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Robust 3D Hand Pose Estimation From Single
Depth Images Using Multi-View CNNs

Liuhao Ge , Hui Liang, Member, IEEE, Junsong Yuan , Senior Member, IEEE, and Daniel Thalmann

Abstract— Articulated hand pose estimation is one of core
technologies in human–computer interaction. Despite the recent
progress, most existing methods still cannot achieve satisfactory
performance, partly due to the difficulty of the embedded
high-dimensional nonlinear regression problem. Most existing
data-driven methods directly regress 3D hand pose from 2D
depth image, which cannot fully utilize the depth information.
In this paper, we propose a novel multi-view convolutional neural
network (CNN)-based approach for 3D hand pose estimation.
To better exploit 3D information in the depth image, we project
the point cloud generated from the query depth image onto
multiple views of two projection settings and integrate them for
more robust estimation. Multi-view CNNs are trained to learn
the mapping from projected images to heat-maps, which reflect
probability distributions of joints on each view. These multi-
view heat-maps are then fused to estimate the optimal 3D hand
pose with learned pose priors, and the unreliable information
in multi-view heat-maps is suppressed using a view selection
method. Experimental results show that the proposed method is
superior to the state-of-the-art methods on two challenging data
sets. Furthermore, a cross-data set experiment also validates that
our proposed approach has good generalization ability.

Index Terms— 3D hand pose estimation, convolutional neural
networks, multi-view CNNs.

I. INTRODUCTION

ARTICULATED hand pose estimation is one of core
technologies in vision-based human-computer interac-

tion, especially in virtual, augmented and mixed reality appli-
cations. With the emergence of commercial depth cameras
in recent years, many research works have focused on 3D
hand pose estimation from depth images [2]–[7]. However, it is
still challenging to estimate 3D hand pose from depth images
robustly and accurately in real-time, because of large hand
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pose variations, severe self-occlusions and high-dimensional
motion of hand joints.

Methods for 3D hand pose estimation can be divided into
data-driven and model-driven methods. Different with model-
driven methods, which require complex model calibration and
are sensitive to initialization, data-driven methods map input
depth images to 3D hand joint locations using discriminative
models, such as the isometric self-organizing map (ISO-SOM)
model [8], random forests [3], [9]–[14], the joint matrix factor-
ization and completion (JMFC) model [15] and convolutional
neural networks (CNNs) [4], [5], [16]–[21], which are trained
on large annotated hand pose datasets [4], [10], [12].

We concentrate on the CNN-based approach in this paper.
One of primary issues of the CNN-based approach for accu-
rate 3D pose estimation is how to effectively utilize the
depth image. If the neural network directly maps the 2D
depth image to 3D joint locations, it will suffer from high
learning complexity and low generalization ability, since the
mapping is highly nonlinear [22]–[24]. To tackle this issue,
Tompson et al. [4] proposed mapping input depth image to a
set of heat-maps representing the 2D probability distributions
of hand joints on the image plane and recovering 3D locations
using the depth information with model fitting. Nonetheless,
this approach cannot effectively exploit the 3D information
in the depth image, since the estimated heat-maps only provide
2D information of hand joints projected on the image plane.

In this paper, we propose a novel multi-view CNN-based
3D hand pose estimation method that can effectively utilize
depth information to accurately infer 3D hand joint locations
without model fitting, as depicted in Fig. 1. In detail, human
hand is first segmented from the input depth image; the point
cloud generated from the hand depth image is projected onto
multiple projection planes; the projected image is then fed
into its corresponding network to regress a set of heat-maps
encoding the 2D probability distributions of hand joints on the
corresponding projection plane. The 3D probability distribu-
tion of hand joint can be inferred from the combination of heat-
maps on multiple views. By formulating multi-view fusion as
the maximum a posteriori estimation with pre-learned hand
pose constraints, we are able to obtain the optimal 3D hand
pose and mitigate the ambiguity of estimations.

Compared with the single view CNN-based method [4], our
proposed multi-view CNN-based method has the following
advantages:

• The single view CNN-based method [4] directly takes the
depth value at the inferred 2D hand joint position as the
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Fig. 1. Overview of our proposed multi-view CNN-based approach for 3D
hand pose estimation. We generate heat-maps for multiple views by projecting
3D points onto a number of projection planes. Multi-view CNNs are trained
in parallel to map projected images on multiple views to their corresponding
heat-maps, which are then fused together to estimate 3D hand joint locations.

Fig. 2. Two problems of single view CNN-based method. (a) A case of
hand pose estimation in single view. Blue points are true locations, and red
points are estimated locations. Small 2D estimation error on the image plane
may cause large depth estimation error. The tip of little finger is misestimated
on the background and the tip of middle finger is misestimated on the palm.
(b) A case of ambiguous estimation. We project the depth image onto x-y,
y-z and z-x planes of a Cartesian coordinate system. Green dot indicates the
true joint location in 2D projection plane, while red dot indicates the wrong
joint location. Although the heat-map on x-y view contains two hotspots that
are difficult to determine, from the heat-map on z-x view, it is obvious that
the x value should be small with high confidence. Therefore, the left hotspot
in the heat-map on x-y view should be true.

hand joint depth. As presented in Fig. 2a, the error of
depth estimation may be large, even if the inferred joint
position just deviates a little from the true joint posi-
tion on the image plane. On the contrary, our proposed
method, generating and fusing heat-maps on multiple
views, can estimate 3D locations more robustly.

• In the case of ambiguous estimation, as presented in the
x-y view of Fig. 2b, the single view CNN cannot deter-
mine the true joint position among multiple hotspots
in the heat-map. When adopting our proposed multi-view
CNNs, the ambiguity can be eliminated by using heat-
maps on other views, such as the case in Fig. 2b.

• Different with the single view CNN-based method [4] that
requires a pre-defined hand model to optimize estimated
hand joint locations, our proposed method implicitly
imposes hand pose constraints learned from training
samples in the optimization problem, instead of manually
defining hand model parameters.

This paper is an extension of our conference paper [1].
The new contributions of this paper are summarized as
follows:

• We have proposed a new multi-view representation which
projects the 3D point cloud onto six views of the oriented
bounding box (OBB) and the axis-aligned bounding
box (AABB) to better leverage 3D information in the
depth image. However, in our conference paper [1],
we only projected the 3D point cloud onto OBB’s three
views. Experimental results have shown that the combi-
nation can further boost the estimation performance.

