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Abstract—Information can be disseminated widely and rapidly through Online Social Networks (OSNs) with “word-of-mouth” effects.

Viral marketing is such a typical application in which new products or commercial activities are advertised by some seed users in OSNs

to other users in a cascading manner. The selection of initial seed users yields a tradeoff between the expense and reward of viral

marketing. In this paper, we define a general profit metric that naturally combines the benefit of influence spread with the cost of seed

selection in viral marketing. We carry out a comprehensive study on finding a set of seed nodes to maximize the profit of viral

marketing. We show that the profit metric is significantly different from the influence metric in that it is no longer monotone. This

characteristic differentiates the profit maximization problem from the traditional influence maximization problem. We develop new seed

selection algorithms for profit maximization with strong approximation guarantees. We also derive several upper bounds to benchmark

the practical performance of an algorithm on any specific problem instance. Experimental evaluations with real OSN datasets

demonstrate the effectiveness of our algorithms and techniques.

Index Terms—Online social networks, viral marketing, profit maximization, submodular maximization
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1 INTRODUCTION

ONLINE Social Networks (OSNs), such as Facebook,
Twitter, Flickr, Google+, and LinkedIn, are heavily

used today in terms of not only the number of users but
also their time consumption. Information can be dissemi-
nated widely and rapidly through OSNs with “word-of-
mouth” effects. Leveraging OSNs as the medium for infor-
mation spread has been increasingly adopted in many
areas. Viral marketing is such a typical application in which
new products or commercial activities are advertised by
some influential users in the OSN to other users in a cascad-
ing manner [9].

A large amount of recent work [4], [6], [7], [16], [17], [20],
[27], [28], [29], [32], [35], [36], [37], [39] has been focusing on
influence maximization in viral marketing, which targets at
selecting a set of initial seed nodes in the OSN to spread the
influence as widely as possible. The seminal work by
Kempe et al. [17] formulated the influence maximization
problemwith two basic diffusionmodels, namely the Indepen-
dent Cascade (IC) and Linear Threshold (LT) models. Although
finding the optimal seed set is NP-hard [17], a simple greedy
algorithm has a ð1� 1=eÞ-approximation guarantee due to
the submodularity and monotone properties of the influence
spread under thesemodels [26]. Many follow-up studies have

concentrated on efficient implementation of the algorithm for
large-scale OSNs [4], [6], [7], [16], [20], [27], [28], [29], [32],
[35], [36], [37], [39].

All the above work has assumed a fixed and pre-deter-
mined budget for seed selection. In essence, the cost of seed
selection is the price to pay for viral marketing (e.g., provid-
ing the selected users with free samples or other incentives).
The influence spread, on the other hand, is the reward of
viral marketing, which can potentially be translated into
growth in the adoptions of products. Thus, the budget for
seed selection reflects a tradeoff between the expense and
reward of viral marketing. If the budget is set too low, it may
not produce the desired extent of influence spread to fully
exploit the potential of viral marketing in boosting sales and
revenues. In contrast, if the budget is set too high, the benefit
of the influence spread generated may not pay off the
expense. A cost-effective budget setting should strike a bal-
ance between the expense and reward of viral marketing.

Economic-wise, a common goal for companies conducting
viral marketing is tomaximize the profit return, which can be
defined as the reward less the expense. Thus, in this paper,
we define a general profit metric that naturally combines the
benefit of influence spread with the cost of seed selection to
eliminate the need for presetting the budget for seed selec-
tion. We carry out a comprehensive study on finding a set of
seed nodes to optimize the profit of viral marketing. We
show that the profit metric is significantly different from the
influence metric in that it is no longer monotone. Applying
simple hill-climbing algorithms to the profit maximization
problem would not provide any strong theoretical guarantee
on the seed set selected. Observing that seed selection for
profit maximization is an unconstrained submodular maxi-
mization problem, we develop new seed selection algorithms
based on the ideas of the double greedy algorithms by
Buchbinder et al. [5]. The original double greedy algorithms
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have a serious limitation for our profit maximization prob-
lem: they rely on a rather strict condition for offering non-
trivial approximation guaranteeswhich is not realistic in viral
marketing. We propose several new techniques to address
this limitation along different directions.

Our contributions are summarized as follows.

� We define a general problem of profit maximization
for viral marketing in OSNs. We show that the profit
metric is submodular but not always monotone.

� We construct a greedy hill-climbing algorithm and
show that such an intuitive greedy algorithm does
not have any bounded approximation factor for
profit maximization.

� We present double greedy algorithms to optimize
the profit. To expand the applicability of their
approximation guarantees, we develop an iterative
pruning technique to provide good warm-starts and
relax the condition for the guarantees to hold.

� To further improve the approximation guarantees
and deal with cases where the required condition is
not fulfilled, we derive several upper bounds on the
optimal solution to the profit maximization problem.
These bounds can be used to characterize the quality
of the solutions constructed on any specific problem
instance.

� We conduct extensive experiments with several real
OSN datasets. The results demonstrate the effective-
ness of our profit maximization algorithms.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 defines the profit maximi-
zation problem. Section 4 elaborates our algorithm design.
Section 5 derives the upper bounds. Section 6 presents the
experimental study. Finally, Section 7 concludes the paper.

2 RELATED WORK

Influence Maximization. Kempe et al. [17] formulated influ-
ence maximization as a discrete optimization problem,
which targets at finding a fixed-size set of seed nodes to
produce the largest influence spread. They derived a
ð1� 1=eÞ-approximation greedy algorithm. Since then, there
has been considerable research on improving the efficiency
of the greedy algorithm by avoiding unnecessary influence
estimation for certain seed sets [7], [20], [35], using heuris-
tics to trade the accuracy of influence estimation for compu-
tational efficiency [6], [16], or optimizing the Monte-Carlo
simulations for influence estimation [4], [27], [28], [29], [31],
[36], [37]. Tang et al. [33] studied algorithms for online
processing of influence maximization. There is also some
complementary work on learning the parameters of influ-
ence propagation models [2], [11], [18], [25]. In addition,
some recent work [8], [12], [23], [38] studied the seed mini-
mization problem that focuses on minimizing the seed set
size (or cost) for achieving a given amount of influence
spread. Different from the above studies, we aim to maxi-
mize the profit that accounts for both the benefit of influence
spread and the cost of seed selection in viral marketing.

Viral Marketing. Viral marketing in OSNs has emerged as a
newway to promote the sales of products. Domingos et al. [9]
were the first to exploit social influence for marketing optimi-
zation bymodeling social networks asMarkov random fields.
Li et al. [22]modeled the product advertisement in large-scale
OSNs through local mean field analysis. The model is
designed to compute the expected proportion of users who

would eventually buy the product, which may indirectly
guide the advertisement to improve the profit. However,
no specific strategy was given to maximize the profit.
Hartline et al. [13] aimed to find the optimalmarketing strate-
gies by controlling the price and the order of sales to different
customers to improve the profit. Aslay et al. [1] studied strate-
gic allocation of ads to users by leveraging social influence
and the propensity of ads for viral propagation. The objective
is to help OSN hosts match their ad services with advertiser
budgets as close as possible. Two recent studies [24], [40] also
focused on finding the pricing strategies to optimize the profit
return of viral marketing and they adopted a simple hill-
climbing heuristic to select initial seed nodes. We show that
the simple hill-climbing approach for seed selection lacks
bounded approximation guarantees (Section 4.1) and may
give poor performance in practice (Section 6.2). We propose
new algorithms to address the profit maximization problem
with strong theoretical guarantees.

Unconstrained Submodular Maximization. The influence
functions under typical diffusionmodels are submodular and
monotone [17]. However, the profit function that we define is
submodular but not necessarily monotone. There is some
work on maximizing non-monotone submodular functions
under knapsack constraints [19]. But the proposed algorithms
require submodular functions to be non-negative and have
very high time complexities (at least Oðn4lognÞ for computa-
tion andOðn13Þ for samplingwhere n is the size of the ground
set). Thus, they are not directly applicable to our problem.We
do not assume any pre-determined seed set size or seed selec-
tion cost. Our profit maximization problem is an uncon-
strained submodular maximization problem. Feige et al. [10]
developed local search algorithms for approximately maxi-
mizing non-monotone submodular functions. Recently,
Buchbinder et al. [5] proposed double greedy algorithms that
have much lower computational complexities than those in
[10] and improve the approximation guarantees to match
the known hardness result of the problem. We make use of
these state-of-the-art algorithms for profit maximization
(Section 4.2). To avoid exploring the entire ground set,we pro-
pose a novel iterative method to prune the search space for
maximizing a submodular function and apply it to improve
our profit maximization solutions and expand the applicabil-
ity of their approximation guarantees (Section 4.3). Iyer et al.
[14], [15] gave two modular upper bounds on submodular
functions and made use of them for submodular minimiza-
tion. Inspired by these studies, we establish several upper
bounds on the optimal solution for submodularmaximization
to benchmark the performance of our algorithms (Section 5).

3 PROBLEM FORMULATION

3.1 Preliminaries
Let G ¼ ðV ;EÞ be a directed graph modeling an OSN,
where the nodes V represent users and the edges E repre-
sent the connections among users (e.g., friendships on Face-
book, followships on Twitter). For each directed edge
hu; vi 2 E, we refer to v as a neighbor of u, and refer to u as
an inverse neighbor of v. For ease of reference, Table 1 sum-
marizes some key notations in this paper.

