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Fried Binary Embedding: From High-Dimensional
Visual Features to High-Dimensional Binary Codes

Weixiang Hong and Junsong Yuan , Senior Member, IEEE

Abstract— Most existing binary embedding methods prefer
compact binary codes (b-dimensional) to avoid high computa-
tional and memory cost of projecting high-dimensional visual
features (d-dimensional, b < d). We argue that long binary
codes (b ∼ O(d)) are critical to fully utilize the discriminative
power of high-dimensional visual features, and can achieve better
results in various tasks such as approximate nearest neighbor
search. Generating long binary codes involves large projection
matrix and high-dimensional matrix-vector multiplication, thus is
memory and compute intensive. We propose Fried binary embed-
ding (FBE) and Supervised Fried Binary Embedding (SuFBE),
to tackle these problems. FBE is suitable for most of the practical
applications in which the labels of training data are not given,
while SuFBE can significantly boost the accuracy in the cases that
the training labels are available. The core idea is to decompose
the projection matrix using adaptive Fastfood transform, which
is the multiplication of several structured matrices. As a result,
FBE and SuFBE can reduce the computational complexity from
O(d2) to O(d log d), and memory cost from O(d2) to O(d),
respectively. More importantly, by using the structured matrices,
FBE and SuFBE can well regulate projection matrix by reducing
its tunable parameters and lead to even better accuracy than
using either unconstrained projection matrix (like ITQ) or sparse
matrix such as SP and SSP with the same long code length.
Experimental comparisons with state-of-the-art methods over
various visual applications demonstrate both the efficiency and
performance advantages of FBE and SuFBE.

Index Terms— Binary embedding, image retrieval.

I. INTRODUCTION

NEAREST neighbor (NN) search has been a fundamental
research topic in machine learning, computer vision, and

information retrieval [4]. The straightforward solution, linear
scan, is memory intensive and computationally expensive in
large-scale high-dimensional cases; hence approximate nearest
neighbor (ANN) search is usually favored in practice.

Binary embedding [1], [5], which aims at encoding high-
dimensional feature vectors to compact binary codes, has
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recently arisen as an effective and efficient way for ANN
search. By encoding high- dimensional features into binary
codes, one can perform rapid ANN search because (1) oper-
ations with binary vectors (such as computing Hamming
distance) are very fast thanks to hardware support, and
(2) the entire dataset can fit in (fast) memory rather than
slow memory or disk. Since it is NP-hard to directly learn
the optimal binary codes [5], most existing binary embedding
methods work on a two-stage strategy: projection and quan-
tization. Specifically, given a feature vector x ∈ R

d , these
methods first multiply x with a projection matrix R ∈ R

b×d

to produce a low-dimensional vector of b dimensions, then
quantize this low-dimensional vector to b-dimensional binary
codes by assigning it to its nearest vertex in Hamming space.

Representation learning using deep neural networks (DNN)
[6], [7] has shown that DNN features are useful for various
vision tasks such as object classification and image retrieval.
Unlike traditional hand-crafted features like SIFT [8] and
GIST [9], these DNN features are usually of thousands
of dimensions or even more. Meanwhile, although compact
binary codes are preferred to save the storage, recent works
have demonstrated that long-bit codes can bring superior
performance than compact ones, especially when the visual
features are of thousands of dimensions. For example, the long
binary codes of 4096 dimensions can achieve mAP at 82% on
DNN-4096 dataset [2], while the mAP of 256-dimensional
binary codes is only 51%.

However, generating long binary codes requires a large
projection matrix, which leads to two challenges: (1) the
high computational cost of high-dimensional matrix-vector
multiplication, and (2) the risk of overfitting. For the first
challenge, it has been noticed that for input feature vector
of dimensionality d , the length b of binary codes required to
achieve reasonable accuracy is usually O(d) [10]–[15]. When
d is large and b ∼ O(d), the projection matrix R ∈ R

b×d could
involve millions or even billions of parameters. Such a high
cost is not favored when we encode a big dataset of visual
features, or when the computational resource is a concern,
e.g., at the mobile platform. For the second challenge, there
have been efforts to address it by regulating the projection
matrix and reducing the degree of free parameters. Interest-
ingly, such regularizations may also bring fast matrix-vector
multiplication, which will benefit the computation efficiency
as well.

To address the two challenges above, we propose Fried
Binary Embedding (FBE) and Supervised Fried Binary
Embedding (SuFBE), for generating effective long binary
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Fig. 1. Retrieval accuracy versus encoding time on the CIFAR-10 dataset [20]
using 4096-dimensional AlexNet [6] features. We compare the proposed
FBE and SuFBE against several state-of-the-art methods including ITQ [1],
CCA-ITQ [1], SP [2], SSP [3], BP [11], CBE [12], KBE [24] and SDH [19].
We use tag “U” and “S” to be short for “Unsupervised” and “Supervised,”
“A” and “D” to be short for “Accelerated Matrix-Vector Multiplication” and
“Dense Matrix-Vector Multiplication.”

codes efficiently. The idea is to decompose the projection
matrix R using the adaptive Fastfood transform [16], [17],
which is the multiplication of several structured matrices.
Structured matrix typically consists of dependent entries,
which means that a fixed “budget of freedom” is distributed
across the matrix. The involvement of structured matrices leads
to fast matrix-vector multiplications by using Fast Fourier
Transform or its variants. Moreover, the ultimate projection
matrix R would have restricted freedom due to the inherent
structure in each of its components. For example, when encod-
ing a 4096-dimensional feature vector into 4096-bit binary
codes, our FBE has only 12,288 tunable parameters, which
are only 1% of Sparse Projection [2] and 0.1% of ITQ [1].
Restricted freedom is naturally against overfitting, thus can
probably lead to good generalization performance. Another
side benefit of FBE is that structured matrix can be efficiently
stored with linear complexity O(d), or even do not need to be
explicitly stored. As a result, the memory cost of storing R is
also significantly reduced.