• We have designed two new networks by applying archi-
tectures of the residual network (ResNet) and the fully
convolutional network (FCN) for estimating more accu-
rate heat-maps. Experimental results have shown that our
proposed networks can achieved better performance than
the network adopted in our conference paper [1].

• We have proposed a 3D data augmentation method for
training CNNs of AABB’s three views which are not
rotation invariant, to make the multi-view CNNs more
robust to various global hand orientations.

• We have proposed a view selection method to suppress
unreliable information in heat-maps for multi-view
fusion. In addition, the multi-view fusion approach
proposed in this paper is more general since it does not
restrict the number of projection views. But the fusion
method in our conference paper [1] is only applicable to
three orthogonal projection views.

• We have conducted more extensive self-comparison
experiments and have compared with more existing
methods on both MSRA dataset [10] and one additional
dataset (NYU dataset [4]). We have also evaluated our
method in real scenarios using the SoftKinetic’s Depth-
Sense camera.

The rest of this paper is organized as follows. Section II
reviews related work on hand pose estimation, especially
the CNN-based methods. Section III introduces the methods
of multi-view representation and multi-view CNNs learning.
The multi-view fusion algorithm is presented in Section IV.
Section V presents extensive experimental results and
Section VI concludes this paper.

II. RELATED WORK

A. Hand Pose Estimation

3D hand pose estimation has been extensively studied over
many years. The most common 3D hand pose estimation
techniques can be classified into model-driven approaches and
data-driven approaches [25]. Model-driven methods usually
find the optimal hand pose parameters via fitting a deformable
3D hand model to input image observations. Such methods
have demonstrated to be quite effective, especially with the
depth cameras [26]–[33]. However, there are some shortcom-
ings for model-driven methods. For example, they usually need
to explicitly define the anatomical size and motion constraints
of the hand for different subjects. In addition, due to the
high dimensional parameter space of the hand pose, they
can be sensitive to initialization for the iterative model-fitting
procedure which will converge to a local optimal pose.

In contrast, the data-driven methods do not require
the explicit specification of the hand model and motion
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constraints. On the contrary, such information is implic-
itly encoded in the trained discriminative model. Therefore,
many recent methods are built upon such a scheme [3]–[5],
[9]–[19], [34], [35]. Among them, the random forest and
its variants have proved to be reasonably accurate and fast.
In [3], the authors propose to use the random forest to directly
estimate hand joint angles from depth images.

A similar method is presented in [11], which further adopts
transfer learning to make up for the inconsistence between
synthetic and real-world data. As the estimation from random
forest can be ambiguous for complex hand poses, pre-learned
hand pose priors are sometimes utilized to better fuse inde-
pendently predicted hand joint distributions [36], [37]. In [10],
the cascaded pose regression algorithm [38] is adapted to the
problem of hand pose estimation by regressing hand joints
hierarchically, in order to preserve the hand pose constraints
during the process of pose regression.

Some other approaches combine the model-based fitting
and the data-driven methods in order to take advantages of
both methods [39]–[41]. In [39], a multi-layered discriminative
model, which is trained on synthetic training data, is first
applied to infer candidate hand poses. Then, the optimal hand
pose is estimated by a model-fitting stage based on particle
swarm optimization. In [40] and [41], a random decision forest
is trained to detect hand parts. Then, a model-based generative
tracking method is applied to estimate hand pose by combining
hand part labels and Gaussian mixture representation of depth
data into an objective function.

B. CNN-Based Articulated Pose Estimation

Recently, convolutional neural networks have shown to
be powerful in articulated pose estimation. In [22], CNNs
are tuned to regress for the 2D human poses by directly
minimizing the pose estimation error on the training data.
Results have shown to outperform traditional methods largely.
However, it takes more than twenty days to train the network
and the dataset only contains several thousand images. Consid-
ering the relatively small size of the dataset used in [22],
it may be difficult to use this method on larger datasets such
as [4], [10], and [12], which consist of more than 70K images.
It is reported in [23] and [42] that such direct mapping with
CNNs from image features to continuous 2D/3D locations is of
high nonlinearity and complexity as well as low generalization
ability, which renders it difficult to train CNNs in such a
manner.

An alternative way of CNN-based articulated pose estima-
tion is to predict the heat-maps of joint positions instead of
the articulated pose parameters. The intensity of a pixel on
the heat-map indicates the likelihood for a joint occurring
there. The network is trained to minimize the difference
between the estimated heat-maps and the ground truth heat-
maps. In this way, the network can be trained efficiently and
this method has achieved state-of-the-art performance in body
pose estimation [23], [43]. Similarly, such a framework has
also been applied in 3D hand pose estimation [4]. However,
the heat-map only provides 2D information of the hand joint
and the depth information is not fully utilized. To address this

TABLE I

NOTATIONS

issue, a model-based verification stage is adopted to estimate
the 3D hand pose based on the estimated heat-maps and the
input depth image [4]. Such heat-map based approaches are
promising as heat-maps can reflect the probability distribution
of hand joints on the projection plane.

Inspired by the above methods, we propose to generate heat-
maps on multiple views and fuse them together to estimate
the probability distribution of hand joints in 3D space. Multi-
view CNNs have shown superior performance in 3D object
recognition and retrieval [44], [45], as well as human action
recognition [46]. Different from existing methods using multi-
view CNNs to extract compact descriptors of 3D shapes
for classification tasks [44]–[46], our proposed method trains
multi-view CNNs to generate multi-view heat-maps and esti-
mates 3D hand joint locations through a fusion stage from
single depth images in real-time, which is a regression task
in 3D space.

III. MULTI-VIEW REPRESENTATION AND LEARNING

Our method estimates 3D hand joint locations from the
single depth image. Specifically, the input of this task is a
depth image containing a human hand and the outputs are K
3D hand joint locations which represent the hand pose. Let the
K objective hand joint locations be � = {φk}K

k=1 ∈ �, here �

is the 3 × K dimensional hand joint space. We summarize the
notations of important variables in Tab. I.

In this section, we describe our proposed method of multi-
view representation and multi-view learning. We first generate
the multi-view hand representation by projecting 3D hand
points onto multiple projection planes. For each view, we train
a CNN model which maps the projected image to a set of
heat-maps representing probability distributions of hand joint
locations on the projected image.