There are many influence propagation models in social
networks. While our problem formulation and solutions
are general and not restricted to a specific influence propaga-
tion model, to facilitate exposition, we shall discuss our
examples using the Independent Cascade (IC) model —a
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representative and most widely-studied model for influence
propagation [6], [7], [16], [17], [20], [27], [29], [32], [36], [37],
[39]. In the IC model, a propagation probability pu;v is associ-
ated with each edge hu; vi, representing the probability for v
to be activated by u through their connection. Let Nu denote
the set of node u’s neighbors, i.e., Nu ¼ fv : v 2 V ; hu; vi 2 Eg.
Given a set of seed nodes S, the IC diffusion process proceeds
as follows. Initially, the seed nodes S are activated, while all
the other nodes are not activated. When a node u first
becomes activated, it has a single chance to activate its neigh-
bors who are not yet activated. For each such neighbor
v 2 Nu, v would become activated with probability pu;v. This
process repeats until no more node can be activated. Note
that the IC diffusion process is a random process. Let g � G
be a sample outcome of influence propagation in the sample
space and let V gðSÞ be the set of nodes activated starting from
the initial seed set S in the sample outcome g. The influence
spread of the seed set S, denoted by sðSÞ, is the expected num-
ber of nodes activated over all possible sample outcomes of
influence propagation, i.e.,

sðSÞ ¼ E½jV gðSÞj�:

3.2 The Profit Maximization Problem
As discussed, the influence spread is the benefit gained by
viral marketing and the cost of seed selection is the price to
pay for viral marketing. In general, the users in the social
network are likely to bring different amounts of benefit if
activated and have different costs for seed selection. For
example, users may have different preferences for various
models of a product due to their genders, ages, or occupa-
tions (e.g., most students may purchase iPhone 7 32 G while
most businessmen may purchase iPhone 7 Plus 256 G, thus
they offer different benefits), and sending free samples to
users in distinct regions may incur different delivery
expenses. Suppose that each node v 2 V is associated with a
benefit bðvÞ if v is activated and a cost cðvÞ for seed selection.
Then, we define a profit metric as the benefit of influence
spread less the cost of seed selection, i.e., the profit of a seed
set S, denoted by fðSÞ, is given by

fðSÞ ¼ bðSÞ � cðSÞ;

where bðSÞ ¼ E½Pv2V gðSÞ bðvÞ� is the total benefit brought by
all the nodes activated and cðSÞ ¼P

v2S cðvÞ is the total cost
of all the seed nodes selected.

Our goal is to find a seed set S tomaximize the profit fðSÞ.
First, we study the submodularity of the profit function. To
simplify the notations, we define bðv jSÞ , bðS [ fvgÞ � bðSÞ
as the marginal benefit gain of adding a new seed node v 2 V

into a seed set S � V and define fðv jSÞ , fðS [ fvgÞ � fðSÞ
as themarginal profit gain of adding v into a seed set S.

Proposition 1. The profit function fð�Þ is submodular if the ben-
efit function bð�Þ is submodular.

Proof. If bð�Þ is submodular, for any two seed sets S and T
where S � T and any node v =2 T , it holds that bðv jSÞ �
bðv jT Þ. Therefore, we have fðv jSÞ ¼ bðv jSÞ � cðvÞ �
bðv jT Þ � cðvÞ ¼ fðv jT Þ, which implies that fð�Þ is also
submodular. tu
Kempe et al. [17] has proved that the influence function

sð�Þ is submodular under the IC model. Using a similar
approach, it can be shown that the benefit function bð�Þ is
also submodular under the IC model.

Proposition 2. The benefit function bð�Þ is submodular under
the IC model.

Proof. A sample influence propagation outcome g can be
generated by independently flipping a coin of bias pu;v for
each edge hu; vi 2 E to decide whether the edge is live or
blocked. It is easy to see that the set of nodes V gðSÞ acti-
vated in the sample outcome g are those that can be
reached from the seed set S in g. The total benefit gener-
ated from the seed set S in the outcome g is given by
bgðSÞ ¼

P
v2V gðSÞ bðvÞ Let pðgÞ denote the probability of a

specific outcome g in the sample space. Then, bðSÞ ¼P
g

ðpðgÞ � bgðSÞ
�
.

In addition, the marginal benefit gain bgðu jSÞ ¼P
v2V gðu jSÞ bðvÞ, where V gðu jSÞ is the set of nodes that are

reachable from a node u but are not reachable from any
node in a seed set S in the sample outcome g. For any two
node sets S and T where S � T , we have V gðu jSÞ 	
V gðu jT Þ, which implies that bgðu jSÞ � bgðu jT Þ. Since
pðgÞ � 0 for any g, taking the linear combination, we have
bðu jSÞ � bðu jT Þ. Thus, bð�Þ is submodular. tu
By Propositions 1 and 2, the profit function fð�Þ is also

submodular under the IC model. Though both the profit
and influence functions are submodular, it should be noted
that the profit fð�Þ is significantly different from the influ-
ence spread sð�Þ in that fð�Þ may no longer be monotone.
The marginal profit gain by adding a new seed, i.e.,
fðv jSÞ ¼ bðv jSÞ � cðvÞ, can be negative. As shall be shown
soon, this makes the seed selection for profit maximization
more challenging than that for influence maximization.
Selecting seed nodes to maximize the profit becomes an
unconstrained submodular maximization problem [5], [10].

4 SEED SELECTION ALGORITHMS

In this section, we first study an intuitive greedy algorithm
and show that it does not provide any bounded approxima-
tion guarantee. To provide strong approximation guarantees,
we then borrow ideas from the double greedy algorithms [5],
and develop newmethods for profitmaximization.

4.1 Simple Greedy Heuristic
If activating each node offers the same benefit, one may
intuitively argue that the profit maximization problem
can be easily solved by a straightforward approach that
runs an influence maximization algorithm for every possi-
ble seed set size (from 1 to jV j) and then chooses the best
solution. But unfortunately, this would not work when
the nodes have different costs for seed selection because

TABLE 1
Summary of Notations

Notation Description

G ¼ ðV ;EÞ a social graph Gwith a node set V and an edge set E
Nu the set of u’s neighbors
V gðSÞ the nodes activated by S in a sample outcome g
S
 the optimal seed set
bðvÞ the benefit generated by activating a node v
bðSÞ the total benefit brought by a seed set S
cðSÞ; cðvÞ the seed selection cost of a seed set S and a node v
fðSÞ the profit produced by a seed set S, fðSÞ ¼ bðSÞ � cðSÞ
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most existing influence maximization algorithms do not
differentiate the nodes by their costs in the seed selection.
If a top influential node has a high cost (e.g., a popular
user may require more incentives to be recruited as a
seed), the total profit of the seed set selected can be low
or even negative.

We construct a simple greedy hill-climbing algorithm to
optimize the profit, similar to that proposed by Kempe et al.
[17] for influence maximization. Algorithm 1 describes the
greedy heuristic. It starts with an empty seed set S ¼ ;. In
each iteration, if the largest marginal profit gain fðv jSÞ by
choosing a new seed from the non-seed nodes V n S is posi-
tive, the greedy heuristic adds the corresponding node to S.
Otherwise, it implies that the profit cannot be further
increased by adding any new seed, so the algorithm stops
and returns the seed set S. This simple greedy algorithm
shares the same spirit with the hill-climbing heuristic
adopted by [24] and [40].

Algorithm 1. SimpleGreedyðG; fÞ
1: initialize S  ;;
2: while True do
3: find u argmaxv2V nS fðv jSÞf g;
4: if fðu jSÞ � 0 then
5: break;
6: S  S [ fug;
7: return S;

Unfortunately, the above simple greedy algorithm does
not have any bounded approximation factor for profit maxi-
mization because the profit function is submodular but not
monotone. This is true even if all nodes have the same unit
costs cðvÞ ¼ 1 for seed selection and the same unit benefits
bðvÞ ¼ 1when activated. Fig. 1 shows an example social net-
work with nþ 1 nodes (n � 2) and 2n edges. The propaga-
tion probabilities are given by pu;vi ¼ 2p and pvi;u ¼ np� �
for each 1 � i � n, where � > 0. When node u is chosen as
the only seed, the probability for each node vi to be acti-
vated is 2p, so the profit fðfugÞ ¼ 1þ 2np� 1 ¼ 2np. For
each node vi, when vi is chosen as the only seed, the proba-
bility for node u to be activated is np� � and only when u is
activated, each remaining node vj ðj 6¼ iÞ can be activated

with probability 2p. Hence, the profit fðfvigÞ ¼
1þ ðnp� �Þ � �1þ 2ðn� 1Þp�� 1 ¼ ðnp� �Þ � �1þ 2ðn� 1Þp�.
When p < 1

2ðn�1Þ, we have 1þ 2ðn� 1Þp < 2 and thus,

fðfvigÞ < fðfugÞ. If the simple greedy algorithm is applied,
u would be the first seed selected. Furthermore, for any
node vi, fðfu; vigÞ ¼ 2þ 2ðn� 1Þp� 2 ¼ 2ðn� 1Þp, which

means fðvi j fugÞ ¼ 2 ðn� 1Þp� 2np ¼ �2p < 0. Therefore,
the greedy algorithm would stop after selecting u and
return S ¼ fug with a profit of fðfugÞ ¼ 2np. On the other
hand, when nodes v1; v2; ; vn are all chosen as seeds, the
probability for node u to be activated is 1� ð1� npþ �Þn.