A preliminary version of FBE has been published in
CVPR 2017 [18]. Based on the conference version, we pro-
pose Supervised Fried Binary Embedding (SuFBE) to extend
FBE for the supervised binary embedding cases. The labels
of training data are typically not provided in most of the
practical applications, nevertheless, in case that the training
labels are available, supervised hashing can marginally outper-
form their unsupervised counterparts by utilizing the training
labels [1], [3], [19]. As shown in Figure 1, the mAP of
FBE [18] with 4096-dimensional binary codes is only 52% on
CIFAR-10 dataset [20], while its supervised version, SuFBE,
can achieve mAP at 68% using the same code length, which
justifies the rationale for developing SuFBE. Following [19],
we generate FBE to SuFBE by fitting the binary embedding
problem into the framework of multi-class classification and
avoid ruining the merits introduced by the adaptive Fastfood
transform [16], [17]. As a result, SuFBE inherits all advantages
of FBE such as computational efficiency and the restricted
freedom, meanwhile can harness labels of training data to
achieve better accuracy than FBE.

The involvement of structured matrices makes the opti-
mization problem difficult, thus we adopt the variable-
splitting [2], [21] and penalty techniques [19], [22] to develop
an alternative optimization algorithm. We split the origi-
nal optimization problem into several feasible sub-problems,

and iteratively solve these sub-problems till convergence.
In Section IV-D and Section VII-D, we further show that
both FBE and SuFBE provably converge to local optima,
respectively. We call our approaches as Fried Binary Embed-
ding following Deep Fried Convnets [17] and Circulant
Binary Embedding [12]. Extensive experiments show that
our approach not only achieves competitive performance in
compact-bit case, but also outperforms state-of-the-art meth-
ods in the long-bit scenario.

II. RELATED WORK

A good review of binary embedding can be found in [23].
Here we focus on several closely related works.

Iterative Quantization (ITQ) [1] aims to find the hash
codes such that the difference between the hash codes and the
data items is minimized, by viewing each bit as the quanti-
zation value along the corresponding dimension. It consists
of two steps: (1) dimension reduction via PCA; (2) find the
hash codes as well as an optimal rotation. When the labels
of training data are available, ITQ could be incorporated
with Canonical Correlation Analysis (CCA) [25] as CCA-ITQ,
which has shown good performance in image retrieval
application [1].

Bilinear Projections (BP) [11] projects a data vector by
two smaller matrices rather than a single large matrix, based
on the assumption that the data vectors are formulated by
reshaping matrices. This assumption of BP is valid for many
traditional hand-crafted features like SIFT [8], GIST [9],
VLAD [26], and Fisher Vectors [27], but is not true for
learned features such as those learned by the deep neural
network(DNN) [6], [7].

Circulant Binary Embedding (CBE) [12] imposes a cir-
culant structure on the projection matrix for efficient matrix-
vector multiplication. In virtue of fast Fourier transform,
the computational cost of CBE is only O(d log d), much less
than O(d2) of the dense projection method. It is worth noting
that CBE shares similar idea with our approach, however, both
BP and CBE achieve inferior accuracy to dense projection
method (like ITQ [1]) using the same code length. Another
similar work Fast Orthogonal Projection (KBE) [24] also has
the same computation complexity O(d log d).

Sparse Projection (SP) [2] and Supervised Sparse
Projection (SSP) [3] introduce the sparsity regularizer to
achieve efficiency in encoding. They also show that there
exist many redundant parameters in dense projection matrix.
However, these methods require the percentage of non-zero
elements to be around 10% for competitive performance,
which can be still suffering if both d and b are very large.

Semi-Supervised Hashing (SSH) [28] is one of the seminar
work for utilizing training labels for hashing. SSH extends
spectral hashing [5] into the semi-supervised case, in which
some pairs of data items are labeled as belonging to the
same semantic concept, some pairs are labeled as belonging
to different semantic concepts. However, due to the relaxation
of binary constraint, the performance of SSH [28] is not
promising.

Supervised Discrete Hashing (SDH) [19] casts the super-
vised binary embedding to a multi-class classification problem.
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SDH keeps the binary variables in the optimization procedure
and minimizes the quantization loss between binary space
and decimal space, thus, achieves better performance than
SSH [28]. However, SDH [19] use a dense projection matrix
for binary embedding, which makes it not scalable for large-
scale high-dimensional problems.

III. FRIED BINARY EMBEDDING

Let us discuss the unsupervised binary embedding first.
Following [2], [23], we put dimension reduction and optimal
rotation of ITQ [1] into one integrated objective:

min
R,C

�RX − C�2
F

s.t. RTR = I. (1)

where X ∈ R
d×n is the dataset, C is a b-by-n matrix containing

only 1 and −1. The matrix R ∈ R
b×d serves for both

dimension reduction and rotation. ITQ [1] solves Equation 1
via alternative update. After finding R, ITQ can produce binary
codes using the hash function below:

c = sgn(Rx), (2)

where x ∈ R
d denotes a data vector, and sgn(·) is the

sign function, which outputs 1 for positive numbers and
−1 otherwise. For simplicity of presentation, we first make
two assumptions: (1) R ∈ R

d×d and (2) there exists some
integer l such that d = 2l . We will advance our discussion
towards the more generalized cases later.