A. Multi-View Representation

The objective for multi-view representation is to generate a
set of projected images {In}N

n=1 on multiple views from the
depth image of the segmented hand. As illustrated in Fig. 1,
the segmented hand in the depth image ID is first converted



GE et al.: ROBUST 3D HAND POSE ESTIMATION FROM SINGLE DEPTH IMAGES USING MULTI-VIEW CNNs 4425

Fig. 3. Illustration of multi-view representation. 3D hand points obtained
from the segmented hand depth image are projected onto x-y, y-z and z-x
planes of the OBB projection coordinate system and the AABB projection
coordinate system, respectively. Color bars of 3D points and projected images
are shown in this figure.

to a set of 3D points in the camera coordinate system by
using the depth camera’s intrinsic parameters. To generate
the multi-view representation, we project these 3D points
onto N projection planes. In order to fully utilize the depth
information in the 2.5D depth image, the projected images of
one frame should provide complementary information as much
as possible. Thus, orthogonal planes, on which the projected
images can reflect different features of hand shapes from
independent views, are good candidates for projection planes.

1) Projection With Oriented Bounding Box: We first project
3D points onto three orthogonal side planes of the oriented
bounding box (OBB), as shown in Fig. 3 (left). The OBB is
generated by performing principal component analysis (PCA)
on the set of 3D points, which is a tight fit around these 3D
points in local space [47]. The origin of the OBB projection
coordinate system is set at the center of the bounding box,
and its x, y, z axes are respectively aligned with the 1st,
2nd and 3rd principal components. Since OBB is rotation
invariant, projected images on OBB’s side planes are also
rotation invariant. Thus, this projection method using OBB
is robust to variation in global hand orientations.

2) Projection With Axis-Aligned Bounding Box: The axis-
aligned bounding box (AABB) is another commonly used
bounding volume. To provide more robust hand pose estima-
tion, we also project the 3D points onto three orthogonal side
planes of AABB, as shown in Fig. 3 (right). The AABB is
the minimum bounding box of which the edges are parallel
with the axes of a fixed coordinate system [47]. Here, the fixed
coordinate system is the camera coordinate system. The origin
of the AABB projection coordinate system is set at the center
of the bounding box, and its x, y, z axes are respectively
aligned with the x, y, z axes of the camera coordinate
system. We have found experimentally that the projected
images generated using AABB are complementary to those

Fig. 4. Examples of projected images on six views which are x-y, y-z,
z-x views in the OBB projection coordinate system and x-y, y-z, z-x views
in the AABB projection coordinate system. The 3D points visualization in this
figure is the same as the corresponding depth image.

generated using OBB, and their integration can further boost
the estimation performance.

For generating the projected image on one view,
the distances from segmented hand 3D points to the projection
plane are first normalized between 0 and 1 (with nearest
points set to 0, farthest points in the segmented hand point
cloud set to 1). The values of pixels which are not belong
to the hand region are set as 1. Then, 3D points are ortho-
graphically projected onto the quantized projection plane, and
corresponding normalized distances are stored as pixel values
of the projected image. If multiple 3D points are projected onto
the same pixel region, the smallest normalized distance will be
stored as the pixel value. As the projected images may be noisy
and may have missing pixels due to self-occlusion in depth
images [48], we perform median filtering and morphological
operations to further smooth the projected images.

Fig. 4 presents some examples of projected images on the
six views. As can be seen, projected images on different views
can reflect different features of hand shapes. The projected
images on OBB’s three views are rotation invariant and can
reflect front, top and lateral shapes of the hand. The projected
images on the AABB’s x-y view are almost the same as input
depth images, because the x-y plane in AABB projection
coordinate system is aligned with the projection plane of
the depth image. In addition, even in the situation where
the hand rotation is large, the front hand shape can still be
recovered in the projected images, e.g. the sixth row’s OBB
x-y view and AABB y-z view in Fig. 4. Although these six
views are not mutually orthogonal and there may be some
redundancy between OBB’s three views and AABB’s three
views, we combine all these six views to make more robust
hand pose estimation, and experiments in Section V will
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Fig. 5. (a) Residual Network. (b) Fully Convolutional Network (FCN).
We experiment with these two network architectures separately in our exper-
iments. Both networks take a 96×96 projected image as input and generate
K heat-maps with the size of 18×18 pixels. The dotted arrows in (a) denote
residual connections. ‘BN’ is short for batch normalization, ‘S’ means stride,
‘P’ means padding. For convolutional and deconvolutional layers, the default
stride is 1, and the default padding is 0. For max pooling layers, the default
stride is the same as kernel size, and the default padding is 0. For simplicity,
we do not present stride and padding when using the default values.

show that the combination method can make more accurate
estimation.

B. Multi-View CNNs Architecture

Multi-view CNNs aim to learn the relations between the
projected images and the heat-maps reflecting hand joint
locations on each view. Since we project 3D points onto
multiple views, for each view, we construct a convolutional
neural network having the same network architecture and
the same architectural hyperparameters. In our conference
paper [1], we employ the multi-resolution network architecture
following the work in [4]. However, with the progress of
neural networks, this network architecture is not optimal.
In this paper, we propose to employ the residual network
architecture (ResNet) [49] and the fully convolutional network
architecture (FCN) [50] for inferring more accurate heat-maps
from projected images, as shown in Fig. 5.

The input projected images are first resized and padded
to 96×96 pixels and filtered by local contrast normal-
ization (LCN) [51] to normalize the contrast in the
image. The outputs of the network are K heat-maps with
18×18 pixels, of which the intensity indicates the confidence
of a joint locating on the 2D position of a specific view.

We denote a training sample as (Xt ,�t ), where Xt is the
depth image in the training dataset, �t is the corresponding
joint locations in the camera coordinate system, t = 1, . . . , T ,
T is the number of training samples. The depth image Xt is
converted to the multi-view representation

{
It,n

}N
n=1 as inputs

to multi-view CNNs. The ground truth heat-map Gk,n (�t )
for the k-th joint on the n-th view is generated by applying
2D Gaussian centered at the 3D ground truth joint location’s

Fig. 6. An example of 3D data augmentation. The original training sample is
shown in the first line, including 3D point cloud, projected images on AABB’s
three views and ground truth joint locations. The transformed training sample
is shown in the second line. In this example, the 3D points are rotated by
rotation angles θx = 10◦, θy = −20◦ and θz = 60◦.