As a result, fðV n fugÞ ¼ nþ 1� ð1� npþ �Þn � n ¼ 1�
ð1� npþ �Þn. Let p ¼ 1

n2
< 1

2ðn�1Þ and � ¼ 1
4n2

. Then, we have

fðfugÞ ¼ 2
n and fðV n fugÞ ¼ 1� ð1� 1

nþ 1
4n2
Þn ¼ 1� ð1� 1

2nÞ2n.
When n!1, we have 2

n! 0 and 1� ð1� 1
2nÞ2n ! 1� 1

e

which is a positive constant. Thus, the simple greedy algo-
rithm can perform arbitrarily worse than the optimal solu-
tion and does not have any bounded approximation factor.

We further remark that selecting seeds based on seed
minimization algorithms [12], [23], [38] for achieving a
given amount of influence spread would not be able to pro-
vide strong approximation guarantees for profit maximiza-
tion either. As analyzed in [12], [38], for any � > 0, the seed
minimization problem cannot be approximated within a
factor of ð1� �Þ ln jV j unless NP has nOðlog lognÞ-time deter-
ministic algorithms. Therefore, the seed minimization algo-
rithms do not have any constant approximation factor by
themselves. Thus, we do not adapt seed minimization algo-
rithms to our profit maximization problem.

4.2 Double Greedy Algorithms

Buchbinder et al. [5] proposed double greedy algorithms to
address the unconstrained submodular maximization prob-
lem with strong approximation guarantees for non-negative
submodular functions. A deterministic double greedy
algorithm yields ð1=3Þ-approximation, while a randomized
double greedy algorithm yields ð1=2Þ-approximation. Algo-
rithm 2 describes the ideas of these algorithms in our context
of profit maximization. The algorithms start with an empty
set S and a set T initialized with the entire node set of the
social network. They iterate through all the nodes in the net-
work in an arbitrary order to decide whether or not to
include them in S and T . When the algorithms complete, it
must hold that S ¼ T and this is the seed set selected. The
decision for each node u ismade based on themarginal profit
gain of adding u into S (i.e., fðS [ fugÞ � fðSÞ ¼ fðu jSÞ)
and the marginal profit gain of removing u from T (i.e.,
fðT n fugÞ � fðT Þ ¼ �fðu jT n fugÞ). In the deterministic
approach, each node u joins S if it generates higher marginal
profit gain than that of quitting from T and vice versa (lines
5–8). In the randomized approach, each node u is added to S

with probability fðu jSÞ=�fðu jSÞ � fðu jT n fugÞ�, and is
removed from T with probability�fðu jT n fugÞ=�fðu jSÞ �
fðu jT n fugÞ�.

In general, in the double greedy algorithms, if we initial-
ize S with S0 and T with T 0 where ; � S0 � T 0 � V (line 1
in Algorithm 2) and only check the nodes in T 0 n S0 to
decide whether or not to include them in S and T (line 2),
we have the following proposition according to [5].1

Proposition 3. Let S
 denote the optimal solution such that
fðS
Þ ¼ maxS�V fðSÞ. If S and T are initialized with S0 and
T 0 respectively, Algorithm 2 returns a solution SD satisfying

f
�ðS
 [ S0Þ \ T 0

�þ fðS0Þ þ fðT 0Þ � 3 � fðSDÞ;

Fig. 1. A simple hill-climbing algorithm fails to achieve any bounded
approximation factor.

1. Proposition 3 is extracted through a detailed check of the proof of
Theorem I.1 in [5] though it was not presented as a separate proposition
therein.
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and the randomized version of Algorithm 2 returns a solution
SR satisfying

f
�ðS
 [ S0Þ \ T 0

�þ �
fðS0Þ þ fðT 0Þ

�
=2 � 2 � E½fðSRÞ�:

Algorithm 2. DeterministicDoubleGreedyðG; fÞ[5]
1: start with S  ;, T  V ;
2: for each node u 2 V do
3: rþ  fðu jSÞ;
4: r�  �fðu jT n fugÞ;
5: if rþ � r� then
6: S  S [ fug;
7: else
8: T  T n fug;
9: return S (¼ T );

// For randomized double greedy, change the

condition of line 5 to Uð0; 1Þ � rþ=ðrþ þ r�Þ, where

Uð0; 1Þ is a uniformly distributed number

between 0 and 1, and rþ=ðrþ þ r�Þ ¼ 1 if

rþ þ r� ¼ 0.

Proposition 3 gives rise to the approximation guarantees
proved in [5].

Theorem 1. For the profit maximization problem, if the profit of
selecting all nodes as seeds is non-negative, i.e., fðV Þ � 0, the
profit of the seed set SD returned by Algorithm 2 satisfies

fðSDÞ � ð1=3Þ �max
S�V

fðSÞ;

and the expected profit of the seed set SR returned by the ran-
domized version of Algorithm 2 satisfies

E½fðSRÞ� � ð1=2Þ �max
S�V

fðSÞ:

Remark. Buchbinder et al. [5] established the above app-
roximation guarantees for any non-negative submodular
function fð�Þwhen S and T are initialized with ; and V in
the double greedy algorithms. In this case, since ðS
 [
S0Þ \ T 0 ¼ ðS
 [ ;Þ \ V ¼ S
 \ V ¼ S
, by Proposition 3,
it follows that fðS
Þ þ fð;Þ þ fðV Þ � 3 � fðSDÞ and fðS
Þ þ�
fð;Þ þ fðV Þ�=2 � 2 � E½fðSRÞ�. Then, the approximation
guarantees of Theorem 1 are derived from the non-nega-
tivity of function fð�Þ. It is easy to see that, in fact, only a
much looser condition fð;Þ þ fðV Þ � 0 is required to pro-
vide the approximation guarantees. In our profit maximi-
zation problem, since fð;Þ ¼ 0, we just need the condition
fðV Þ � 0.

4.3 Warm-Start by Iterative Pruning
Theorem 1 provides strong theoretical guarantees for the
approximability of Algorithm 2. However, the condition of
fðV Þ � 0may not be realistic in our profitmaximization prob-
lem. fðV Þ � 0 means that selecting all the nodes (users) as
seeds is still profitable, which is unlikely to be true for viral

marketing, particularly in large-scale social networks. Appar-
ently, providing every individual with incentives to advertise
a new product defeats the purpose of viral marketing. On the
other hand, when fðV Þ < 0, we cannot have any bounded
approximation guarantees by directly applying Algorithm 2.
For example, consider the social network in Fig. 2 with nþ 1
nodes (n � 3) and n edges. Let propagation probabilities
pu;vi ¼ 1, and let benefits bðuÞ ¼ 1 and bðviÞ ¼ 1 for each vi.
Let seed selection costs cðuÞ ¼ n

2 þ 2 and cðviÞ ¼ 2 for each vi.
Then, fðV Þ ¼ ðnþ 1Þ � ðn2 þ 2þ 2nÞ ¼ � 3n

2 � 1 < 0. Assume
that Algorithm 2 initializes S ¼ ; and T ¼ V , and it iterates
through the nodes in the order of u; v1; v2; . . . ; vn. In the first
iteration, we have fðu jSÞ ¼ fðfugÞ ¼ bðfugÞ � cðuÞ ¼ nþ 1 �
ðn2 þ 2Þ ¼ n

2 � 1. Meanwhile, �fðu jT n fugÞ ¼ ��bðV Þ � bðV n
fugÞ � cðuÞ� ¼ ��ðnþ 1Þ � n� ðn2 þ 2Þ� ¼ n

2 þ 1. Thus, u
quits from T so thatS ¼ ; and T ¼ V n fug. In the second iter-
ation, fðv1 jSÞ ¼ bðfv1gÞ � bð;Þ � cðv1Þ ¼ 1� 2 ¼ �1 and

�fðv1 jT n fv1gÞ ¼ �
�
bðV n fugÞ� bðV n fu; v1gÞ � cðv1Þ

� ¼
��n� ðn� 1Þ � 2

� ¼ 1. By Algorithm 2, v1 quits from T as

well. Similarly, in each subsequent iteration, vi quits from T .

Thus, Algorithm 2 finally returns S ¼ ; with profit fðSÞ ¼ 0.

However, we already know that fðfugÞ ¼ n
2� 1 > 0. When

n!1, we have fðfugÞ ! 1. Therefore, the deterministic

double greedy algorithm can perform arbitrarily worse than

the optimal solution and does not have any bounded approxi-

mation factorwhen fðV Þ < 0.
To address this problem, we extend the result of Theo-

rem 1 to maintain the same approximation guarantees with
a much weaker condition. We start by proposing an
approach to reduce the search space for maximizing the
profit function. Our strategy is to find the nodes that must
be selected as seeds and eliminate the nodes that are impos-
sible to be chosen as seeds in an optimal solution. Given the
profit function fð�Þ, we define two node sets A1 ¼ fv :
fðv jV n fvgÞ > 0g and B1 ¼ fv : fðv j ;Þ � 0Þg. Due to the
submodularity of fð�Þ, we have A1 � B1 and this allows us
to define a space V1 ¼ ½A1; B1� that contains all the sets S
satisfying A1 � S � B1.