Although ITQ [1] has shown promising results of binary
embedding, its computational cost of the matrix-vector multi-
plication in Equation 2 is O(d2), which limits its application
to high-dimensional binary embedding. To reduce the cost of
calculating Rx, we decompose the projection matrix R using
the adaptive Fastfood transform [17], i.e.,

R = SHG�HB. (3)

Consequently, our hash function turns to be

c = sgn(SHG�HBx). (4)

In order to explain the reason of such a decomposition,
we need to describe the component modules of the adaptive
Fastfood transform. The adaptive Fastfood transform has three
types of modules:

• S, G and B are diagonal matrices of tunable parameters.
As a comparison, S, G and B in the original non-adaptive
Fastfood formulation [16] are random matrices whose
entries are computed once and kept unchanged. Since
they are diagonal matrices, the computational and storage
costs are only O(d).
In this work, we define D to be the set of all diagonal
matrices. For any square matrix S ∈ R

d×d , we use its
lower case letter s ∈ R

d to represent the vector that
consists of the diagonal elements of S, i.e., s = diag(S).

• � ∈ {0, 1}d×d is a random permutation matrix, generated
by sorting random numbers. It can be implemented as a
lookup table, so the storage and computational costs are
also O(d).

• H denotes the Walsh-Hadamard matrix, which is defined
recursively as

H2 :=
[

1 1
1 −1

]
and H2d :=

[
Hd Hd
Hd −Hd

]

The Fast Hadamard Transform, a variant of Fast Fourier
Transform, enables us to compute Hdx in O(d log d) time.
Note that H does not need to be explicitly stored.

As a result, the computational cost of using adaptive
Fastfood transform to compute Rx is O(d log d), while the
storage cost of storing R is only O(d). These are substantial
theoretical improvements over the O(d2) costs of ordinary
dense projection matrix.

In summary, we can attain the optimization objective of our
FBE by putting Equation 1 and 3 together:

min
S,G,B,C

�RX − C�2
F

s.t. RTR = I,
R = SHG�HB,
S, G, B ∈ D. (5)

IV. OPTIMIZATION

Due to the involvement of structured matrices, Equation 5
is a more challenging problem compared with Equation 1.
Updating any entry of S, G, B could cause the violation of
the orthonormal constraint on R. To find a feasible solution,
we adopt the variable-splitting and penalty techniques in opti-
mization [2], [21], [22]. Specifically, we move the orthonormal
constraint onto an auxiliary variable R̄ and meanwhile penalize
the difference between R̄X and RX. As a result, we relax the
problem in Equation 5 to the following form:

min
S,G,B,C,R̄

�R̄X - C�2
F + β�R̄X - RX�2

F

s.t. R̄T R̄ = I,
R = SHG�HB,
S, G, B ∈ D, (6)

where β is a penalty weight. Such a relaxation is similar
to Half-Quadratic Splitting [22]. By introducing an auxiliary
variable, the original problem can be separated into feasible
sub-problems, and the solution to Equation 6 will converge to
that of Equation 5 when β → ∞ [22]. We solve Equation 6 in
an alternating manner: update one variable with others fixed.

A. Update C

This sub-problem is equivalent to minC�R̄X - C�2
F =

maxC
∑

i, j (R̄X)i j Ci j , where i, j are the indexes of matrix
elements. Because Ci j ∈ {−1, 1}, this problem can be easily
solved by Ci j = sgn((R̄X)i j ), or simply

C = sgn(R̄X). (7)

B. Update R̄

With R fixed, the two terms in Equation 6 are both quadratic
on R̄. By some derivations, the problem Equation 6 becomes:

min
R̄

�R̄X - Y�2
F

s.t. R̄T R̄ = I, (8)
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where Y = (C + βRX)/(1 + β). This problem is known as
the orthogonal procrustes problem [29], [30] and is recently
widely studied in binary embedding [1], [2], [11].

According to [30], the procrustes problem is solvable only
if b ≥ d . For a fixed Y, Equation 8 is minimized as following:
first, find the SVD of the matrix YXT as YXT = U�VT, then
let

R̄ = UVT. (9)

In case that b < d , R̄TR̄ = I is no longer a valid constraint,
because rank(R̄TR̄) ≤ min(b, d) while rank(I) is d . Extra
efforts are made to handle the case of b < d in Sparse
Projection [2]. However, we do not face such a problem
because we always have b = d in the adaptive Fastfood
transform, we would simply drop the redundant bits after
optimization, as mentioned in Section IV-D.

C. Update S, G, B

For S, G and B, we update one of them each time, with
other variables fixed. However, we observe that all these
three sub-problems can be regarded as unconstrained quadratic
programming problem [31], and share the similar form of
solutions. Thus, we unify the optimization of them into one
section.

In case that R̄ and C are fixed, we could reformulate
Equation 6 as:

min
S,G,B

�SHG�HBX − Z�2
F

s.t. S, G, B ∈ D, (10)

where Z = R̄X. To show that Equation 10 can be split into
three quadratic programming sub-problems, we first expand
the objective in Equation 10 as below:

�SHG�HBX − Z�2
F

= �SHG�HBX�2
F − 2trace(ZTSHG�HBX) + Constant .

(11)

�SHG�HBX�2
F is a Frobenius norm, so it is always non-

negative and has a quadratic form. Therefore, for anyone of
s = diag(S), g = diag(G) or b = diag(G), there must exist one
corresponding positive-semidefinite matrix Qs, Qg or Qb ∈
R

d×d that satisfies

�SHG�HBX�2
F = 1

2
sTQss = 1

2
gTQgg = 1

2
bTQbb. (12)

As a result, all the three sub-problems can be regarded as
quadratic programming problems. According to Equation 12,
the three quadratic programming problems of S, G and B
share the same form, so we will derive the general solution
for them first, then explain how to address each of them
specifically. Let us use W to denote anyone of S, G or B, then
all these three sub-problems can be unified as the following
form based on Equation 10 and 11:

min
W

trace(ETWDTDWE) − 2trace(KW)

s.t. W ∈ D, (13)

where D, E and K are constant matrices whose specific val-
ues depend on W is which one of S, G and B. To rewrite
Equation 13 into a quadratic programming form like
Equation 12, we need to find Q ∈ R

d×d and k ∈ R
d such

that

trace(ETWDTDWE) − 2trace(KW) = wTQw − 2kTw, (14)

where w = diag(W). The optimal solution for the right-hand
problem of Equation 14 can be easily found as:

w = Q−1k. (15)