2D projection point on the projection plane. The standard
deviation of Gaussian is set to σ = 1.8 with an output heat-
map size of 18×18, and the Gaussian is normalized to have
a sum of 1. In the training stage, we minimize the following
objective function:

w∗
n = arg min

wn

T∑

t=1

K∑

k=1

∥
∥Gk,n (�t ) − Hk

(
It,n,wn

)∥∥2
F , (1)

where �·�F denotes the Frobenius norm, wn denotes network
weights for the n-th view, Hk represents the k-th hand joint’s
heat-map output from the CNN regressor.

C. 3D Data Augmentation

Since AABB is sensitive to rotation, we propose to augment
the training data by varying global hand orientations. Different
with 2D image data augmentation, our proposed 3D data
augmentation directly rotates the point cloud of hand in 3D
space and then projects the 3D points onto AABB’s three side
planes.

The 3D point cloud of hand is rotated around x , y, z axes
of the camera coordinate system with rotation angles θx , θy

and θz , respectively. The 3D point p is transformed into p�
after 3D rotation:

p� = Rx (θx) · Ry
(
θy

) · Rz (θz) · p, (2)

where Rx , Ry and Rz are 3×3 rotation matrices around x ,
y, z axes, respectively. Fig. 6 shows an example of 3D data
augmentation. As can be seen, the projected images are not
simply rotated in 2D image space. 3D rotation is performed
on both hand point cloud and corresponding ground truth
joint locations. Projected images on AABB’s three views are
generated from the transformed point cloud. Note that since
OBB is rotation invariant, there is no need to augment training
data on OBB’s three views.

In this work, a transformed training set for AABB’s three
views is generated by randomly rotating original training
samples. The rotation angles θx and θy are chosen uniformly
at random from the interval [−30◦, 30◦]. The rotation angle θz

is chosen uniformly at random from the interval [−90◦, 90◦].
During the training stage, both the original training set and
the transformed training set are used for training CNNs
of AABB’s three views, in order to make them robust to
variations in global hand orientations.
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IV. THE MULTI-VIEW FUSION ALGORITHM

In this section, we describe our proposed multi-view fusion
method. The objective for multi-view fusion is to estimate
the 3D hand joint locations � = {φk}K

k=1 from all the N
views’ heat-maps. We first formulate the multi-view fusion
problem as the maximum a posteriori (MAP) estimation,
and propose view selection method for suppressing unreliable
view’s estimation. We then derive the analytical solution to the
optimization problem and obtain final estimation of 3D hand
joint locations. Note that compared with the earlier version
of this paper [1], the multi-view fusion method proposed
in this section is more general without restricting the number
of projection views and more robust to disagreement among
multi-view heat-maps.

A. Problem Formulation

We estimate the hand joint locations � by applying the
MAP estimator on the basis of projections I1, I2, . . . , IN ,
which can be viewed as the observations of the 3D hand pose.
Given the query hand depth image ID , we assume that the N
projections I1, I2, . . . , IN are independent, conditioned on the
joint locations � [52]. Although this is not a strict assumption
when projection planes are not mutually orthogonal, we will
show experimentally that our proposed fusion method based
on this assumption is quite effective compared with state-of-
the-art methods in Section V. We also assume that the K hand
joint locations are independent conditioned on each view’s
projection. Under these two assumptions and the assumption
of equal a priori probability P (�), the posterior probability
of joint locations can be formulated as the product of the
individual estimations from all the N views. The problem to
find the optimal hand joint locations �∗ is thus formulated as
follows:

�∗ = arg max
�

P (�| I1, I2, . . . , IN )

= arg max
�

∏K

k=1

∏N

n=1
P (φk |In )

s.t . � ∈ �, (3)

where � is constrained to a low dimensional subspace � ⊆ �

in order to resolve ambiguous joint estimations.
The posterior probability of the k-th hand joint location on

the n-th view P (φk | In) (k = 1, 2, . . . , K ; n = 1, 2, . . . , N)
can be estimated from heat-maps generated by multi-view
CNNs. Since the intensity on a heat-map indicates the confi-
dence of a joint locating in the 2D position on the projection
plane, we can get the corresponding probability distribution
P

(
φk,n

∣
∣ In

)
from the n-th view’s k-th heat-map, where φk,n

is the k-th 3D hand joint location φk’s 2D projection point on
the n-th view’s projection plane.

We denote the signed distance from 3D joint location φk

to the n-th view’s projection plane as dk,n . Thus, φk can
be decomposed into φk,n and dk,n which are independent of
each other. Assuming that, conditioned on the n-th view’s
projection In , the distribution of the signed distance variable

Fig. 7. Illusion of multi-view fusion. For illustration purpose, we only
present a case having three views for fusion in this figure. The probability
distribution P

(
φk,n

∣
∣ In

)
on the n-th view is obtained from its corresponding

heat-map (n = 1, 2, . . . , N; in this figure, N = 3). For a 3D sampling point
p, it is projected onto all the N views to get its 2D projection points
pn and their corresponding heat-map intensities P

(
φk,n = pn |In

)
. Then,

Q (φk = p) = ∏N
n=1 P

(
φk,n = pn |In

)
.

dk,n is uniform, we have:

P (φk | In) = P
(
φk,n, dk,n

∣
∣ In

)

= P
(
φk,n

∣∣ In
)
P

(
dk,n

∣∣ In
)

∝ P
(
φk,n

∣
∣ In

)
. (4)

Thus, the optimization problem in Eq. 3 can be transformed
into:

�∗ = arg max
�

∏K

k=1

∏N

n=1
P

(
φk,n |In

)

= arg max
�

∏K

k=1
Q (φk), (5)

where Q (φk) = ∏N
n=1 P

(
φk,n |In

)
for the k-th hand joint.

Eq. 5 indicates that we can get the optimal hand joint loca-
tions by maximizing the product of Q (φk) for all the joints.
The distribution of Q (φk) can be estimated from sampled
values of Q (φk = p), where p denotes the 3D sampling
point. In this work, when using OBB/AABB’s three views,
the 3D points are uniformly sampled in the corresponding
bounding box; when using the combination of OBB and
AABB’s six views, the 3D points are uniformly sampled in the
intersection of OBB and AABB. As shown in Fig. 7, the 3D
sampling point p is projected onto all the N views to get
its 2D projection points pn and their corresponding heat-
map intensities P

(
φk,n = pn |In

)
(n = 1, 2, . . . , N). Then,

the value of Q (φk = p) for a 3D point p can be computed
by multiplying these intensities.