Proposition 4. V1 ¼ ½A1; B1� retains all global maximizers S


for the profit function fð�Þ, i.e., A1 � S
 � B1 for all S

 where

fðS
Þ ¼ maxS�V fðSÞ.
Proof. If fðv jV n fvgÞ > 0, for any seed set S � V n fvg, it

follows from the submodularity of fð�Þ that fðv jSÞ �
fðv jV n fvgÞ > 0. Thus, S [ fvg always generates higher
profit than S, so v must be selected as a seed in every
optimal solution, which indicates A1 � S
. By similar
arguments, if fðv j ;Þ < 0, then v cannot be selected as a
seed in any optimal solution, which implies S
 � B1. tu
We can prune V1 ¼ ½A1; B1� even further using an itera-

tive strategy. Specifically, since the nodes in A1 must be
included in any global maximizer, we can shrink B1 to
B2 ¼ fv : fðv jA1Þ � 0g. Similarly, since the nodes in V nB1

cannot be included in any global maximizer, we can expand
A1 to A2 ¼ fv : fðv jB1 n fvgÞ > 0g. This yields a smaller
space V2 ¼ ½A2; B2� than V1. These operations can be
repeated alternately until A and B cannot be further broad-
ened and narrowed respectively. Algorithm 4.3 presents the
pseudo code of the iterative pruning process. Let A
 and B


denote the node sets finally returned by Algorithm 4.3. The-
orem 2 proves that V
 ¼ ½A
; B
� retains all global maximiz-
ers. For notational convenience, we define A0 ¼ ; and

Fig. 2. Double greedy algorithms fail to achieve any bounded approxima-
tion factor when fðV Þ < 0.
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B0 ¼ V . To establish Theorem 2, we also make use of the fol-
lowing proposition about submodular functions.

Algorithm 3. IterativePruneðG; fÞ
1: start with t ¼ 0, A0  ;, B0  V ;
2: repeat
3: Atþ1  fv : fðv jBt n fvgÞ > 0Þg;
4: Btþ1  fv : fðv jAtÞ � 0Þg;
5: t tþ 1;
6: until converged, i.e., At ¼ At�1 and Bt ¼ Bt�1;
7: return At and Bt;

Proposition 5 ([26]). For any submodular function fð�Þ on the
power set of V and any two subsetsX;Y � V , it holds that

fðY Þ � fðXÞ �
X

v2XnY
fðv jX [ Y n fvgÞ þ

X
v2Y nX

fðv jXÞ; (1)

fðY Þ � fðXÞ �
X

v2XnY
fðv jX n fvgÞ þ

X
v2Y nX

fðv jX \ Y Þ: (2)

Theorem 2. For any global maximizer S
, it holds that
At � Atþ1 � A
 � S
 � B
 � Btþ1 � Bt for any t � 0.
Moreover, both fðAtÞ and fðBtÞ are non-decreasing with t.

Proof. We first show that after each iteration, the newly gen-
erated space is reduced from that in the previous iteration,
i.e., At � Atþ1 � Btþ1 � Bt. We prove it by induction.
Obviously, A0 ¼ ; � A1 � B1 � V ¼ B0 according to
Proposition 4. Suppose that At�1 � At � Bt � Bt�1 holds
for some t � 1. For every node v 2 At, we know
fðv jBt�1 n fvgÞ > 0. Due to the submodularity, we have
fðv jBt n fvgÞ � fðv jBt�1 n fvgÞ > 0. As a result,At � Atþ1.
Similarly, for every node v 2 Btþ1, we have fðv jAtÞ � 0.
Due to the submodularity, fðv jAt�1Þ � fðv jAtÞ � 0,
which indicates that Btþ1 � Bt. Furthermore, for all nodes
v 2 Atþ1 \At, we have fðv jAtÞ ¼ 0, which implies that
ðAtþ1 \AtÞ � Btþ1 via line 4 in Algorithm 4.3. For all nodes
v 2 Atþ1 nAt, we have fðv jBt n fvgÞ > 0. Since v =2 At and
At � Bt, we also have At � Bt n fvg. Thus, fðv jAtÞ � f
ðv jBt n fvgÞ > 0, which implies that ðAtþ1 nAtÞ � Btþ1.
Consequently, we have Atþ1 ¼ ðAtþ1 \AtÞ [ ðAtþ1 nAtÞ
� Btþ1. Therefore, At � Atþ1 � Btþ1 � Bt holds for any
t � 0.

Next, we explore the relationship of S
 to A
 and B
.
Obviously, A0 ¼ ; � S
 � V ¼ B0 holds. As proved in
Proposition 4, A1 � S
 � B1 also holds. Suppose that
At � S
 � Bt holds for some t � 0. Then, any node v sat-
isfying fðv jBt n fvgÞ > 0 must be in S
. Otherwise, if
v =2 S
, we have fðv jS
Þ ¼ fðv jS
 n fvgÞ � f ðv jBt n
fvgÞ > 0 by the submodularity, which indicates
fðS
 [ fvgÞ > fðS
Þ, contradicting the optimality of S
.
The set of such nodes v satisfying fðv jBt n fvgÞ > 0 is
exactly Atþ1, and hence Atþ1 � S
. By induction, we have
At � S
 � Bt for any t � 0 and thus, A
 � S
 � B
.

Finally, we show that fðAtÞ � fðAtþ1Þ and fðBtÞ �
fðBtþ1Þ for any t � 0. In fact, for any node v 2 Atþ1 nAt,
it holds that fðv jAtþ1 n fvgÞ � fðv jBtþ1n fvgÞ � fðv jBtn
fvgÞ > 0, where the first two inequalities are due to the
submodularity (since Atþ1 � Btþ1 � Bt) and the third
inequality is by the definition of Atþ1. Therefore,
fðAtþ1Þ � fðAtÞ þ

P
v2Atþ1nAt

fðv jAtþ1 n fvgÞ � fðAtÞ, where

the first inequality is due to (1) of Proposition 5 and the
fact At � Atþ1. Similarly, it can be shown that fðBtÞ �
fðBtþ1Þ. This completes the proof. tu
Now, instead of starting with S ¼ ; and T ¼ V (the entire

node set) in the double greedy algorithms, we can initialize
S with A
 and T with B
 and only check the nodes in
B
 nA
 to decide whether or not to include them in the seed
set. The following corollary establishes the approximation
guarantees for the modified algorithms.

Corollary 1. Suppose that S and T are initialized with A
 and
B
 such that fðA
Þ þ fðB
Þ � 0, the profit of the seed set ŜD

returned by Algorithm 2 satisfies

fðŜDÞ � ð1=3Þ �max
S�V

fðSÞ;

and the expected profit of the seed set ŜR returned by the ran-
domized version of Algorithm 2 satisfies

E½fðŜRÞ� � ð1=2Þ �max
S�V

fðSÞ:
Proof. By Theorem 2, A
 � S
 � B
. Thus, ðS
 [A
Þ\

B
 ¼ S
 \B
 ¼ S
. As a result, by Proposition 3, it holds

that fðS
Þ þ fðA
Þ þ fðB
Þ � 3 � fðŜDÞ when S and T are

initialized with A
 and B
. Hence, if fðA
Þ þ fðB
Þ � 0,

we obtain fðŜDÞ � ð1=3Þ � fðS
Þ ¼ ð1=3Þ �maxS�V fðSÞ.
The proof of E½fðŜRÞ� � ð1=2Þ �maxS�V fðSÞ is similar. tu
Corollary 1 shows that conducting the iterative pruning

prior to applying the double greedy algorithms allows us to
maintain the same approximation guarantees with the con-
dition fðA
Þ þ fðB
Þ � 0. This condition is much weaker
than the original condition fðV Þ � 0 of Theorem 1 since by
Theorem 2, fðV Þ ¼ fð;Þ þ fðV Þ ¼ fðA0Þ þ fðB0Þ � fðA1Þ þ
fðB1Þ � � � � � fðA
Þ þ fðB
Þ. Thus, Corollary 1 significantly
expands the applicability of the theoretical guarantees.

For the example shown in Fig. 2, fðu jV n fugÞ ¼ 1� ðn2 þ 2Þ
< 0 and fðvi jV n fvigÞ ¼ 0� 2 < 0 for each 1 � i � n.
Thus, by Algorithm 4.3, A1 ¼ ;. Furthermore, fðu j ;Þ ¼ nþ
1� ðn2 þ 1Þ ¼ n

2 � 1 > 0 and fðvi j ;Þ ¼ 1� 2 ¼ �1 < 0 for
each 1 � i � n, which implies B1 ¼ fug. In the second itera-
tion, since fðu jB1 n fugÞ ¼ fðu j ;Þ ¼ n

2 � 1 > 0, we have
A2 ¼ fug. B2 remains the same as B1 ¼ fug. Thus,
Algorithm 4.3 returns A
 ¼ B
 ¼ fug. As a result, fðA
Þ þ
fðB
Þ ¼ 2 � fðfugÞ ¼ n� 2 � 0 satisfying the condition given
in Corollary 1. In fact, since A
 ¼ B
, it must be an optimal
solution and the double greedy algorithms return exactly the
optimal solution.

