{dij | 1 ≤ i, j ≤ n} to make the range of dissimilarities between 0 and 1.

For l, we fix it to 3 in our paper expect for the parameter analysis experiment.

Actually, (5) defines a dissimilarity graph, where the nodes are {vi|i =

1, 2, · · · , n} and the edge weights are {θij |i, j = 1, 2, · · · , n} (Fig. 1 (c)). This

graph enforces a smooth selection on dissimilar samples, and encourage them to be

selected together. Concretely, for similar samples xi and xj , θij will be zero, and

thus θij
∥∥vi − vj

∥∥
1
= 0 for any vi and vj . But for very dissimilar samples xi and

xj , θij will be a large weight. To ensureR2(V) is small, θij
∥∥vi − vj

∥∥
1

should be

small, which implies that vi and vj are similar. Therefore, xi and xj have similar

chances getting selected. In other words, sample xi is likely to be selected when

its dissimilar sample xj is selected, and vise versa. Overall, minimizing R2(V)

will enforce a diverse selection, thus enhancing the representativeness of selected

exemplars.

2.3. Locality-sensitivity Regularizer

To make sample coding natural and meaningful, a common rule is to enable the

coding vectors to satisfy the locality-sensitivity property such that similar samples

generate similar codes [37]. We thus design the following locality-sensitivity

regularizer over V:
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R3 (V) =
n∑
i,j

ρij‖vi − vj‖1 (6)

with the weights

ρij =

 Sim(xi,xj), if Sim(xi,xj) ≥ max(Simi,s, Simj,s)

0, otherwise
, (7)

where Sim(xi,xj) measures the similarity between xi and xj , and Simi,s denotes

the sth largest element in {Sim(xi,xj)|j = 1, 2, · · · , n}. We usually define

Sim(xi,xj) = exp{−dij}, where dij = ‖xi − xj‖22. For s, we fix it to 3 in

our paper expect for the parameter analysis experiment.

A similarity graph is defined by (7), where the nodes are {vi|i = 1, 2, · · · , n}

and the edge weights are {ρij |i, j = 1, 2, · · · , n} (Fig. 1 (d)). Unlike dissimilarity

graph (5), this graph acts on very similar samples xi and xj , and prefers smoothing

vi and vj to make them similar. Overall, R3(V) will leverage the locally

dependent information among similar data to avoid a trivial solution of V, thus

guaranteeing the representativeness of selected exemplars.

By defining the above three sub-regularizers, we can rewrite the loss func-

tion (1) and formulate our objective as follows:

min
V∈Rn×n

1

2
‖X−XV‖2F + λ1‖V‖1,2

+ λ2

n∑
i,j

θij‖vi − vj‖1 + λ3

n∑
i,j

ρij‖vi − vj‖1.
(8)

As is shown, it contains four complex terms, thus challenging the optimization.

Despite that, we will show that it can be deemed as a proximal gradient problem,

which can be solved by the fast iterative shrinkage thresholding algorithm (FISTA)

through the Proximal-Dykstra method involving the calculation of parametric

maximum flows.
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3. Optimization

It is worth noting that the objective in (8) includes four convex terms, the first

one is smooth, and the others are nonsmooth. Hence it is difficult to apply classical

gradient algorithm. Fortunately, however, we can convert it into a proximal

gradient problem to analyze and obtain the solution.

3.1. Proximal Gradient

The proximal gradient method optimizes (1) by iteratively solving

proxR (Z) = argmin
V∈Rn×n

1

2
‖V − Z‖2F +

1

L
R (V) , (9)

where

Z = V − 1

L

∂

∂V
E(V) = V +

1

L
XT (X−XV) (10)

and L is an upper bound of the Lipschitz constant of ∂
∂VE(V). Since ∂

∂VE(V) is

a linear function of V, it is easy to compute the Lipschitz constant [38] as

L =
∥∥XXT

∥∥
F . (11)

To accelerate the proximal gradient procedure, we leverage the FISTA method,

which is known to converge to a true solution with a fast convergence rate

O(1/k2) in k iterations [39]. We show the FISTA procedure in Algorithm 1.