B. View Selection

In order to handle the disagreement among multiple views’
estimations, if the confidence values of some views are
evidently smaller than those of all the other views, these
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values should be suppressed. For each 3D sampling point p,
we define the set of views whose intensities are below a
threshold as U p = {

n�∣∣ P
(
φk,n� = pn�

∣
∣ In�

)
< τk,n�

}
, where

τk,n� is the threshold determined by the Otsu’s thresholding
method on the corresponding heat-map. If there is only a small
portion of views whose intensities are below the threshold,
namely

∣
∣U p

∣
∣ ≤ εN , it means that confidence values provided

by these views may be unreliable and the value of Q (φk = p)
will be computed from all the other views’ intensities:

Q (φk = p) =
⎛

⎝
N∏

n=1,n /∈U p

P
(
φk,n = pn

∣∣ In
)
⎞

⎠

N
N−|U p|

when
∣
∣U p

∣
∣ ≤ εN, (6)

where the power N
/(

N − ∣
∣U p

∣
∣) is used for normalization.

If more views’ intensities are below the threshold, namely∣
∣U p

∣
∣ > εN , we no longer suppress the small intensities and

the value of Q (φk = p) will be assigned to zero. In our
implementation, the coefficient ε is set to ε = 1/5. Thus, when
we use OBB/AABB’s three views, namely N = 3, no views’
intensities will be suppressed; when we use the combination
of OBB and AABB’s six views, namely N = 6, at most one
view’s intensity will be suppressed. By applying the method
of view selection, information in heat-maps can be more
effectively utilized, thus the estimation will be more robust
and accurate.

C. Solution to the Optimization Problem

For simplicity of the optimization problem, the distribution
of Q (φk) is approximated as a 3D Gaussian distribution
N (μk ,�k), where μk is the weighted mean vector, �k is
the weighted covariance matrix. These parameters of the
Gaussian distribution can be estimated from the sampled
values of Q (φk = p):

μk =
∑

p

w(k)
p p, �k =

∑

p

w(k)
p ( p − μk) ( p − μk)

T , (7)

where w
(k)
p = Q (φk = p)

/∑
p� Q

(
φk = p�) is the weight of

sampling point p for joint k.
Based on above assumptions and derivations, the optimiza-

tion problem in Eq. 5 can be approximated as follows:

�∗ = arg max
�

∑K

k=1
log Q (φk)

= arg max
�

∑K

k=1
logN (μk,�k)

= arg min
�

∑K

k=1
(φk − μk)

T �−1
k (φk − μk)

s.t . � =
∑M

m=1
αm em + u, (8)

where � is constrained to take the linear form. In order to
learn the low dimensional subspace � of hand configuration
constrains, PCA is performed on joint locations in the training
dataset during the training stage [37]. E = [e1, e2, · · · , eM ]
are the principal components, α = [α1, α2, · · · , αM ]T are the

coefficients of the principal components, u is the empirical
mean vector, and M 
 3 × K .

As proved in Appendix VI, given the linear constraints of �,
the optimal coefficient vector α∗ = [

α∗
1 , α∗

2 , · · · , α∗
M

]T is:

α∗ = A−1b, (9)

where A is an M × M symmetric matrix, b is an M-
dimensional column vector:

Ai j =
∑

k

eT
j,k�

−1
k ei,k, bi =

∑

k

(μk − uk)
T �−1

k ei,k ,

ei =
[
eT

i,1, eT
i,2, · · · , eT

i,K

]T ; u = [
uT

1 , uT
2 , · · · , uT

K

]T
;

i, j = 1, 2, · · · , M .
The optimal joint locations �∗ are reconstructed by back-

projecting the optimal coefficients α∗ in the subspace � to the
original joint space �:

�∗ =
∑M

m=1
α∗

m em + u. (10)

To sum up, the proposed method for multi-view fusion
consists of two main steps. The first step is to estimate the
parameters of Gaussian distribution Q (φk) for each joint using
all the N views’ heat-maps. Unreliable intensities of some
views will be suppressed when calculating the sampled value
of Q (φk = p). The second step is to calculate the optimal
coefficients α∗ and reconstruct the optimal joint locations �∗.
Since an analytical solution has been derived, the 3D joint
locations can be inferred efficiently using the proposed multi-
view fusion algorithm.

V. EXPERIMENTS

A. Dataset

We conduct self-comparisons and comparisons with state-
of-the-art methods on two datasets released in [4] and [10].

The MSRA Hand Pose Dataset released in [10] (called
MSRA2015 dataset for short) contains nine subjects’ right
hands, each subject contains 17 gestures and each gesture
contains about 500 frames, which are captured using the
Intel’s Creative Interactive Gesture Camera. In the following
experiments, we use eight subjects as the training set
containing about 84,000 frames for training multi-view CNNs
and the remaining one as the testing set containing about
10,500 frames. This experiment is repeated nine times for all
subjects. For each depth image, the ground truth contains 21
3D hand joint locations. As shown in Fig. 8a, the 21 hand
joints are the wrist center, five metacarpophalangeal joints,
five proximal interphalangeal joints, five distal interphalangeal
joints and five finger tips, respectively.

The NYU Hand Pose Dataset released in [4] (called NYU
dataset for short) contains 72,757 training frames and
8,252 testing frames, which are captured by the PrimeSenseTM

3D sensor. For each frame, the ground truth contains
36 3D hand joint locations. However, our evaluation is
performed on a subset of 14 hand joints, following previous
work [4], [5], [17]. As shown in Fig. 8b, the 14 objective
hand joints are five finger tips, five proximal interphalangeal
joints, the distal interphalangeal joint of the thumb, two wrist
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Fig. 8. Illustration of objective hand joints. (a) Objective hand joints
in MSRA2015 dataset. The number of hand joints is K = 21. (b) Objective
hand joints in NYU dataset. The number of hand joints is K = 14.

joints and the palm center, respectively. Since the NYU dataset
provides original depth images containing human body and
background, the hand should be segmented from the original
depth image. Similar to [4], random decision forest (RDF) [53]
is applied for hand segmentation. Note that in our conference
paper [1], we did not perform any experiments on this dataset.

In addition, in order to evaluate the generalization ability
of our method, we conduct a cross-dataset experiment by
training the multi-view CNNs on MSRA2015 dataset and
testing on the MSRA Hand Tracking Dataset released in [31]
(called MSRA2014 dataset for short). The definition of objec-
tive hand joints in MSRA2014 dataset is the same as that
in MSRA2015 dataset. But the hand poses, hand sizes and
hand shapes are different in these two datasets.