Finally, we remark that the sets A
 and B
 produced by
the iterative pruning can also be used as warm-starts for the
simple greedy algorithm in Section 4.1 so that only the nodes
inB
 nA
 need to be further examined for seed selection.

4.4 Generality and Time Complexity
Our analysis and algorithms are general frameworks that
can be adapted to any influence propagation models which
are submodular. These include the IC model, the LT model,
the generalized triggering model [17], continuous-time
models [30], and topic-aware models [3], to name a few.

Evaluating the profit metric involves estimating the influ-
ence spread given a seed set. Any existing influence estima-
tionmethods, such asMonte-Carlo simulation [17], [20], [29],
[31] and Reverse Influence Sampling (RIS) [4], [27], [28], [36],
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[37], can be used. The effectiveness and efficiency of influ-
ence estimation are beyond the scope of this paper. Suppose
the time complexity for computing the marginal profit gain
of adding a node u into a seed set S or removing a node u
from a seed set T is OðMÞ. The simple greedy algorithm
(Algorithm 1) takes at most O

�ðjV j � jSjÞM�
time to select

one seed. Thus, the total time complexity of the simple
greedy algorithm is O

�ðjV j þ jV j � 1þþ1ÞM� ¼ OðjV j2MÞ.
The double greedy algorithm (Algorithm 2) takes Oð2MÞ
time for checking each node to decide whether to select it as
a seed. Thus, the total time complexity of the double greedy
algorithm is OðjV j � 2MÞ ¼ OðjV jMÞ. For the iterative prun-
ing process (Algorithm 4.3), the size of the node setBt nAt to
check reduces by at least 1 in each iteration. Therefore, it has
a time complexity ofOðjV j2MÞ.

5 ANALYSIS OF UPPER BOUNDS

The previous section has established a uniform theoretical
guarantee across all instances of the profit maximization
problem under a certain condition. To further improve the
approximation guarantees for specific problem instances
and to deal with the instances where the required condition
is not satisfied, we next derive several upper bounds on the
optimal solution to the profit maximization problem. These
bounds are easy to compute and can be used to characterize
the quality of the solutions constructed on any problem
instances.

5.1 Upper Bound for Double Greedy
For the deterministic double greedy algorithm (Algorithm 2),
besides the approximation guarantee provided by Corol-
lary 1, we can also derive an upper bound on the optimal
solution without any condition requirement. In fact, follow-
ing the proof of Corollary 1, we have an upper bound

m1 , 3 � fðŜDÞ �
�
fðA
Þ þ fðB
Þ�

on the profit of the optimal solution fðS
Þ. Regardless of
whether fðA
Þ þ fðB
Þ is non-negative or not, the above
upper bound always holds. Thus, any seed set ŜD returned
by the double greedy algorithm has an approximation guar-
antee of fðŜDÞ=m1. When fðA
Þ þ fðB
Þ > 0, this guarantee
is tighter than the constant factor ð1=3Þ of Corollary 1.

5.2 Upper Bounds Based on Submodularity
Now, we develop several upper bounds based solely on the
submodularity of the profit function. In a nutshell, based on
a given node set X, we first derive two modular upper
bounds mXðY Þ and �mXðY Þ on fðY Þ for any node set Y .
Then, we find the maxima of mXðY Þ and �mXðY Þ over all
sets Y to derive two upper bounds mðXÞ and �mðXÞ on the
maximum achievable profit maxS�V fðSÞ. Specifically,
leveraging Proposition 5 and restricting the sets X and Y
within the boundaries A
 and B
 discovered by the iterative
pruning (i.e., A
 � X;Y � B
), we can obtain two upper
bounds on fðY Þ as follows:

mXðY Þ , fðXÞ �
X

v2XnY
fðv jB
 n fvgÞ þ

X
v2Y nX

fðv jXÞ; (3)

�mXðY Þ , fðXÞ �
X

v2XnY
fðv jX n fvgÞ þ

X
v2Y nX

fðv jA
Þ: (4)

Proposition 6. For any two sets X and Y where A
 � X;
Y � B
, the above definedmXðY Þ and �mXðY Þ satisfy

mXðY Þ � fðY Þ and �mXðY Þ � fðY Þ:

Proof. For each node v 2 X n Y , since X [ Y n fvg � B
n
fvg, it holds that fðv jB
 n fvgÞ � fðv jX [ Y n fvgÞ due to
the submodularity. By (1) and (3), we obtain mXðY Þ �
fðY Þ. Similarly, for each node v 2 Y nX, since A
 � X
\Y , it holds that fðv jA
Þ � fðv jX \ Y Þ. By (2) and (4),
we obtain �mXðY Þ � fðY Þ. tu
Based on Proposition 6, we can find two series of upper

bounds on the maximum value of fð�Þ as follows. For any
setX where A
 � X � B
, we define

mðXÞ , max
A
�Y�B


mXðY Þ and �mðXÞ , max
A
�Y�B


�mXðY Þ:

Theorem 3. For any setX where A
 � X � B
,

mðXÞ � max
S�V

fðSÞ and �mðXÞ � max
S�V

fðSÞ:

Proof. In fact, mðXÞ ¼ maxA
�Y�B
mXðY Þ � maxA
�Y�B
f
ðY Þ ¼ maxS�V fðSÞ, where the first equality is by the
definition of mðXÞ, the second inequality is due to Propo-
sition 6, and the last equality is due to Theorem 2. Simi-
larly, we have �mðXÞ � maxS�V fðSÞ. tu
A nice feature of the above upper bounds is that mXðY Þ

and �mXðY Þ are modular functions with respect to Y . A func-
tion mð�Þ is modular iff for any node v and any two sets S
and T , mðv jSÞ ¼ mðv jT Þ where mðv jSÞ ¼ mðS [ fvgÞ�
mðSÞ, or equivalently, mðSÞ ¼ mð;Þ þP

v2S mðv j ;Þ. It is
easy to verify that

mXðY Þ ¼ mXð;Þ þ
X
v2Y

�
mXðfvgÞ �mXð;Þ

�
:

Thus, the upper bound mðXÞ is given by

mðXÞ ¼ mXð;Þ þ
X
v2B


max
�
0;mXðfvgÞ �mXð;Þ

�
: (5)

Meanwhile, it is easy to show that

mXðfvgÞ �mXð;Þ ¼
fðv jB
 n fvgÞ; if v 2 X;

fðv jXÞ; otherwise:

�
(6)

Therefore, given X, mðXÞ can be computed in OðjB
jÞ time.
Similarly, �mðXÞ can also be computed in OðjB
jÞ time.
Interested readers are referred to the appendix in the
supplementary file for details, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2017.2787757.

Remark. Note that when the iterative pruning is not
applied, B
 should be replaced by V in (3) and A
 should
be replaced by ; in (4). We refer to these corresponding
upper bounds on fðY Þ as m0XðY Þ and �m0XðY Þ. Due to the
submodularity of the profit function fð�Þ, we have
fðv jB
 n fvgÞ � fðv jV n fvgÞ and fðv jA
Þ � fðv j ;Þ for
any node v. Thus, it holds that mXðY Þ � m0XðY Þ and
�mXðY Þ � �m0XðY Þ. Therefore, an additional advantage of
the iterative pruning is to make the upper bounds tighter.
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5.3 Tighten the Bounds
Theorem 3 indicates that we can obtain upper bounds on the
optimal profit by choosing any setX inmðXÞ and �mðXÞ. How-
ever, it is not known yet what kind of X leads to tighter
bounds. In the following, we show that the seed set returned
by a greedy algorithm (either simple greedy or double greedy
algorithms) can provide the tightest bound among all the seed
sets examined by the greedy algorithm. To prove this claim,
we start by showing that the second order marginal profit
gain is diminishing if the set of nodes activated by a seed set S
is a union of the nodes activated by each individual seed
u 2 S. Recall that V gðSÞ denotes the set of nodes activated by
a seed set S in a sample outcomeX of influence propagation.

Proposition 7. If V gðSÞ ¼
S

u2SV gðfugÞ holds for any set S
under an influence propagation model, then we have

fðv jSÞ � fðv jT Þ � fðv jS [RÞ � fðv jT [RÞ;

for any sets R, S, T where S � T , and any node v =2 T [R.