Although we use FISTA, the nonsmooth terms still wait to be optimized as shown

in (9). Considering that the nonsmooth terms intertwine with each other, which

is intractable to optimize simultaneously, we next split (9) into two proximal

subproblems using the Proximal-Dykstra method.
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Algorithm 1 FISTA for Problem (8).
Input: X

Output: V

1: L←
∥∥XXT

∥∥
F

. Lipschitz constant (Equation (11))

2: V← 0, W← V, t← 1

. Initialization

3: repeat

4: Z←W + 1
L
XT (X−XW)

. Equation (10)

5: U← V, V = proxR(Z)

. Problem (9)⇐ Proximal-Dykstra (Alg. 2)

6: s = t− 1, t← (1 +
√
1 + 4t2)/2

7: W← V + s(V −U)/t

8: until convergence

3.2. Proximal Splitting

To solve (9), we expand it into

proxR(Z) = argmin
V∈Rn×n

1

2
‖V − Z‖2F + λ̂1‖V‖1,2

+ λ̂2

n∑
i,j

θij‖vi − vj‖1 + λ̂3

n∑
i,j

ρij‖vi − vj‖1,
(12)

where λ̂i denotes λi/L. Since this includes row-wise and column-wise fused terms

in addition to a group regularization term, it is not straightforward to solve. We thus

consider it as a proximal splitting problem and obtain the solution by the Proximal-

Dykstra method [32], as shown in Algorithm 2. According to the Proximal-Dykstra
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method, we are required to solve (9) when λ̂2 = 0,

proxλ̂1R1+λ̂3R3
(Z) = argmin

V∈Rn×n

1

2
‖V − Z‖2F

+ λ̂1‖V‖1,2 + λ̂3

n∑
i,j

ρij‖vi − vj‖1,
(13)

and when λ̂1 = λ̂3 = 0,

proxλ̂2R2
(Z) = argmin

V∈Rn×n

1

2
‖V − Z‖2F + λ̂2

n∑
i,j

θij‖vi − vj‖1, (14)

As is well known, the Proximal-Dykstra method has a linear convergence rate to

an exact solution [32, 40]. To apply Algorithm 2, we need to solve (13) and (14),

which are still complex and non-trivial to solve. We will continue to decompose

Problems (13) and (14), and finally optimize the problems by parametric flow

maximization.

3.3. Proximal Decomposition

Following the strategy in [43], we can equivalently decompose Problem (13)

into n pairs of proximal operators, i.e., for i = 1, 2, · · · , n,

hi = argmin
q∈Rn

1

2
‖q− zi‖22 + λ̂3

n∑
i,j

ρij |qi − qj |, (15)

and

vi = argmin
q∈Rn

1

2
‖q− hi‖22 + λ̂1‖q‖2. (16)

As a result, we have proxλ̂1R1+λ̂3R3
(Z) = [v1,v2, · · · ,vn]T. Similarly, for

Problem (14), we equivalently have proxλ̂2R2
(Z) = [v1,v2, · · · ,vn], in which

vi = argmin
q∈Rn

1

2
‖q− zi‖22 + λ̂2

n∑
i,j

θij |qi − qj |. (17)
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Algorithm 2 Proximal-Dykstra Algorithm used in Algorithm 1.

Input: Z, {λ̂i}3i=1

Output: V

1: V← Z, P← 0, Q← 0

. Initialization

2: repeat

3: Y ← proxλ̂1R1+λ̂3R3
(V +P)

. Problem (13)⇐ parametric max-flow ([41, 42])

4: P← V +P−Y

5: V← proxλ̂2R2
(Y +Q)

. Problem (14)⇐ parametric max-flow ([41, 42])

6: Q← Y +Q−V

7: until convergence

Since Problem (16) is a (non-overlapping) group lasso signal approximator, it can

be exactly solved by soft-thresholding [44, 45]:

vi = himax{(1− λ̂1
‖hi‖2

), 0}. (18)

For Problems (15) and (17), they have the same configurations except for the

different arguments, which can be converted into solving parametric maximum

flows1. In our implementation, we use the efficient GGT algorithm which

can find an exact solution of parametric flow maximization [42, 46]. In the

worst case, the time costs to solve (15) and (17) are O( s+4
2 n2 log ( 2n

s+4)) and

O( l+4
2 n2 log ( 2n

l+4)), respectively. The main time cost to solve (13) and (14)

in each iteration is then O(n
3

2 ((s + 4) log ( 2n
s+4) + (l + 4) log ( 2n

l+4))). For k1

1The details of solving (15) and (17) are shown in Appendix.