B. Evaluation Metrics

We employ three metrics to evaluate the estimation perfor-
mance. The first metric is the mean error distance for each
hand joint across all test frames, which is a standard evaluation
metric. The second metric is the proportion of good test frames
in the entire test frames. A test frame is regarded as good
only when all estimated joint locations are within a maximum
allowed distance from the ground truth, namely the error
threshold. This worst case accuracy proposed in [54] is a very
strict criterion. The third metric is the proportion of joints
within an error threshold among all test joints [39].

C. Implementation Details

Our proposed multi-view CNNs are implemented within the
Torch7 [55] framework. When training the multi-resolution
network in [1], we use the stochastic gradient descent
algorithm with learning rate of 0.2, batch size of 64,
momentum of 0.9 and weight decay of 0.0005. When training
ResNet and FCN, we use the RMSprop algorithm with
learning rate of 0.001, batch size of 64, epsilon of 0.01.
Training is stopped after 50 epochs to prevent overfitting. All
experiments are conducted on a computer with two Intel Core
i7-5930K processors, 64GB of RAM and two Nvidia Tesla
K80 GPUs each having 12GB of GPU memory.

D. Self-Comparison

1) Single View CNN Versus Multi-View CNNs: To evaluate
the superiority of the multi-view method over the single
view method, we implement the single view CNN-based

approach. In our implementation, only projected images on
the x-y plane of OBB projection coordinate system are fed
into the CNN, which is similar to the method in [4]. We can
only estimate x and y coordinates of hand joints from output
heat-maps using the 2D Gaussian fitting method as that in [4].
The z coordinate can be inferred using the pixel value of the
projected image. If the estimated 2D position of a hand joint
is on the background of the projected image, the z coordinate
will be set as zero in the OBB projection coordinate system
rather than the maximum depth value, which can lower the
estimation error on z direction. As presented in Fig. 9 (left
and middle), the multi-view regression approach significantly
outperforms the single view regression approach.

2) Evaluating Fusion Methods: To evaluate the effective-
ness of our proposed optimal fusion method, we implement
the average fusion method as baseline, which can be regarded
as a simplified alternative of the proposed optimal fusion
method. This method first estimates 2D projection points of
the 3D hand joint location on x-y, y-z and z-x planes of the
OBB projection coordinate system by fitting Gaussian models
on corresponding heat-maps. The 3D hand joint location is
determined by averaging x, y and z coordinates, which are
obtained from three views’ 2D projection points, in the OBB
projection coordinate system. As can be seen in Fig. 9 (left
and middle), the mean error over all joints of the optimal
fusion method is 13.1mm on MSRA2015 dataset, while that
of the average fusion method is 15.8mm; for the worst case
accuracy, the optimal fusion method performs better than the
average fusion method when the error threshold is smaller than
50mm, but is a little bit worse than the average fusion method
when the error threshold is larger than 50mm. The reason may
be that the average fusion method takes the average among
ambiguous estimations, which may not deviate from the right
estimation very large. The optimal fusion method is able to
choose the optimal one among ambiguous estimations. But
once this method chooses the wrong estimation, the estimation
error will be very large. However, high accuracy at small
error threshold should be more favorable. The optimal fusion
method is overall better than the average fusion method
and we adopt the optimal fusion method in the following
experiments.

An experimental example of the ambiguous estimation is
presented in Fig. 10, where the tip of index finger is very
likely to be confused with the tip of little finger. As shown
in this figure, the single view regression method only exploits
the heat-map of OBB’s x-y view containing two hotspots,
thus estimates the location of index fingertip with large error
distance. However, the multi-view optimal fusion method fuses
heat-maps of three views and estimates the 3D location with
high accuracy. The estimation of the multi-view average fusion
method is between those of the above two methods, as this
method underutilizes the information of heat-maps.

Additionally, we evaluate the impact of different numbers
of principal components M used for the constraint in Eq. 8
on the worst case accuracy under different error thresholds.
As can be seen in Fig. 9 (right), it is suitable to use 35 principal
components for constraint considering the estimation accuracy.
We set M = 35 for all the other experiments.
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Fig. 9. Self-comparison of different methods on MSRA2015 dataset [10] using OBB’s three views. Left: the mean error distance for each joint across all
the test frames (R: root, T: tip). Middle: the proportion of good test frames in the entire test frames over different error thresholds. Right: the influence of
different numbers of principal components used in hand pose constraints on the estimation accuracy.

Fig. 10. A case of ambiguous estimation. Top-left: 3D point cloud with
ground truth and estimated 3D locations of the tip of index finger. Top-right:
projected images on OBB’s three views. Bottom-right: heat-maps of OBB’s
three views. The ground truth and estimated 3D locations of the tip of index
finger are projected onto three views and their heat-maps for comparison.
Lines indicate offsets between estimated joint locations and the ground truth.

3) Impact of Heat-Map Resolution: We evaluate the impact
of the heat-map resolution on accuracy and real-time perfor-
mance. In this experiment, we apply the FCN architectures
with view selection and data augmentation for generating
heat-maps with different resolutions, i.e., 9 × 9, 18 × 18
and 36 × 36. To make fair comparison, we design the FCNs
with comparable numbers of network parameters for different
heat-map resolutions. As shown in Fig. 11, when the error
threshold is smaller than 30mm, the method with 36 × 36
heat-maps performs best, and the method with 9 × 9 heat-
maps performs worst. However, when the error threshold
is larger than 30mm, the method with 36 × 36 heat-maps
performs worst. Moreover, the method with 36 × 36 heat-maps
is time-consuming, which runs at 18.7fps and cannot achieve
real-time performance. Balancing between the runtime and
the estimation accuracy, we choose 18 × 18 as the heat-map
resolution.

4) Effectiveness of Combination OBB With AABB: We
experiment with the hand pose estimation method using
OBB/AABB’s three views as well as the method using both
OBB and AABB’s six views. As shown in Fig. 12, compared
with the method using OBB’s three views, the method
using AABB’s three views performs almost the same on

Fig. 11. Self-comparison of different heat-map resolutions on NYU [4] hand
pose dataset. The mean error distances over all joints and the average frame
rates are shown in the legends.