Proof. We know that fðv jSÞ ¼ bðv jSÞ � cðvÞ for any node
v =2 S. So, for any node v =2 T 	 S,

fðv jSÞ � fðv jT Þ ¼ bðv jSÞ � bðv jT Þ: (7)

On the other hand, in any sample outcomeX of influence
propagation, V gðSÞ � V gðT Þ when S � T , which indi-
cates V gðv jSÞ 	 V gðv jT Þ where V gðv jSÞ , V gðS [ fvgÞn
V gðSÞ is the set of nodes activable by u but not S. Thus,
by definition,

bðv jSÞ � bðv jT Þ ¼ E
h X
u2V gðv jSÞ

bðuÞ
i
� E

h X
u2V gðv jT Þ

bðuÞ
i

¼ E
h X
u2V gðv jSÞnV gðv jT Þ

bðuÞ
i
:

As a result, (7) can be rewritten as

fðv jSÞ � fðv jT Þ ¼ E
h X
u2V gðv jSÞnV gðv jT Þ

bðuÞ
i
:

Similarly, we have

fðv jS [RÞ � fðv jT [RÞ ¼ E
h X

u2V gðv jS[RÞnV gðv jT[RÞ
bðuÞ

i
:

Thus, the proposition holds if V gðv jSÞ n V gðv jT Þ 	 V gðv j
S [RÞ n V gðv jT [RÞ. We prove this relation as follows.
First, since V gðSÞ ¼

S
u2SV gðfugÞ, we have V gðv jSÞ ¼� S

u2S[fvgV gðfugÞ
�n � S

u2SV gðfugÞ
� ¼ V gðfvgÞ n V gðSÞ.

Therefore,

V gðv jSÞ n V gðv jT Þ
¼

�
V gðfvgÞ n V gðSÞ

�
n
�
V gðfvgÞ n V gðT Þ

�

¼
�
V gðfvgÞ n V gðSÞ n V gðfvgÞ

�

[
�
V gðfvgÞ n V gðSÞ \ V gðT Þ

�
¼ V gðfvgÞ n V gðSÞ \ V gðT Þ
¼ V gðfvgÞ \ V gðT Þ n V gðSÞ:

Similarly,

V gðv jS [RÞ n V gðv jT [RÞ
¼ V gðfvgÞ \ V gðT [RÞ n V gðS [RÞ
¼ V gðfvgÞ \ V gðT Þ n V gðS [RÞ:

Since V gðSÞ � V gðS [RÞ, the target relation is proven. tu
Many influence propagation models, including the IC

and LT models, fulfill the condition V gðSÞ ¼
S

u2SV gðfugÞ
in Proposition 7. By the submodularity of fð�Þ, we already
know that fðv jSÞ decreases with the base set S. Proposi-
tion 7 shows that the decreasing rate is slowing down as the
base set expands. This implies that the marginal profit gain
drops faster in the earlier stage of seed selection than in the
later stage. Based on Proposition 7, we can further establish
the monotonicity of the upper bounds mðXÞ and �mðXÞ as
X expands.

Proposition 8. For any set X where A
 � X � B
, and any
node u 2 B
 nA
, we have

mðXÞ � mðX n fugÞ if fðXÞ � fðX n fugÞ;
�mðXÞ � �mðX [ fugÞ if fðXÞ � fðX [ fugÞ:

�

Proof. Based on (5) and (6) in the earlier discussion, we can
rewrite the upper bound mðXÞ as

mðXÞ ¼ mXð;Þ þ
X
v2X

maxf0;fðv jB
 n fvgÞg

þ
X

v2B
nX
maxf0; fðv jXÞg:

Similarly, for any node u 2 X nA
,

mðX n fugÞ ¼ mXnfugð;Þ þ
X

v2ðXnfugÞ
maxf0;fðv jB
 n fvgÞg

þ
X

v2B
nðXnfugÞ
maxf0;fðv jX n fugÞg:

It is easy to show that

mXð;Þ �mXnfugð;Þ ¼ fðu jX n fugÞ � fðu jB
 n fugÞ:

As a result,

mðXÞ � mðX n fugÞ
¼ fðu jX n fugÞ þmaxf0;�fðu jB
 n fugÞg
þ

X
v2B
nX

�
maxf0;fðv jXÞg �maxf0;fðv jX n fugÞg

�

�maxf0;fðu jX n fugÞg:

If fðXÞ � fðX n fugÞ, we have fðu jB
 n fugÞ � fðu jXn
fugÞ � 0. Thus, maxf0;�fðu jB
 n fugÞg ¼ �fðu jB
 n fugÞ
and maxf0;fðu jX n fugÞg ¼ 0. On the other hand, for

any node v 2 B
 nX, we have maxf0;fðv jXÞg�
fðv jXÞ ¼ maxf�fðv jXÞ; 0g � maxf�fðv jX n fugÞ; 0g ¼
maxf0;fðv jX n fugÞg � fðv jX n fugÞ. That is, maxf0;f
ðv jXÞg �maxf0;fðv jX n fugÞg � fðv jXÞ � fðv jX n fugÞ ¼
fðX [ fvgÞ � fðXÞ � fðX [ fvg n fugÞþ fðX n fugÞ ¼ fðu j
X [ fvg n fugÞ � fðu jX n fugÞ. Therefore,
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mðXÞ � mðX n fugÞ
� fðu jX n fugÞ � fðu jB
 n fugÞ
þ

X
v2B
nX

�
fðu jX [ fvg n fugÞ � fðu jX n fugÞ

�
:

Let v1; v2; . . . ; vi be the set of elements in B
 nX. Then,X
v2B
nX

�
fðu jX [ fvg n fugÞ � fðu jX n fugÞ

�

¼
Xi

j¼1

�
fðu jX [ fvjg n fugÞ � fðu jX n fugÞ

�

�
Xi

j¼1

�
fðu jX [ fv1; . . . ; vjg n fugÞ

� fðu jX [ fv1; . . . ; vj�1g n fugÞ
�

¼ fðu jB
 n fugÞ � fðu jX n fugÞ:
where the inequality is due to Proposition 7. Hence, we
can conclude that mðXÞ � mðXn fugÞ � 0 if fðXÞ � f
ðX n fugÞ.

The proof of �mðXÞ � �mðX [ fugÞ if fðXÞ � fðX [ fugÞ
is analogous. tu
Proposition 8 indicates that the higher the profit of a seed

set, the tighter the corresponding upper bound derived based
on the seed set. Intuitively, the seed sets constructed by the
greedy algorithms have increasing profits over iterations and
thus, the final seed sets returned by the greedy algorithms can
provide the tightest bounds. In the following, we prove it for-
mally. Recall that the greedy algorithms start with the bound-
ary node setsA
 andB
 discovered by the iterative pruning.

Theorem 4. For the seed set Sg returned by the simple greedy
algorithm or the double greedy algorithms, we have

mðSgÞ � mðXBÞ � mðB
Þ ¼ �mðB
Þ;
and �mðSgÞ � �mðXAÞ � �mðA
Þ ¼ mðA
Þ;

whereXB is any intermediate seed set from B
 to Sg andXA is
any intermediate seed set from A
 to Sg in the execution of the
greedy algorithm.

Proof. For any set Y where A
 � Y � B
, we have
A
 n Y ¼ ;. Thus, it follows from (3) and (4) that

mA
ðY Þ ¼ fðA
Þ þ
X

v2Y nA

fðv jA
Þ ¼ �mA
 ðY Þ:

Therefore, by definition, mðA
Þ ¼ �mðA
Þ. Similarly,
mðB
Þ ¼ �mðB
Þ.

Suppose there are n nodes in B
 nA
. We next show
that these nodes can be arranged into a sequence
v1; v2; . . . ; vn such that

fðXjÞ � fðXjþ1Þ if j < jSgj;
fðXjÞ � fðXjþ1Þ if j � jSgj:

�

where jSgj is the size of the seed set returned by the
greedy algorithm, X0 ¼ A
, XjSgj ¼ Sg, Xn ¼ B
 and
Xjþ1 ¼ Xj [ fvjþ1g for any 0 � j < n.

Specifically, for the simple greedy algorithm, let
fv1; v2; . . . ; vjSgjg be the sequence of the seeds selected
and fvjSgjþ1; vjSgjþ2; . . . ; vng be a random sequence of the

unselected nodes in B
 nA
. Then, for any 0 � j < jSgj,
we have fðXjÞ � fðXjþ1Þ since the simple greedy algo-
rithm selects a new seed with non-negative marginal
profit gain in each iteration. On the other hand, for any
jSgj � j < n, we know that fðXjSgjÞ � fðXjSgj [ fvjþ1gÞ.
Due to the submodularity of fð�Þ, we have fðXjþ1Þ � f
ðXjÞ � fðXjSgj [ fvjþ1gÞ � fðXjSgjÞ � 0 sinceXjSgj � Xj.

For the double greedy algorithms, let fv1; v2; . . . ; vjSgjg
be the sequence of the nodes added to S and
fvjSgjþ1; vjSgjþ2; . . . ; vng be the reverse sequence of the
nodes removed from T . From Lemma II.1 in [5], we
know that rþ þ r� � 0 in each iteration of Algorithm 2.
Thus, the nodes with negative rþ must have positive r�.
Then, according to the decision condition of Algorithm 2
(line 5), these nodes must be removed from T by both the
deterministic and randomized double greedy algorithms.
This implies that all the nodes added to S must have non-
negative rþ. As a result, for any 0 � j < jSgj, we have
fðvjþ1jXjÞ ¼ fðXjþ1Þ � fðXjÞ � 0 at the time when node
vjþ1 is added to S. Similarly, the nodes with negative r�

must have positive rþ. Then, these nodes must be added
to S by the double greedy algorithms. This implies that
all the nodes removed from T must have non-negative
r�. Consequently, for any jSgj � j < n, we have
�fðvjþ1 jXjÞ ¼ fðXjÞ � fðXjþ1Þ � 0 at the time when
node vjþ1 is removed from T .