13



iterations of Proximal-Dykstra and k2 iterations of FISTA, the time complexity is

O(k1k22 n3((s+4) log ( 2n
s+4)+(l+4) log ( 2n

l+4))), which is approximately different

between k1k2
2 ((s + 4) log ( 2n

s+4) + (l + 4) log ( 2n
l+4)) and k from SDS [1] and

SMRS [2] that have the computational complexity of O(kn3) in k iterations.

4. Parameter setting

In Eq. (5), we introduce parameter l to control the diversity of the selected

representatives. A small l tends to only select highly dissimilar samples while

a large l may tolerate similar ones. We used a small value of l (i.e., 3) in the

experiments. Another parameter s in Eq. (7) encourages similar samples to share

similar sparse codes. A small s will only force highly similar samples to have

similar codes while a large s may encode dissimilar samples similarly. We thus

used a small value of s (i.e., 3) in the experiments.

It is data dependent to set λi for i = 1, 2, 3. In fact, they are related to the

Lipschitz constant L as in Eq. (11). To facilitate the parameter tuning, we analyze

the relationship between λi and the Lipschitz constant to decouple the dependency

between them, acquiring λ̂i = λi/L as in Eq. (12). We further introduce a hyper-

parameter α, as in [2], to compute λ̂1 = λ0/α, where λ0 is revealed by analyzing

the data samples themselves [2]. To reduce the number of free parameters, we set

λ̂i = λ0/α for each i = 2, 3. In our experiments, we set α in the interval [2, 30]

for our method.

It is worth noting that SDS [1] can be viewed as a special case of our method

when λ2 = λ3 = 0, and SMRS [2] evolves from SDS by enforcing an affine

constraint, 1TV = 1T. Therefore, we choose SDS and SMRS as the baselines

to justify the effectiveness of our proposed method. Both SDS and SMRS can be

tuned by setting α for λ1.
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Figure 2: Data points in three clusters (blue dots) and the representatives (red circles) found by (a)

SDS [1] (b) SMRS [2] and (c) our proposed SSDS.

5. Experimental Results

5.1. Experiments on Synthetic Data

To evaluate the effectiveness of our method in diverse selection on synthetic

data, we conduct experiments compared with Sparse Dictionary Selection (SD-

S) [1] and its variation, Sparse Modeling Representative Selection (SMRS) [2]. We

refer to our proposed method as Structured Sparse Dictionary Selection (SSDS).

Similar to our method, each compared method can generate a selection matrix. We

use V = {vij} to denote the selection matrix, where the absolute value of vij
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depicts the ability of the ith data point reconstructing the jth data point. Hence,

exemplars are ranked and selected according to the l2 norms of the rows of V

as used by SDS and SMRS. Before performing the ranking, we also adjust V by

V← V./(VT+ε) (i.e., vij ← vij/(vji+ε)), where ./ and + denote element-wise

operations of division and addition, and ε is a small number to avoid dividing by

zero. In this way, a data point is likely to be an exemplar if that point has a large

reconstruction coefficient to others, while other points are difficult to reconstruct

that point.

We consider the data shown in Fig. 2, which consists of data points in three

clusters. We show top 20 representatives by each method in Figs. 2 (a)-(c). As can

be seen, to ensure a lower linear reconstruction error, both SDS and SMRS select

points at the border of the convex hull of the dataset. In contrast, by considering the

diversity regularizer in (4) and locality-sensitivity regularizer in (6) for dictionary

selection, our proposed SSDS can select points in the clusters and diversify them

between clusters. For our method, we use l = 3 and s = 3 to build our diversity

and locality-sensitivity regularizers, and set α to 10 to combine the regularizers.