For anyone of S, G or B, we need to find out its corre-
sponding Q and k, then put them into Equation 15 to obtain
the solution. To derive the formula of Q, let us consider the
first term in the left hand of Equation 14,

trace(ETWDTDWE)

= �DWE�2
F

=
d∑

i=1

n∑
j=1

(DWE)2
i j

=
d∑

i=1

n∑
j=1

(
d∑

s=1

d∑
t=1

Dit Wt t Et j DisWssEs j

)

=
d∑

s=1

d∑
t=1

Wt t

⎡
⎣ d∑

i=1

n∑
j=1

Dit Et j DisEs j

⎤
⎦ Wss . (16)

Because trace(ETWDTDWE) = wTQw, we can get

Qst =
d∑

i=1

n∑
j=1

Dit Et j DisEs j

=
d∑

i=1

Dit Dis

n∑
j=1

Et j Es j

=
(

EET
)

st
×

(
DTD

)
st

, (17)

or simply

Q =
(

EET
)

	
(

DTD
)

, (18)

where 	 stands for Hadamard product, i.e., C = A 	
B ⇔ Ci j = Ai j Bi j . Computing k is relatively easy. Since
trace(KW) = ∑d

i=1 Kii Wii = kTw, we have

k = diag(K). (19)

Substituting Equation 18 and 19 into Equation 15, we can
obtain the update rule for w:

w =
[(

EET
)

	
(

DTD
)]−1 × diag(K). (20)

Now we turn to the specific cases of S, G, B respectively.
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Update S: In this case, we have the following D, E and K
in Equation 13

DS = I,

ES = HG�HBX,

KS = HG�HBXZT, (21)

so the update rule for S according to Equation 20 is

diag(S) =
[(

ESES
T
)

	
(

DS
TDS

)]−1 × diag(KS). (22)

Update G: In this case, we have the following D, E and K
in Equation 13

DG = SH,

EG = �HBX,

KG = �HBXZTSH, (23)

so the update rule for G according to Equation 20 is

diag(G) =
[(

EGEG
T
)

	
(

DG
TDG

)]−1 × diag(KG). (24)

Update B: In this case, we have the following D, E and K
in Equation 13

DB = SHG�H,

EB = X,

KB = XZTSHG�H, (25)

so the update rule for B according to Equation 20 is

diag(B) =
[(

EBEB
T
)

	
(

DB
TDB

)]−1 × diag(KB). (26)

D. Implementation Details

In many practical applications, the input dimension d and
code length b are usually power of 2. In case that d = 2l

does not hold for any l ∈ N, we can trivially pad the vectors
with zeros until d = 2l holds. When b is not equal to d after
zero-padding, we stack �b/d� adaptive Fastfood transforms
and attain the desired code length by simply dropping the extra
(�b/d� × d − b) bits, where �d� denotes the smallest integer
greater than or equal to d . In doing so, the computational
and storage costs of our FBE become O(b log d) and O(b),
respectively.1

To optimize our objective function in Equation 6,
we iteratively solve the 5 sub-problems as described in
Section IV-A–IV-C. We initialize S = 1

d2 I, G = I, B = I,
R̄ = R to satisfy the orthogonal constraint. The training data
is subtracted with its mean prior to learning. We summarize
our proposed FBE in Algorithm 1.

Our problem formulation has only one hyperparameter β as
shown in Equation 6. To tune this hyperparameter, we should
in principle start from a small β and gradually increase it
to infinity [22]. But in our experiments, we find that simply
using a fixed β leads to comparable accuracy, and the accuracy
is very insensitive to the choice of fixed β (we tried from

1This strategy actually also works for Circulant Binary Embedding [12],
which is previously considered unable to produce binary codes that are longer
than original feature vector [2].

Algorithm 1 Fried Binary Embedding

Fig. 2. Convergence of Algorithm 1. The vertical axis represents the objective
function value of Equation 6 and the horizontal axis corresponds to the number
of iterations at Algorithm 1. The optimization of R is obtained on the training
set of DNN-4096 [2].

0.1 to 100). So we simply fix β = 1 for all experiments in
this paper. The experiments show such a setting of β works
well for features of various dimensions on all datasets.

Since all 5 sub-problems (4 of them are convex) we tackle
have optimal solutions individually, our Algorithm 1 should
converge fast. As shown in Figure 2, the objective function
value at each iteration in the Algorithm 1 always decreases.
Considering that the objective function value is also lower-
bounded (not smaller than 0), it validates the convergence
of our algorithm and demonstrates that it only takes a few
iterations to converge. Such a fast learning procedure will
benefit learning R on large datasets.

V. EVALUATE FRIED BINARY EMBEDDING

To evaluate proposed Fried Binary Embedding (FBE),
we conduct experiments on three tasks: approximate nearest
neighbor (ANN) search, image retrieval, and image classi-
fication, following the experiments setting in [2]. For each
task, we compare our method FBE with the original Fastfood
transform [16], as well as the several state-of-the-art methods
for unsupervised high-dimensional visual feature embedding,
including Iterative Quantization (ITQ) [1], Bilinear Projec-
tion (BP) [11], Circulant Binary Embedding (CBE) [12],
Fast Orthogonal Projection (KBE) [24] and Sparse Projec-
tion (SP) [2]. For the original Fastfood transform [16] where
S, G and B are randomly generated instead of being optimized,
we report the best performance achieved by varying the
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Fig. 3. Comparison results on DNN-4096 dataset. (a) The change of mAP
with respect to bits. (b) The change of encoding time with respect to bits.
Here Fastfood transform is omitted because it takes the same encoding time
as FBE. For clarify, we only show the encoding time of ITQ at 1024 bits,
and the encoding time of SP up to 16384 bits. Note that BP is unavailable
for the longer codes (b > d).

standard deviation of the random Gaussian matrix over the
set {0.001, 0.005, 0.01, 0.05}. For the optimized variant FBE,
we learn these matrices by iterative optimization as described
in Section IV. We use the implementations of ITQ, BP, CBE
and SP that are released by their authors.