MSRA2015 dataset, and performs worse on NYU dataset.
But the method using both OBB and AABB’s six views
outperforms the first two methods over most error thresholds
even without using the view selection method. These results
demonstrate that the projected images of OBB and AABB’s
six views are complementary to each other, and the fusion of
six views’ heat-maps can produce more accurate and robust
results.

5) Effectiveness of View Selection: When fusing heat-maps
from multiple views, our method selects views with reliable
estimations and suppresses unreliable estimations. As shown
in Fig. 12, when using the combination of OBB and AABB’s
six views, the view selection method will further improve the
estimation accuracy, which indicates that it is effective to deal
with the disagreement among multiple views’ estimations by
using our proposed view selection method.

6) Effectiveness of 3D Data Augmentation: In Section III-C,
we augment the training data for AABB’s three views by
randomly rotating the 3D point cloud. As shown in Fig. 12,
when applying 3D data augmentation, the estimation accuracy
is slightly better than the method without using data augmen-
tation. If the variation in hand global orientations is larger
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Fig. 12. Evaluation of combining OBB and AABB’s six views, view selection method, 3D data augmentation and different network architectures on
MSRA2015 dataset [10] and NYU dataset [4]. The mean error distances over all joints of different methods are shown in the legend titles.

Fig. 13. Comparison with state-of-the-art approaches on MSRA2015 dataset [10]. Left: the proportion of good test frames in the entire test frames over
different error thresholds. Middle & right: the mean error distance over different yaw and pitch angles of the viewpoint. Some curves are cropped from
corresponding figures reported in [10], [15], and [34].

for the test frames, the improvement achieved by 3D data
augmentation will be more evident.

7) Comparison of Network Architectures: In all of the above
experiments, we employ the multi-resolution network in [1] to
estimate the heat-maps. Here, we experiment with the ResNet
and FCN. As shown in Fig. 12, both the ResNet and FCN
can improve the estimation accuracy, especially on the NYU
dataset, which shows that both networks have good gener-
alization ability. Moreover, the FCN has fewer parameters
(24 million on both datasets) than the multi-resolution network
(99 million on the MSRA dataset and 56 million on the NYU
dataset) and ResNet (93 million on the MSRA dataset and
58 million on the NYU dataset). Thus, the model size of FCN
is smaller. But the estimation accuracy of ResNet is slightly
better than that of FCN. In following comparisons with state-
of-the-art methods, we present results of the ResNet due to its
better estimation accuracy.

The last four self-comparison experiments are newly added
in this paper compared with our conference paper [1].

E. Comparison With State-of-the-Art

In this section, we compare our methods with state-of-the-
art methods. We denote the method proposed in our confer-
ence paper [1] using OBB’s three views and multi-resolution

network as MVCNN-OBB, and our method using OBB and
AABB’s six views with the ResNet architecture, view selection
and data augmentation as MVCNN-Hybrid.

1) Comparison on MSRA2015 Dataset: On MSRA2015
dataset, we compare our multi-view CNN-based method with
three state-of-the-art methods: the random forest based hierar-
chical regression method [10], the JMFC based collaborative
filtering method [15] and the local surface normals based
method with finger jointly regression and pose classifica-
tion [34]. Note that the first two methods have been validated
to be superior to methods in [3], [12], and [27]. Thus,
we indirectly compare with these methods. However, in our
conference paper [1], we only compared with the first method.

As shown in Fig. 13 (left), our MVCNN-Hybrid method
achieves the best performance when the error threshold is
larger than 5mm, and our MVCNN-OBB method achieves
the second best performance when the error threshold is
between 15mm and 30mm. When the error threshold is 5mm,
the good frame proportions of our methods are slightly inferior
to those of the hierarchical regression method [10] and the
JMFC based method [15]. This may be induced by the
relatively low resolution of heat-maps (18×18) adopted in our
methods.
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Fig. 14. Comparison with state-of-the-art approaches on NYU dataset [4]. Left: the proportion of good test frames in the entire test frames over different error
thresholds. Right: the proportion of joints within different error thresholds. Some curves cropped from corresponding figures reported in [5] and [16]–[19].

We evaluate the mean error distances over different yaw and
pitch angles of these methods. As presented in Fig. 13 (middle
and right), the mean error distances of our MVCNN-OBB
method and MVCNN-Hybrid method are about 2mm and 5mm
smaller than those of the hierarchical regression method [10]
over all the yaw and pitch angles, respectively. Moreover,
our methods are more robust to the pitch angle variation
with smaller stand deviations (0.64mm for MVCNN-OBB and
0.58mm for MVCNN-Hybrid) than the hierarchical regression
method (0.79mm) [10].

2) Comparison on NYU Dataset: On NYU dataset, we first
compare the worst case accuracies of our proposed multi-
view CNN-based methods with five state-of-the-art methods.
The first method is the single view CNN-based heat-map
regression method proposed in [4] which directly adopts the
depth image as the input of the network (denoted as Single
View). For comparison, the estimated 2D joint location in the
depth image is converted to 3D location with the informa-
tion of its corresponding depth value. The second method
is the CNN-based direct hand pose estimation with a prior
proposed in [17] (denoted as Prior). The third method is
the CNN-based hand pose estimation using a feedback loop
proposed in [5] (denoted as Feedback). The fourth method is
the CNN-based hand model parameters regression proposed
in [18] (denoted as Model-based). The last method is the
deep feature based matrix completion method proposed in [16]
(denoted as DeepHand). As shown in Fig. 14 (left), our
MVCNN-Hybrid method significantly outperforms these five
state-of-the-art methods when the error threshold is larger than
10mm, and our MVCNN-OBB method achieves the second
best performance when the error threshold is between 20mm
and 45mm.

In order to make a fair comparison with the spatial attention
network based hierarchical hybrid method proposed in [19]
(denoted as Hybrid_Hier_SA), we evaluate the proportion
of joints within different error thresholds on the subset
containing 11 hand joints following the experimental setting
in [19] (removing palm joints except the root joint of thumb).
As shown in Fig. 14 (right), our MVCNN-Hybrid method
outperforms the methods in [5], [17], and [19] over all the
error thresholds, and our MVCNN-OBB method achieves

TABLE II

AVERAGE ESTIMATION ERRORS (IN mm) OF 6 SUBJECTS FOR 7 METHODS

EVALUATED ON MSRA2014 DATASET [31]

the second best performance when the error threshold is larger
than 10mm.