We notice that no matter how to set the parameters of SDS and SMRS, they prefer

keeping the vertices of convex hull of the given dataset. Hence, we let SDS and

SMRS produce sufficient number of exemplars for ranking by parameter tuning, so

that we can observe the distribution of selected points and compare them with our

proposed method.

5.2. Evaluation by Classification

In this section, we conduct experiments on the 10 categories of U.S. Postal

Service (USPS) handwritten digit dataset [47] and 8 classes of scene categorization

dataset [48] to justify the effectiveness of our regularizers (4) and (6) upon the row

sparsity regularizer (3). To define (4) and (6), we measure the dissimilarity of
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Number of Representatives DT RF NN SVM

All 1000 80.94% 88.30% 94.39% 92.32%

SDS [1] 100 61.40% 69.74% 83.50% 79.54%

SMRS [2] 100 65.61% 69.73% 83.26% 82.73%

SSDS 100 62.29% 71.07% 84.30% 85.67%

Table 1: Classification results on USPS digit data.

pairwise samples using normalized squared Euclidean distance, and the similarity

using the exponential of negative squared Euclidean distance. When performing

representative selection, we describe each digit using its 16 × 16 pixel values.

Each scene image is described by a 512-dimensional GIST feature [48]. For each

digit/scene class, we randomly take 100 samples from their respective datasets.

Then, we obtain 1000 samples in the digit dataset for representative selection,

while in the sence dataset, the number of samples is 800. We next train multiple

classifiers on the selected exemplars and report in Table 1 the classification

accuracy on the remaining 4649 test digit samples in the digit dataset, and in

Table 2 the classification accuracy on the remaining 1888 image samples in the

scene dataset. The classification methods considered are Decision Tree (DT) [49],

Random Forest (RF) [50] of 15 trees with maximum depth of 50, Nearest Neighbor

(NN) [51] and linear SVM [52, 53] with 5-fold cross validation.

For a fair comparison, we select 100 exemplars by each compared method.

Regarding the performance, those after representative selection will be inferior

to those without representative selection because of the decrease of the number

of training samples. However, by contrasting SDS, SMRS and the proposed

SSDS, the results in Table 1 and 2 show that this issue has less of an effect

on our method. Thanks to our new formulation for representative selection in
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Number of Representatives DT RF NN SVM

All 800 55.14% 70.71% 70.82% 80.14%

SDS [1] 100 44.65% 52.44% 64.78% 65.63%

SMRS [2] 100 46.50% 55.99% 62.76% 69.23%

SSDS 100 44.39% 56.09% 60.49% 69.65%

Table 2: Classification results on scene categorization data.

Equation (8), for either the digit dataset or the scene dataset, our method achieves

the best performance by combining with the SVM classifier. Especially, for

the digit dataset, our method outperforms SDS and SMRS on most of the used

classifiers. This further validates that, by applying the constraints of diversity

(Equation (4)) and locality-sensitivity (Equation (6)), the selected exemplars using

our method show the qualities of both diversity and representativeness, thus

suitable for classifier training. In this experiment, we set l = 3 and s = 3

for both digit and scene datasets in building our diversity and locality-sensitivity

regularizers. For each of the compared method, the hyper-parameter is tested on

a range of α ∈ {5, 10, 15, 20, 25, 30}. After obtaining the selection matrix V of

each method, we rank and select exemplars according to the l2 norm of the rows of

V and V./(VT + ε). The best classification accuracy result is eventually reported

for each classification method.

Besides comparing with other methods, we also evaluate our method with

different parameters on the USPS datastet. The classification accuracies are shown

in Fig. 3, where we train a SVM classifier using representatives selected by our

method for each setting of parameters. The top figure shows the performance when

fixing l and s to 3, but changing α from 5 to 30, while the bottom figure shows the

performance when fixing α to 10, but changing l and s together from 3 to 24. Since
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Figure 3: Performance of SVM classifier trained by selected representatives using our method with

different parameters: (top) α ∈ [5, 30], l = 3, s = 3; (bottom) α = 10, l = s ∈ [3, 24].
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we have partly decoupled the dependency between regularization parameters and

data dependent information by introducing the hyper-parameter α in Section 4,

as can be seen from Fig. 3 (top), different values of α do not influence much for

classifier training. Fig. 3 (bottom) suggests that our method prefers a smaller value

of l and s, which conforms to our analysis in Section 4. The best performance is

achieved by α = 10, s = 3, l = 3, which is 85.67%.