All experiments are conducted using Matlab, while the
evaluation of encoding time is implemented in C++ with a
single thread. The server we use is equipped with Intel Xeon
CPUs E5-2630 (2.30GHz) and 96 GB memory.

A. Approximate Nearest Neighbor Search

1) Experiments on DNN features: Recent research advances
have demonstrated the advantage of deep learning features as
image representations [32], [33]. We first conduct experiments
on such features. We use the pre-trained AlexNet [6] provided
by Caffe [34] to extract deep learning features for one mil-
lion images in MIRFLICKR-1M dataset [35], [36]. AlexNet
contains five convolutional layers and two fully-connected (fc)
layers, followed by a softmax classifier. Using this network,
we extract 4096-dimensional outputs of the second fc layer as
image features. Each image is resized to keep the same aspect
ratio but smaller side to be 256, and the center 224 × 224
region is used to compute features. We refer to this dataset as
DNN-4096. Extra 1,000 random samples are used as queries.
Note that each 4096-dimensional raw feature (real number)
requires a storage of 16,384 bytes (131,072 bits).

Following the protocol in [37] and [38], we measure the
search quality using mean Average Precision (mAP), i.e.,
the mean area under the precision-recall curve. Given a query,
we perform Hamming ranking, i.e., samples in the dataset are
ranked according to their Hamming distances to the query,
based on their binary codes. The 50 nearest neighbors of each
query in the dataset using original features are defined as the
true positive samples, which are the ground truths for us to
evaluate the mAP.

In Figure 3a, we show how mAP changes with vari-
ous code length b. The proposed FBE achieves competitive
mAP at the short-bit scenario, and significantly outperforms
other state-of-the-art methods at the long-bit scenario, i.e.,
bit lengths comparable to or longer than feature dimension.
For example, with 2048 bits or more, our proposed method
performs the best of embedding the 4096-dimensional CNN
features, when compared with SP [2], KBE [24], BP [11],

TABLE I

THE NUMBER OF TUNABLE PARAMETERS WHEN ENCODING DNN-4096
FEATURE TO BINARY CODES OF VARYING LENGTHS. NOTE THAT

BP IS NOT APPLICABLE TO GENERATE BINARY CODES THAT

ARE LONGER THAN THE ORIGINAL FEATURE VECTOR

CBE [12] and ITQ [1]. Interestingly, although the performance
of our proposed method is not better than that of Fastfood
transform [16] below 1024 bits, it significantly outperforms
Fastfood transform [16] when above 1024 bits. This verifies
that our optimization of S, G and B to Equation 5 does improve
the performance compared with using random matrices for
S, G and B as Fastfood transform [16] does.

As shown in Figure 3b, the encoding time for computing
the binary codes does not linearly increase to b. The proposed
FBE takes less encoding time compared with SP and KBE,
but not as fast as BP and CBE. Although CBE and BP can
achieve superior speedup ratios to FBE, they have relatively
low performance, and BP is unavailable for producing the
longer codes (b > d).

We compare the number of parameters of our proposed
algorithm and the baselines in Table I. Besides the advantage
of less encoding time, the proposed FBE requires much fewer
parameters to build the projection matrix R, which reduces not
only the cost of memory but also the risk of overfitting. For
example, when encoding a 4096-dimensional feature vector
into 4096-bit binary codes, our FBE has only 12,288 tunable
parameters, which are only 1% of Sparse Projection [2] and
0.1% of ITQ [1]. Although BP [11], CBE [12] and KBE [24]
require even fewer parameters than ours when producing
binary codes of the same length, these methods are inferior
to the proposed FBE in terms of performance, as shown
in Figure 3a and Figure 5.

2) Experiments on traditional features: To validate the
generality of our proposed FBE, besides using deep learn-
ing features, we also evaluate our method on two datasets
of traditional features. The first dataset is GIST-960 [39],
which contains one million 960-dimensional GIST features [9]
and 10,000 queries. The second dataset is VLAD-25600 [2].
The VLAD features [26] are extracted from 100,000 images
randomly sampled from the INRIA image set [39]. The
25600-dimensional VLAD features are generated by encoding
128-dimensional SIFT vectors [8] to a 200-center codebook.
An extra random subset of 1000 samples are used as queries
in this dataset.

Figure 5 shows the approximate nearest neighbor search
results on these datasets, using the same protocol as
in Figure 3a. For each query, we retrieve the top-50 nearest
neighbors based on the hamming distance of the binary
codes, and compare it with the ground truths in the original
feature space. The proposed FBE still outperforms state-of-
the-art methods in long-bit case, meanwhile encodes high-
dimensional visual features faster than ITQ, SP and KBE.
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Fig. 4. Visualization of Holidays+1M dataset retrieval results. Red border means false positive. (a) FBE with different bits. (b) Different hashing methods
with 8,192 bits.

Fig. 5. Comparison of traditional features. (a) The change of mAP with
respect to bits on GIST-960 dataset. (b) The change of mAP with respect to
bits on VLAD-25600 dataset.