Then, according to Proposition 8, we have mðSgÞ ¼
mðXjSgjÞ � mðXjSgjþ1Þ � � � � � mðB
Þ ¼ �mðB
Þ and �mðSgÞ ¼
�mðXjSgjÞ � �mðXjSgj�1Þ � � � � � �mðA
Þ ¼ mðA
Þ. Note that
X0ð¼ A
Þ; X1; . . . ; XjSgj�1, and XjSgjþ1; XjSgjþ2; . . . ; Xnð¼ B
Þ
are actually all the intermediate seed sets explored by the
greedy algorithm. Hence, the theorem is proven. tu
Theorem 4 suggests that the seed sets returned by the sim-

ple greedy and double greedy algorithms can provide tighter
upper bounds than any other intermediate seed set con-
structed during the greedy procedure. Thus, to obtain tighter
upper bounds on the optimal profit, we can directly derive
upper bounds based on the seed sets returned by the greedy
algorithms.We refer to these two upper bounds asm2 , mðSgÞ
and m3 , �mðSgÞ. We shall study the effectiveness of these
bounds in the experimental evaluation. On the other hand, if
we do not apply Theorem 4, we can still get these upper
bounds by comparing those obtained from all the intermedi-
ate seed sets constructed during the greedy procedure and
finding the smallest one among them.However, it would take
much longer time (which increases the time complexity by a
multiplicative factor of OðjB
 nA
jÞ for computing the upper
bounds) to get the same result than using Theorem 4.

6 EVALUATION

6.1 Experimental Setup
Datasets. We use several real OSN datasets in our experi-
ments [21]. Table 2 shows the statistics of these datasets.

TABLE 2
Statistics of OSN Datasets

Dataset #Nodes (jV j) #Edges (jEj) Type Avg. degree

Facebook 4 K 88 K Undirected 43.7
Wiki-Vote 7 K 104 K Directed 29.1
Google+ 108 K 14 M Directed 254.1
LiveJournal 5 M 69 M Directed 28.5
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Algorithms. The performance comparison includes the
following algorithms.

� Random (Rand): It randomly selects a given number
of k nodes. We run the algorithm 10 times and take
their average as the expected profit. To explore dif-
ferent seed set sizes, we iterate through k ¼ jV j

2i
for

i ¼ 0; 1; ; 10 (where jV j is the number of nodes in the
social graph) and choose the one with the largest
expected profit.

� High Degree (HD): It selects k nodes with the highest
degrees. Similar to the random algorithm, we also
iterate through different k values and choose the one
producing the largest profit among k ¼ jV j

2i
for i ¼

0; 1; . . . ; 10.
� IMM/BCT: IMM [36] is a state-of-the-art sampling-

based method that can provide theoretical guaran-
tees for finding the top-k influential nodes for influ-
ence maximization, where activating every node
offers the same benefit. BCT [27] is proposed to han-
dle the scenario that the nodes have weighted bene-
fits if activated. Thus, in our experiments, IMM is
adopted in the uniform benefit setting, whereas BCT
is adopted in the weighted benefit setting. We set the
algorithm parameters � ¼ 0:5 and l ¼ 1 according to
the default setting in [36] for both IMM and BCT. We
again choose the k value producing the largest profit
among k ¼ jV j

2i
for i ¼ 0; 1; ; 10.

� Simple Greedy (SG): We adopt the Reverse Influence
Sampling (RIS) method used in IMM/BCT for

influence estimation in our proposed algorithms.
The number of Reverse Reachable (RR) sets is set to
the maximal number of RR sets generated in the
IMM/BCT method among the above 11 cases of dif-
ferent k values. We also adopt the CELF technique
[20] in the implementation of the simple greedy algo-
rithm to enhance its efficiency.

� Simple Greedy with Iterative Pruning (SGIP): It runs
simple greedy after conducting the iterative pruning
as described in Section 4.3.

� Double Greedy (DG): We generate the same number of
RR sets as that for SG. Since the deterministic and
randomized double greedy algorithms perform quite
similarly in terms of the profit generated and the
running time taken, we shall report the results of
only the deterministic algorithm in order to make
the figures easier to read.

� Double Greedy with Iterative Pruning (DGIP): It runs
double greedy after conducting the iterative pruning.

Parameter Settings. We use both the Independent Cascade
(IC) and Linear Threshold (LT) propagation models. The
propagation probability pu;v of each edge hu; vi is set to the
reciprocal of v’s in-degree, i.e., pu;v ¼ 1=jIvj, as widely
adopted by other studies [6], [16], [27], [28], [36], [37]. We
test different benefit and cost settings. In the uniform ben-
efit setting, every node has a unit benefit if activated. In
the weighted benefit setting, we assign each node v with
a benefit value randomly generated from a normal distri-
bution with a mean 3.0 and a standard deviation 1.0, i.e.,

Fig. 3. Profits produced by different algorithms under uniform cost setting, uniform benefit setting, and IC model.

Fig. 4. Profits produced by different algorithms under degree-proportional cost setting, uniform benefit setting, and IC model.

Fig. 5. Cost and benefit distributions by a single seed under degree-proportional cost setting, uniform benefit setting, and IC model.
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bðvÞ � Nð3:0; 1:0Þ. To avoid negative benefit values, we set
bðvÞ ¼ 0 if the randomly generated value is negative.2 In
the uniform cost setting, all nodes have the same costs for
seed selection. In the degree-proportional cost setting, the
cost of each node is set proportional to its out-degree to
emulate that popular users need more incentives to par-
ticipate. The ratio between the total seed selection cost of
all nodes and total benefit of all nodes is controlled by a
scale factor �, i.e.,

P
v2V cðvÞ ¼ � �Pv2V bðvÞ. The larger

the factor �, the higher the cost of seed selection relative
to the benefit of influence spread. The default value of �
is set to 10.3 To evaluate the profits of the seed sets
returned by different algorithms, we estimate the influ-
ence spread of each seed set by taking the average mea-
surement of 10,000 Monte-Carlo simulations.

6.2 Profits Produced by Different Algorithms
Figs. 3 and 4 show the profits produced by different algo-
rithms under the ICmodel, uniform benefit setting and differ-
ent cost settings. Comparing the seed selection algorithms,
our greedy algorithms are more effective in optimizing the
profit than the three baseline algorithms (Rand, HD and

IMM). The iterative pruning technique can further improve
the greedy algorithms (by up to 13 percent).

Under the uniform cost setting, our simple greedy algo-
rithm degenerates to the IMM algorithm that iterates through
all possible seed set sizes. Thus, as seen from Fig. 3, the greedy
algorithms and IMM produce similar profits, and they both
outperform the high degree and random algorithms. The ran-
dom algorithm, in particular, generates near-zero profit and
is difficult to benefit fromviralmarketing.

Under the degree-proportional cost setting, as seen from
Fig. 4, the high degree and IMM algorithms perform even
worse than the random algorithm with very negative profits
produced. This is because under such a setting, the high-
degree nodes have large costs. To further explore, we plot in
Fig. 5 the cost distribution over all the nodes and the influ-
ence spread of each node when it is chosen as the only seed
(which indicates the maximum possible influence contrib-
uted by each node in any seed set according to the submodu-
larity). Here, the nodes are indexed in decreasing order of
their out-degrees, i.e., node #1 has the highest out-degree,
node #2 has the second highest out-degree and so on. It can
be seen from Fig. 5 that most high-degree nodes are not prof-
itable, i.e., their costs are larger than their influence spreads.
In contrast, many low-degree nodes are profitable due
to their lower costs.4 Thus, the best seed set to maximize
profit should include mostly low-degree nodes. Therefore,
influencemaximization algorithms have poor performance.

We can also see that the double greedy algorithms per-
form considerably better than the simple greedy algorithm
on the Facebook dataset in Fig. 4a. This can again be
explained with the cost and influence distributions shown
in Fig. 5. As seen from Fig. 5a, there are a few high-degree
nodes with influence larger than cost. In the simple greedy
algorithm, these profitable high-degree nodes are selected
first since their profits (influence spread less cost) are
much higher than those of low-degree nodes. This, in conse-
quence, would prevent many low-degree nodes from being
further selected because their influence spreads largely
overlap with the profitable high-degree nodes. On the other
hand, the double greedy algorithm does not select the prof-
itable high-degree nodes. Since the influence spreads of the
profitable high-degree nodes overlap with the low-degree

TABLE 3
Running Times of Different Algorithms (Seconds)

(a)Uniform Cost Setting

Dataset IMM SG SGIP DG DGIP

Facebook 1.28 0.21 0.24 0.22 0.24
Wiki-Vote 0.91 0.14 0.10 0.19 0.10
Google+ 31.02 6.02 7.09 5.72 5.98
LiveJournal 3273.63 550.91 588.66 545.40 587.12

(b) Degree-Proportional Cost Setting

Dataset IMM SG SGIP DG DGIP

Facebook 2.12 0.25 0.25 0.22 0.24
Wiki-Vote 1.10 0.08 0.09 0.08 0.09
Google+ 29.42 6.87 6.53 6.94 6.55
LiveJournal 2756.32 563.16 581.76 555.90 582.53