5.3. Robustness to outliers

We will in this section discuss and investigate the robustness of our proposed

SSDS to the existence of outliers in data compared with existing methods.

Representative selection by SDS [1] and SMRS [2] both prefer to select the

outliers. This is because these outliers contribute the smallest reconstruction

errors to other samples using the smallest coding coefficients, which also results

in the smallest cost of row sparsity regularizer (3). That is, with these selected

outliers, SDS and SMRS can minimize their objective function, i.e., the total cost

of reconstruction error and row sparsity regularizer. In contrast, our method makes

a trade-off between selecting and rejecting outliers using the diversity regularizer

defined by (4), which prefers very dissimilar data to contribute similar coding

coefficients to other samples. As is known, outliers are usually dissimilar to other

samples. Hence, by reducing the cost of (4), our SSDS can reject the outliers by

assigning their coding coefficients by zero.

To evaluate this point empirically, we use all the 435 face images in Caltech 101

dataset [54] and regard Google downloaded images in Caltech 101 as outliers. Each

image is described by a 512-dimensional GIST feature [48]. We randomly select

outliers with {20%, 30%, 40%, 50%} of the number of face images. As the number

of outliers increases, we show in Fig. 4 (top) the percentage of outliers among the

selected representatives. As can be seen, our proposed SSDS consistently results
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in less outliers than the SDS and SMRS. We also show the ROC curves [55] for

comparison in Fig. 4 (bottom). For different numbers of outliers, our SSDS can

generally outperform SDS and SMRS with a higher true positive rate and a lower

false positive rate. In the experiments, to build our diversity and locality-sensitivity

regularizers, we define the dissimilarity and similarity of pairwise samples using

the normalized squared Euclidean distance and the exponential of negative squared

Euclidean distance as described in Eqs. (4) and (6), and set l = 3 and s = 3. In

comparison, we use the same hyper-parameter α = 15 for the compared methods

to generate the results in Fig. 4. The ranking of selected samples is based on the l2

norm of the rows of selection matrix.

5.4. Video Summarization

For a further evaluation, we apply our method to video summarization, which is

compared with the methods of SDS [1] and SMRS [2]. In video summarization, it

is expected that each activity is less repeatedly selected. Thus, for each method, we

further follow [2] to prune selected frames from those with too-close appearance

features. We used a commercial video clip taken from YouTube.com [56], which

is about the Beneful dog food including 8 continuous activities/events. After video

sampling at 2 frames/s, we generated 51 key frames. To describe the key frame

images, we reduce the size of each frame to a descriptor of length 32×32×3 [57].

In Fig. 5, we show the result by our method, where we fix l = 3 and s = 3,

and use the normalized squared Euclidean distance and the exponential of negative

squared Euclidean distance to measure the dissimilarity and similarity of pairwise

samples. For the hyper-parameter α, we set it to 10. To select exemplar frames, we

rank the l2 norm of the rows of selection matrix. As can be seen from the result,

the representatives can cover all the 8 activities without redundancy.

We show the comparison results in Fig. 6, including those obtained by SDS,
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Figure 5: Video frames from a Beneful commercial video clip. The highlighted frames are the

representatives selected by our method.
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Figure 6: Comparison of number of selected representatives for each shot in the Beneful commercial

video.

SMRS and our SSDS before and after pruning similar frames. For SDS and SMRS,

we show the best result with the hyper-parameter α ∈ {2, 5, 10, 15, 20, 25, 30}.

We can see that, no matter whether there is pruning or not, our method can choose

a smaller number of representatives to cover the whole activities. Even without

pruning, our method is comparable to the pruning results of SDS and SMRS in

some events, e.g., Events 3 ∼ 7.

To study how hyper-parameter α influences the summarization result before

pruning in comparison with SDS [1] and SMRS [2], we conducted summarization
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experiments on video frames when α equals to one of {2, 5, 10, 15, 20, 25, 30}.

We again followed [56] to use the Beneful commercial video.