The experiments on GIST and VLAD features show that our
method is also applicable to traditional features, demonstrating
the potential of the adaptive Fastfood transform to high-
dimensional visual features again.

B. Image Retrieval

In the work of Krizhevsky et al. [6], the responses of
the second fc layer of CNN are used as image features
for image retrieval. We evaluate the performance of binary
embedding for this task, on the “Holidays + MIRFlickr-1M”
dataset [39]. This dataset contains 1,419 images in 500 differ-
ent scenes, with extra one million MIRFlickr-1M images as
distracters. Another 500 query images are provided along with
their ground truth neighbors under the same scene category.
We represent each image by a 4096-dimensional deep feature
as introduced in the above experiments.

Following previous practices [2], [5], [11], [26], we treat
image retrieval as an ANN search problem of the encoded
features, while the ground truth neighbors are defined by scene
labels. Given a query image, we perform Hamming ranking
and evaluate mAP using the semantic ground truth.
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TABLE II

IMAGE RETRIEVAL PERFORMANCE ON HOLIDAYS+1M.

Table II shows the results on the Holidays+1M dataset.
As a baseline of using the raw features, the mAP of
4096-dimensional deep learning features is 49.5%. To main-
tain such a performance, we compare our method with
BP [11], CBE [12], SP [2], KBE [24] and original Fastfood
transform [16] using 1024, 4096 and 8192 bits. Our method
can lead to the best mAP in all bit lengths. In case of 8192 bits,
our method has almost no degradation (49.3% mAP) compared
with the use of the raw deep learning features. However, we do
not observe better performance when using 16384 bits.

Figure 4 illustrates the top 10 retrieval results of a selected
query. From Figure 4a we could observe that the retrieval
quality is tending to be better with more binary bits used,
which validate the rationale between our high-dimensional
binary embedding. As shown in Figure 4b, our FBE achieves
the best retrieval performance among all compared methods.

C. Image Classification

We further evaluate the binary codes as compact features
for image classification on CIFAR-10 dataset [20], using
top-1 accuracy as the metric. As a baseline, we extract the
4096-dimensional responses of second fc layer in AlexNet [6]
as image features. We first fine-tune the pretrained model
provided by Caffe [34] on the training set of CIFAR-10, then
we use the fine-tuned model to generate features for both
training images and testing images. We then learn the hashing
parameters on the features of CIFAR-10 [20] training set.

Following [2], we use one-vs-rest linear SVM as the
classifier. We observe that one-vs-rest linear SVM achieves
82.6% classification accuracy, which is higher than that from
the softmax layer (78.9%). We compare our method with
BP [11], CBE [12], SP [2], KBE [24] and original Fastfood
transform [16] using 1024, 4096, 8192 and 16384 bits. We do
not see significant improvement in the performance when
further increasing the bit length.

Table III lists the comparison results. The proposed
FBE performs better than BP, CBE, SP, and KBE with the
same number of bits. It is worth noting that even the number

TABLE III

CLASSIFICATION ACCURACY ON CIFAR-10 DATASET

of bits is more than the input dimension 4096, these represen-
tations are still more compact than the original features. For
example, 16,384 bits require only the 1/8 storage cost of the
raw 4096-dimensional feature of real numbers.

D. Discussion

In the above experiments (Figure 3a,5 and Table II,III),
we observe that the binary code length b required to achieve
graceful degradation (compared with no encoding) is usually
around b ∼ O(d), which justifies the rationality of using long
binary codes for high-dimensional data. Short binary codes
have considerable degradation of accuracy, and may impact
the quality of real-world usage, thus in practice, it is desired
to have a feasible and accurate solution to high-dimensional
binary embedding.

VI. SUPERVISED FRIED BINARY EMBEDDING

As shown in [1], [19], and [3], supervised binary embedding
can significantly outperform their unsupervised counterparts
if the labels of training data are utilized. In this section,
we propose Supervised Fried Binary Embedding (SuFBE)
for supervised hashing problem. We assume we have a label
matrix Y = {Yi }n

i=1 ∈ {0, 1}t×n available, where Yki = 1
if the i -th training sample Xi belongs to the k-th class and
0 otherwise. To take advantage of such label information,
we fit the supervised hashing problem into the framework of
linear classification. As has been shown in [19] and [40], good
binary codes are suitable for classification too.

Following [3], [19], we adopt the following multi-class
classification formulation

min
P,S,G,B,C

�Y − PTC�2
F + λ�P�2

F

s.t. C = sgn(RX),

R = SHG�HB,

S, G, B ∈ D. (27)
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where the matrix P ∈ R
b×t serves as the classifier. The first

term in 27 measures the classification accuracy by comput-
ing the difference between the labels and predictions, while
the second term is a regulation term weighted by λ.

The problem 27 is in general NP hard to solve due to the dis-
crete variable C. One can always obtain an approximate solu-
tion by simply relaxing the binary constraint to be continuous
C = RX. With this relaxation, the continuous embeddings C
are first learned, which are then thresholded to be binary codes.
This relaxation approach has been adopted in many existing
hashing algorithms, such as Spectral Hashing [5], SSH [28],
AGH [41], etc. Although relaxation to continuous embeddings
usually makes the original problem much easier to solve,
clearly, it is only sub-optimal.

In order to attain better binary codes, here we solve it with
the binary constraint on C kept in the optimization procedure.
We rewrite problem 27 as

min
P,S,G,B,C

�Y − PTC�2
F + λ�P�2

F + ν�RX − C�2
F

s.t. R = SHG�HB,

S, G, B ∈ D. (28)

where the last term measures the quantization loss of the
binary embedding. In theory, problem 28 becomes arbitrarily
close to 27 with ν large enough. In practice, small differences
between C and RX are acceptable as shown in Section IV-D.
Although the above joint optimization problem is still highly
non-convex and difficult to solve, however, it is tractable
to solve the problem with respect to one variable while
keeping other two variables fixed. Therefore, we again adopt
the iterative optimization methods to efficiently find a local
optimum of problem 28.