TABLE 4
Impact of Iterative Pruning

(a) Uniform Cost Setting

Dataset jA
j jB
j jB
 nA
j fðA
Þ þ fðB
Þ
Facebook 12 158 146 622
Wiki-Vote 54 241 187 2,104
Google+ 715 856 141 33,624
LiveJournal 2,719 548,855 546,136 �2,460,900

(b) Degree-Proportional Cost Setting

Dataset jA
j jB
j jB
 nA
j fðA
Þ þ fðB
Þ
Facebook 53 2,589 2,536 �8,678
Wiki-Vote 4,808 4,808 0 9,537
Google+ 36,070 43,062 6,992 54,947
LiveJournal 1,136,106 1,738,332 602,226 1,372,225

TABLE 5
Upper Bounds (Normalized by the Profit of DGIP)

(a)Uniform Cost Setting

Dataset mDG
1 mDG

2 mDG
3 mDGIP

1 mDGIP
2 mDGIP

3

Facebook 49.79 1.21 8.80 2.26 1.07 1.25
Wiki-Vote 49.00 1.63 3.94 1.62 1.12 1.28
Google+ 64.45 1.37 3.50 1.05 1.02 1.03
LiveJournal 56.44 1.51 26.21 5.87 1.28 5.64

(b) Degree-Proportional Cost Setting

Dataset mDG
1 mDG

2 mDG
3 mDGIP

1 mDGIP
2 mDGIP

3

Facebook 101.99 2.31 12.76 27.05 2.15 11.22
Wiki-Vote 16.45 1.00 1.02 1.00 1.00 1.00
Google+ 39.17 1.34 1.59 1.30 1.14 1.20
LiveJournal 63.30 2.30 7.89 1.70 1.31 1.31

2. The number of negative values is very small since about 99.7 percent
of values drawn from a normal distribution are within three times of the
standard deviation away from themean, i.e.,Pr½0 � bðvÞ � 6� � 99:7%.

3. We have tested other values of � and observed similar perfor-
mance trends. Only the results for � ¼ 10 are presented due to space
limitations.

4. Note that under the uniform benefit setting, the benefit is equiva-
lent to the influence spread.
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nodes, when these high-degree nodes are removed from a
nearly-full seed set (which includes almost all the nodes),
there is not much loss in the total influence spread. Thus,
the marginal profit gains r� for these high-degree nodes to
quit from the nearly-full seed set are basically their seed
selection costs (line 4 of Algorithm 2). Fig. 5a shows that such
costs are higher than the marginal profit gains rþ generated
by adding these high-degree nodes into an almost-empty
seed set (line 3 of Algorithm 2). Thus, according to the double
greedy algorithm (lines 5–8 of Algorithm 2), these high-
degree nodes would not be selected. The nodes selected by
the double greedy algorithm are mostly low-degree nodes
which are able to generate similar total influence spread as
the profitable high-degree nodes and have lower total cost
than the latter. Therefore, the double greedy algorithm pro-
duces remarkably higher profit than the simple greedy algo-
rithm. This phenomenon does not occur in the Wiki-Vote
and Google+ datasets as all the high-degree nodes are not
profitable (Figs. 5b and 5c). For the LiveJournal dataset, there
are also a few profitable high-degree nodes. Meanwhile,
there are quite many low-degree nodes offering even higher
profits than these high-degree nodes. As a result, the profit-
able high-degree nodes are not selected by the simple greedy
algorithm and the above phenomenon does not occur. These
observations show that the double greedy algorithm is more
robust than the simple greedy algorithm.

6.3 Running Time
Table 3 shows the running times of different algorithms.
The algorithms are all implemented in C++ and the experi-
ments are carried out on a machine with an Intel Xeon E5-
1650 3.2 GHz CPU and 16 GB memory. As the running
times for the random and high degree algorithms are very
short (less than 0.01 second), we omit them in Table 3. It can
be seen that the IMM algorithm runs significantly slower
than our greedy algorithms. This is because IMM needs to
test different seed set sizes separately to find the solution.
On the other hand, the running times of different greedy
algorithms are similar. This is because the major time for
running these algorithms is taken by generating the RR sets
and the numbers of RR sets used by different greedy algo-
rithms are the same. The running times of our greedy algo-
rithms are less than 600 seconds even for the large
LiveJournal dataset with millions of nodes. This demon-
strates the efficiency of our algorithms.

6.4 Iterative Pruning Technique
Table 4 summarizes the impact of the iterative pruning tech-
nique proposed in Section 4.3. As can be seen, pruning sub-
stantially reduces the number of nodes that need to be
considered for seed selection (by at least 1 order of magni-
tude in most cases). In addition, with a scale factor � ¼ 10,
the profit of selecting all the nodes as seeds is

Fig. 6. Upper bounds (normalized by the profit of DGIP) under weighted benefit setting and IC model on LiveJournal dataset.

Fig. 7. Profits produced by different algorithms under degree-proportional cost setting, weighted benefit setting, and IC model.

Fig. 8. Profits produced by different algorithms under degree-proportional cost setting, weighted benefit setting, and LT model.
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fðV Þ ¼ jV j � 10 � jV j < 0. Thus, running the double greedy
algorithm with the entire node set would not offer any
approximation guarantee. In contrast, as shown in Table 4,
fðA
Þ þ fðB
Þ > 0 holds for most of the cases tested. In
these cases, by Corollary 1, the pruning technique enables
strong theoretical guarantees on the seed sets constructed by
double greedy algorithms. In particular, for the degree-pro-
portional cost setting onWiki-Vote, we have A
 ¼ B
 so that
no node needs to be further checked for seed selection after
pruning, which implies that the pruning process directly
produces the optimal seed set for profitmaximization.

6.5 Upper Bounds
Table 5 shows the upper bounds derived based on the seed
sets returned by the double greedy algorithms without/
with iterative pruning. To quantify their relative order,
these bounds are normalized by the actual profit produced
by the DGIP algorithm. As can be seen, for all the datasets
tested, m1 is always the loosest upper bound among all
those obtained while m2 ¼ mðSgÞ is always the tightest one
no matter whether the pruning technique is used. Compar-
ing the upper bounds derived from the DG and DGIP seed
sets, the latter are considerably lower than the former. This
implies that the iterative pruning technique can improve
the bounds significantly.

Next, we examine the upper bounds derived from the
DGIP seed sets in detail (right half of Table 5). For the cases
where fðA
Þ þ fðB
Þ < 0 (see Table 4), mDGIP

1 is far above 3
times the profit returned by the algorithm. In these cases,
mDGIP
2 certifies approximation guarantees from 46 to 78 per-

cent for the seed set returned by the DGIP algorithm. For
other cases where fðA
Þ þ fðB
Þ � 0, all the bounds are
rather close to the profit obtained by the DGIP algorithm,
and mDGIP

2 certifies at least 76 percent approximation guar-
antee for the seed set returned by the algorithm. These
observations imply that the DGIP algorithm usually per-
forms quite close to the optimal solution.

Fig. 6 shows the evolution of upper bounds derived from
the intermediate seed sets explored by the DGIP algorithm.
We show both the bounds derived with pruning (using A


and B
) and without pruning (using ; and V as explained in
the remark of Section 5.2). It can be seen that the upper bounds
are progressively tightened as the algorithm executes. The
final seed set Sg returned by DGIP provides the tightest
bound among all the seed sets examined. This confirms the
theoretical results of Theorem 4. It can also be seen that the
bounds derived with pruning are much tighter than those
without pruning,which verifies the remark in Section 5.2.

6.6 Weighted Benefit Setting
Fig. 7 shows the profits produced by different algorithms
under the IC model, degree-proportional cost setting, and
weighted benefit setting. The results are similar to those under
the uniform benefit setting (Fig. 4). Our greedy algorithms
considerably outperform the three baseline algorithms (Rand,
HD and BCT). The iterative pruning technique can further
improve the greedy algorithms (Figs. 7c and 7d).

6.7 LT Propagation Model
As discussed, our solutions and analysis can be applied to a
variety of influence propagation models. In this set of
experiments, we further evaluate the algorithms with the
LT propagation model. Fig. 8 shows the profits produced by

different algorithms under the LT model, degree-propor-
tional cost setting, and weighted benefit setting. In general,
the results are quite similar to those under the IC model.
Our greedy algorithms perform much better than the base-
line algorithms, and the double greedy algorithm is more
robust than the simple greedy algorithm.

7 CONCLUSION

In this paper, we have studied a profit maximization prob-
lem for viral marketing in OSNs. The objective is to select
initial seed nodes to maximize the total profit that accounts
for the benefit of influence spread as well as the cost of seed
selection. The non-monotone characteristic of the profit met-
ric differentiates the profit maximization problem from the
traditional influence maximization problem. We have pre-
sented simple greedy and double greedy algorithms for
seed selection, and proposed several new techniques to
enhance/benchmark their performance and expand the
applicability of their approximation guarantees. Experimen-
tal results with real OSN datasets show that: (1) our greedy
algorithms substantially outperform several baseline algo-
rithms; (2) our upper bounds on the maximum achievable
profit offer much tighter guarantees on the quality of the
solutions constructed by various algorithms; (3) our itera-
tive pruning technique can substantially tighten the upper
bounds and further improve the greedy algorithms.
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