We show the results in Fig. 7, where the number of redundant selections

means the total number of representatives exceeding 1 in an event while the

number of missed shots stands for how many shots do not appear in the selected

representatives. We can see from Fig. 7, with increased α, there is increase in the

number of redundant selections and decrease in the number of missed shots for

SDS and ours. This is because a larger α results in a weaker constraint on the row

sparsity regularizer (Eq. (3)), leading a less sparse and more complete selection. As

SMRS adds an affine constraint on the selection matrix, i.e., 1TV = 1T, beyond

the objective of the SDS method, it usually cannot allow the selection matrix V

to be a matrix with many zero rows. It hence nearly always selects the vertices in

the convex hull spanned by input data [2], regardless of the choice of α. Although

without missed shots, SMRS results in a more redundant selection than SDS and

our SSDS method.

6. Conclusion

Selecting a subset of data samples to represent the whole dataset, i.e., repre-

sentative selection, is a fundamental problem for data analysis. In this paper, we

proposed a novel formulation to find representatives in data samples via learning

with structured sparsity. For the selection of representatives with both diversity

and representativeness, we formulated the problem as a structurelly-regularized

learning, where the objective function consists of a reconstruction error and three

structured regularizers: (1) group sparsity regularizer, (2) diversity regularizer,

and (3) locality-sensitivity regularizer. The results in image classification, outlier

removal, and video summarization seem to show the advantages of our new
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formulation.

Appendix

In this appendix, we show how to transform Problems (15) and (17) into

minimum-norm-point problems under submodular constraints, and efficiently

obtain the solutions by parametric flow maximization. As the two problems have

the same configurations except for the different arguments, we take Problem (17)

as an example for the below discussion.

Minimum-Norm-Point

We first show the relation between the penalty λ̂2
∑n

i,j θij |qi − qj | in (17) and

a cut function by Lovász extension. Then we apply the submodular property of cut

functions to transform Problem (17) into a Minimum-Norm-Point (MNP) problem

under submodular constraints.

To begin with, we denote a finite set by V = {1, 2, · · · , n}, where a cut

function of a set S ⊆ V is defined on a set of non-negative weights ω : V × V →

R+:

fc(S) =
∑

i∈S,j∈V\S

ωij

We next apply the following definition and lemma of Lovász extension.

Definition 1 ([58]). Given any set-function f on the set V such that f(∅) = 0, the

Lovász extension F : Rn → R is defined as: F (q) =
∫ +∞
−∞ f({k ∈ V | qk ≥ a})da.

Lemma 1. The term of λ̂2
∑n

i,j θij |qi − qj | in (17) is equivalent to the Lovász

extension of a cut function.
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Proof. Let ωij = λ̂2θij , then we have

λ̂2

n∑
i,j

θij |qi − qj | =
n∑
i,j

ωij |qi − qj |. (19)

It has been shown in [58] that a function of the form of Equation (19) corresponds

to the Lovász extension of the cut function:

fc(S) =
∑

i∈S,j∈V\S

ωij , S ⊆ V

�

With this Lemma, we define a submodular function by adding a modular term to

the cut function fc and obtain

g(S) = fc(S)− zi(S),

where zi(S) = zT
i 1S , and 1S is the indicator vector of the set S. Next, we let B(g)

be the base polyhedron of g:

B (g) = {x ∈ Rn : ∀S ⊆ V, x (S) 6 g (S) ;x (V) = g (V)} .

Following [59], we have the following proposition.

Proposition 1 ([59]). Let t∗ be a minimizer of the Minimum-Norm-Point problem

on the base polyhedron B (g):

t∗ = argmin
t∈Rn

{‖t‖22 |t ∈ B (g)}. (20)

Then a minimizer of Problem (17) is obtained by v∗i = −t∗.

To solve Problem (20), we will follow [60] to apply an efficient parametric flow

algorithm [42].
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Parametric max-flow

As shown in [61], parametric flow algorithms can be applied to separable con-

vex minimization problems under non-decreasing submodular function constraints.

Problem (20) is a separable convex minimization problem, as the squared l2-norm

is convex. In addition, g(S) = fc(S)−zi(S) is submodular, though not necessarily

non-decreasing. We further apply Lemmas 2 and 3 to meet the non-decreasing

requirement.