VII. OPTIMIZATION

In this section, we describe our iterative solution to the
problem 28. We update each variable with others fixed.

A. Update P

With other variables fixed, solving P can be considered as
a regularized least squares problem, which has a closed-form
solution:

P = (CCT + λI)−1CYT (29)

B. Update C

It is challenging to solve C due to the binary constraints.
With all variables except C fixed, we write problem 28 as:

min
C

�Y − PTC�2
F + ν�C − RX�2

F

s.t. C ∈ {−1, 1}b×n. (30)

Although the above problem is NP hard, a closed-form
solution for one row of C can be achieved by fixing all the
other rows. In other words, we can iteratively learn one bit at
a time. To see this, let us expand 30 as:

�Y − PTC�2
F + ν�RX − C�2

F

= �Y�2
F − 2trace(YTPTC) + �PTC�2

F

+ ν(�C�2
F − 2trace(CTRX) + �RX�2

F) (31)

By omitting the irrelevant terms to C, we could equivalently
write problem 28 as:

min
C

�PTC�2
F − 2trace(CTQ)

s.t. C ∈ {−1, 1}b×n. (32)

where Q = PY + νRX. One bit of binary codes corresponds
to one row in the matrix C ∈ {−1, 1}b×n, and we learn C bit
by bit. Let cT represent for the k-th row of C, and C for the
matrix of C excluding c, then c ∈ {−1, 1}n is one bit for all
n training samples. Similarly, let qT represent for the k-th row
of Q, pT for the k-th row of P, and P for the matrix of P
excluding p. Then we have

�PTC�2
F = trace(CTPPTC)

= Constant + �cpT�2
2 + 2pTPTCc

= Constant + 2pTPTCc (33)

where �cpT�2
2 = trace(pcTcpT) = npTp = Constant .

Similarly, we have

�CTQ�2
F = Constant + qTc (34)

Putting Equation 33, 34 and 32 together, we have the
following problem with respect to c:

min
c

(pTPTC − qT)c

s.t. c ∈ {−1, 1}n. (35)

whose optimal solution could be obtained by:

c = sgn(q − CTPp) (36)

Clearly, each bit c is computed based on the pre-learned
b − 1 bits C. In our experiments, the whole b bits can be
iteratively learned in rb times by using Equation 36, where
usually r = 2 ∼ 5.

C. Update S,G,B

With P and C fixed, the problem 28 could be rewrite as:

min
S,G,B

�SHG�HBX − C�2
F

s.t. S, G, B ∈ D. (37)

which has the same form as problem 10, hence we adopt
the optimization method in Section IV-C to solve the above
problem 37.

Update S: In this case, we have the following D, E and K
in Equation 13

DS = I,

ES = HG�HBX,

KS = HG�HBXCT, (38)

so the update rule for S according to Equation 20 is

diag(S) =
[(

ESES
T
)

	
(

DS
TDS

)]−1 × diag(KS). (39)



4834 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 10, OCTOBER 2018

Algorithm 2 Supervised Fried Binary Embedding

Update G: In this case, we have the following D, E and K
in Equation 13

DG = SH,

EG = �HBX,

KG = �HBXCTSH, (40)

so the update rule for G according to Equation 20 is

diag(G) =
[(

EGEG
T
)

	
(

DG
TDG

)]−1 × diag(KG). (41)

Update B: In this case, we have the following D, E and K
in Equation 13

DB = SHG�H,

EB = X,

KB = XCTSHG�H, (42)

so the update rule for B according to Equation 20 is

diag(B) =
[(

EBEB
T
)

	
(

DB
TDB

)]−1 × diag(KB). (43)

D. Implementation Details

We use the strategy in Section IV-D to deal with the case
that: (1) the input dimension d = 2l does not hold for any
l ∈ N; (2) the code length b is not equal to d after zero-
padding. Therefore, the computational and storage costs of
our SuFBE are O(b log d) and O(b), respectively.

To optimize our objective function in Equation 28,
we iteratively solve the 5 sub-problems as described in
Section VII-A–VII-C. We initialize S = 1

d2 I, G = I, B = I.

We empirically set λ = 1 and ν = 10−5; the maximum
iteration number r is 5. The entire flow of the proposed
SuFBE is summarized in Algorithm 2. Figure 6 shows that the

Fig. 6. Convergence of our algorithm. The vertical axis represents the
objective function value of Equation 28 and the horizontal axis corresponds
to the number of iterations at Algorithm 2. The optimization of R is obtained
on the training set of CIFAR-10 [20].

objective function value at each iteration in the Algorithm 2
always decreases. Considering that the objective function value
is also lower-bounded (not smaller than 0), it validates the
convergence of our algorithm and demonstrates that it only
takes around 15 iterations to converge.

VIII. EVALUATE SUPERVISED FRIED BINARY EMBEDDING

In this section, we evaluate the proposed Supervised Fried
Binary Embedding (SuFBE) for the image retrieval task on two
benchmark datasets. For each dataset, we compare the SuFBE
with the unsupervised counterpart FBE, as well as 4 state-of-
the-art supervised hashing approaches. The comparisons with
FBE are mainly conducted to show the advantages of utilizing
labels of training data, while the comparisons with state-of-the-
art hashing methods demonstrate both accuracy and efficiency
advantage of the proposed SuFBE. The compared supervised
hashing methods are CCA-ITQ [1], SSH [28], SDH [19]
and SSP [3]. Our method can be extended to a non-linear
embedding by RBF kernel in the same way as SDH [19].
For the fair comparisons with other non-kernel methods like
SSH [28] and SSP [3], we evaluate all methods without
kernel embedding. However, our approach should show more
advantages in case of kernelized hashing, because the feature
vector after kernel mapping is usually of higher dimensionality
than the original feature.