Lemma 2 ([60]). For any γ ∈ R and any submodular function f , t∗ is an

optimal solution to mint∈B(f) ‖t‖22 if and only if t∗ + γ1 is an optimal solution

to mint∈B(f+γ1) ‖t‖22.

Lemma 3 ([60]). For a submodular function f , set γ = maxi=1,2,··· ,n{0, f(V \

{i})− f(V)}. Then f + γ1 is a nondecreasing submodular function.

After applying Lemma 3 to g(S), we obtain the non-decreasing submodular

function

g′(S) = fc(S)− zi(S) + γ1(S).

Then for the parametric set function

g′β(S) = g′(S)− β1(S) = fc(S)− zi(S) + (γ − β)1(S), β > 0, S ⊆ V, (21)

there are l + 1(6 n) subsets

(∅ =)S0 ⊆ S1 ⊆ · · · ⊆ Sl (= V) (22)

and l + 1 intervals

R0 = [0, β1), · · · , Rj = [βj , βj+1), · · · , Rl = [βl,+∞)
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Figure 8: Graph construction for the parametric set function (21).

such that ∀j ∈ {0, 1, · · · , l}, Sj is the maximal minimizer of g′β(S) for all α ∈

Rj [61]. Then the unique optimal solution o∗ = argmin{‖o‖22 |o ∈ B (g′)}, is

determined by, for i ∈ V ∩ (Sj+1\Sj) (j ∈ {0, 1, · · · , l − 1}),

o∗i =
G (Sj+1)− G (Sj)
card (Sj+1 − Sj)

, (23)

where card(S) denotes the cardinality of the set S. If the collection S∗ =

{S0, S1, · · · , Sl} is computed, Equation (23) and Lemma 2 together imply that

Problem (20) can be immediately solved by

t∗ = o∗ − γ1. (24)

Proposition 2 ([41]). For any cut function fc, minimizing the set function (21) with

a given β is equivalent to solving the max-flow problem with the s/t graph defined

in Fig. 8.

As is known, the GGT algorithm [42, 46] can be applied to find an exact

solution to the parametric max-flow problem (21) for all β > 0, thus finding all
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solutions to Equation (22). Finally, we can obtain the solution of Problem (20)

by applying Equations (23) and (24). The GGT algorithm has the worst-case

complexity of O(d|E| log(d2/|E|)), where d is the number of nodes, and |E| is

the number of edges [42].

Fig. 8 indicates that, for Problem (17), we have d = n + 2, |E| ≈ ln
2 +

2n = ( l+4
2 )n. Then, we have d|E| log(d2/|E|) ≈ n( l+4

2 )(n + 2) log((n +

2)2/(( l+4
2 )n)) = ( l+4

2 )n(n + 2) log(2(n+2)2

(l+4)n ). Thus, in the worst-case, the time

complexity isO( l+4
2 n2 log ( 2n

l+4)). Similarly, for Problem (15), the worst-case time

complexity is O( s+4
2 n2 log ( 2n

s+4)).
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[8] E. Leyva, A. González, R. Pérez, Three new instance selection methods based on local sets: A

comparative study with several approaches from a bi-objective perspective, Pattern Recognition

48 (4) (2015) 1523–1537.

[9] E. Pekalska, R. P. Duin, P. Paclı́k, Prototype selection for dissimilarity-based classifiers, Pattern

Recognition 39 (2) (2006) 189–208.

[10] P. Hernandez-Leal, J. A. Carrasco-Ochoa, J. F. Martı́nez-Trinidad, J. A. Olvera-Lopez,

InstanceRank based on borders for instance selection, Pattern Recognition 46 (1) (2013) 365–

375.

[11] E. Z. Borzeshi, M. Piccardi, K. Riesen, H. Bunke, Discriminative prototype selection methods

for graph embedding, Pattern Recognition 46 (6) (2013) 1648–1657.

[12] D. R. Wilson, T. R. Martinez, Reduction techniques for instance-based learning algorithms,

Machine learning 38 (3) (2000) 257–286.
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