We perform image retrieval experiments on two datasets:
CIFAR-10 dataset [20] and NUS-WIDE dataset [42]. We eval-
uate the retrieval quality and encoding speed for all methods.
Retrieval accuracy is measured by the mean average precision
(mAP). With labeled data, we are interested in preserving
semantic similarity. The retrieval ground truth for computing
the mean average precision consists of database examples shar-
ing the same semantic category label as the query. We compute
the encoding time as the processor time required for the
matrix-vector multiplication c = sgn(Rx) (Equation 2). All
experiments are conducted using Matlab, while the evaluation
of encoding time is implemented in C++ with a single thread.
The server we use is equipped with Intel Xeon CPUs E5-2630
(2.30GHz) and 96 GB memory.

A. Evaluation on CIFAR-10 dataset

We first evaluate on CIFAR-10 dataset with the deep
learning features that we have extracted in Section V-C,
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Fig. 7. Visualization of CIFAR-10 dataset retrieval results with 4096-dim binary codes. Red border means false positive.

TABLE IV

IMAGE RETRIEVAL PERFORMANCE ON CIFAR-10 DATASET [20].
NOTE THAT CCQ-ITQ CANNOT PRODUCE BINARY CODES THAT

ARE LONGER THAN THE ORIGINAL FEATURE VECTOR

i.e., the 4096-dimensional responses of second fc layer of a
fine-tuned AlexNet [6]. We follow the settings in the previous
works [43], [44] for the CIFAR experiments, i.e., we randomly
select 100 images per class (1,000 images in total) as the test
query set, 500 images per class (5,000 images in total) as
the training set. We then learn the hashing functions of each
method on the feature vectors of training set of CIFAR-10, and
use the learned hashing functions to project feature vectors of
both training set and test set into binary codes.

The quantitative results are reported in Table IV, from which
we have the following three observations:

• First, we could see that the mAP of all methods
in Table IV increase with the code length, which sug-
gests that long-bit binary codes can better preserve
the discriminative power of the high-dimensional deep
feature than compact ones. As shown in the last row
of Table IV, the 8, 192-dimensional binary codes of our

SuFBE achieve the mAP at 71.8%, which has almost
no degradation compared with 72.1% of the raw deep
learning feature. However, we didn’t observe better mAP
using more bits.

• Second, the proposed SuFBE can outperform other state-
of-the-art methods in case of long-bit case such as 4, 096
and 8, 192 bits. In terms of the encoding efficiency,
the proposed SuFBE has the least encoding time using
4, 096 and 9, 192 bits. In case of 8, 192 bits, SuFBE can
be 10+ times faster than CCA-ITQ [1], SSH [28] and
SDH [19]. The retrieval results of a selected query is
visualized in Figure 7.

• Third, by taking the labels of training data into con-
sideration, the SuFBE can significantly outperform its
unsupervised counterpart FBE. The mAP gap can be up
to 17%, which validates the rationale of building SuFBE
based on FBE.

B. Evaluation on NUS-WIDE dataset

Besides the CIFAR-10 dataset of tiny natural image with
single label, we also evaluate our method on NUS-WIDE
dataset, which contains about 270, 000 images from Flickr.
NUS-WIDE is associated with 81 ground truth concept
labels, with each image containing multiple semantic labels.
We define the true neighbours of a query as the images
sharing at least one labels with the query image. Due to the
promising performance of DNNs [6], [7], we use the pre-
trained AlexNet [6] provided by Caffe [34] to extract deep
learning features for images in NUS-WIDE datasets. Each
image is represented by the 4096-dimensional responses of
the second fc layer. As in [19], we collect the 21 most frequent
label for test. For each label, 100 images are uniformly
sampled for the query set and the remaining images are for
the training set.

The mAP obtained of all methods with varying code lengths
are shown in Table V. In case of long code lengths such
as 4096 and 8192 bits, SuFBE performs the best with the
shortest encoding time. The mAP does not increase if we set
the code length as 16, 394 bits. The superior results of SuFBE
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TABLE V

IMAGE RETRIEVAL PERFORMANCE ON NUS-WIDE DATASET [42]

validate the observations in Section VIII-A and demonstrate
the effectiveness and efficiency of our method on the retrieval
task of data with multiple semantic labels.

C. Discussions

In the above experiments (Table IV,V), we observe that our
SuFBE not only inherits the efficiency advantages of FBE, but
also takes the training labels into considerations and leads to
good performance in supervised hashing tasks. Specifically,
our SuFBE can outperform other state-of-the-art supervised
methods in terms of both accuracy and efficiency in long-
bit cases. Meanwhile, SuFBE achieves far better results than
FBE [18] as shown in above experiments, which validate the
rationale of developing SuFBE.

IX. CONCLUSION

We have proposed Fried Binary Embedding (FBE) and
Supervised Fried Binary Embedding (SuFBE), for high-
dimensional binary embedding. By decomposing the dense
projection matrix using the adaptive Fastfood transform, our
proposed FBE reduces the original computational and memory
cost of O(d2) to O(d log d) and O(d), respectively. Moreover,
due to the inherent structure in each of its components,
the ultimate projection matrix would have restricted freedom,
which is naturally against overfitting and shows promising
accuracy in our experiments. We split the optimization prob-
lem with structured matrices involved into several feasible
sub-problems, then we iteratively solve these sub-problems
till convergence. We compare FBE with several state-of-the-
art methods on various tasks, including approximate nearest
neighbor (ANN) search, image retrieval, and image classifica-
tion. Experimental results validate the efficiency and accuracy
advantages of our FBE.
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