F. Cross-Dataset Experiment

We conduct a cross-dataset experiment to further vali-
date the generalization ability of our proposed multi-view
CNN-based hand pose estimation method. In this experiment,
we aim at adapting the multi-view CNNs trained on the source
MSRA2015 dataset [10] to the target MSRA2014 dataset [31].

We train the multi-view CNNs on all the nine
subjects in MSRA2015 dataset [10]. The fully trained
multi-view CNNs are evaluated on all the six subjects
in MSRA2014 dataset [31]. Following the evaluation criterion
in [31], we only evaluate the average estimation errors for
the wrist center and five fingertips. As shown in Table II,
we compare our MVCNN-OBB method and MVCNN-Hybrid
method with model-based tracking approaches presented
in [31], which are FORTH [27], PSO [31], ICP [56],
ICP-PSO [31] and ICP-PSO∗ (ICP-PSO with finger based
initialization) [31]. In our conference paper [1], we did not
evaluate our MVCNN-Hybrid method in this experiment.

As reported by [31], these model-based tracking methods
require a carefully calibrated hand model for each subject’s
hand, and these methods rely on the temporal information
for tracking. Particularly, these methods utilize ground truth
information for the first frame initialization. However, our
methods do not utilize these information, thus are more
flexible for different subjects and are robust to estimation



GE et al.: ROBUST 3D HAND POSE ESTIMATION FROM SINGLE DEPTH IMAGES USING MULTI-VIEW CNNs 4433

Fig. 15. Qualitative results for MSRA2015 dataset [10] and NYU dataset [4] of two methods: the MVCNN-OBB method (in the first line) and the MVCNN-
Hybrid method (in the second line). The ground truth hand joint locations are shown in the last line. We show hand joint locations and bones with the point
cloud. Different hand joints and bones are visualized using different colors. This figure is best viewed in color.

Fig. 16. Qualitative results for testing in real scenarios on different subjects with different hand sizes and hand poses. For each subject, the first line are the
depth images captured by the SoftKinetic’s DepthSense camera; the second line is the segmented hand depth images and the estimated hand joint locations.
Different hand joints and bones are visualized using different colors. This figure is best viewed in color.

failure. Despite these unfavorable conditions, both of our
MVCNN-OBB method and MVCNN-Hybrid method still
outperform FORTH, PSO and ICP methods, as presented
in Table II, which demonstrates that our methods have good
generalization ability. It is not surprising that our methods
are inferior to ICP-PSO and ICP-PSO∗, since ICP-PSO and
ICP-PSO∗ are tracking methods that require a carefully cali-
brated hand model and ground truth for first frame initializa-
tion, while our methods do not require any hand model and
do not utilize any temporal information for tracking or ground
truth for initialization. Furthermore, we conduct this exper-
iment on cross-dataset that is more challenging. It is worth
noting that the average estimation error of our MVCNN-
Hybrid method is only 1.7mm worse than that of the ICP-PSO
method.

G. Qualitative Results

Fig. 15 shows qualitative results of the MVCNN-OBB
method and the MVCNN-Hybrid method on several chal-
lenging test frames in MSRA2015 dataset [10] and NYU
dataset [4]. As can be seen, the estimation accuracy of the
MVCNN-Hybrid method is generally better than that of the
MVCNN-OBB method. It is worth noting that even though
some depth images in NYU dataset are very noisy and
some frames are incomplete, e.g., the 6th and 10th columns
in Fig. 15, our proposed multi-view CNN-based methods

are still able to make accurate estimations of 3D hand joint
locations from these depth images.

We additionally evaluate our pre-trained multi-view CNN
models in real scenarios, which is a newly added exper-
iment compared with our conference paper [1]. We train
the multi-view CNN models on all the 9 subjects of
the MSRA2015 dataset in [10] and apply these models
to perform real-time hand pose estimation. As shown
in Fig. 15 (the 1st line), the depth images are captured
by the SoftKinetic’s DepthSense camera which is different
with the Intel’s Creative Interactive Gesture Camera used
in MSRA2015 dataset [10]. We experiment on three subjects,
who are not included in MSRA2015 dataset [10], with
different hand sizes and hand poses. The qualitative results
of hand pose estimation using our MVCNN-Hybrid method
are shown in Fig. 16 (the 2nd line). As can be seen, our
proposed multi-view CNN-based hand pose estimation method
is tolerant for different hand poses and hand sizes, and it is
even tolerant for different types of depth cameras of which the
noise distribution may be different. This experiment further
demonstrates the good generalization ability of our proposed
multi-view CNN-based method.

H. Runtime

The runtime of our MVCNN-OBB method is 12.2ms
in average, including 1.8ms for depth image preprocessing
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and multi-view projection, 6.8ms for multi-resolution networks
forward propagation and 3.6ms for multi-view fusion.
Therefore, the MVCNN-OBB method runs in real-time at
about 82fps. The runtime of our MVCNN-Hybrid method
is 16.8ms in average, including 3.2ms for depth image
preprocessing and multi-view projection, 9.3ms for ResNets
forward propagation and 4.3ms for multi-view fusion. There-
fore, the MVCNN-Hybrid method runs in real-time at about
60fps. Note that tasks of multi-view projection and multi-
view fusion are executed on CPU with parallelism, and the
task of CNNs forward propagation is executed on GPU
with parallelism. Although the MVCNN-Hybrid method is
slower than the MVCNN-OBB method, the MVCNN-Hybrid
method can achieve more accurate and robust results than the
MVCNN-OBB method and it can still run fast in real-time.

VI. CONCLUSION

In this paper, we have presented a multi-view CNN-based
approach for robust 3D hand pose estimation. The 3D point
cloud generated from the depth image is projected onto both
OBB and AABB’s six views. The multi-view CNNs are trained
to map projected images to heat-maps representing the prob-
ability distributions of hand joints on projected images. Two
network architectures are proposed using ResNet and FCN
which have good generalization ability. 3D data augmentation
is performed on training CNNs of AABB’s three views to
make them more robust to various hand orientations. Heat-
maps from different views are fused to make the optimal
estimation of 3D hand joint locations. Furthermore, we have
proposed a view selection method to suppress unreliable
information in multi-view heat-maps. Experimental results
are presented to show the superior performance and good
generalization ability of our proposed methods.

In the future work, our multi-view CNN-based method
can be extended to 3D human pose estimation and tracking
from depth images. We are also looking forward to
extending the multi-view CNN-based method to multi-
object tracking [57]–[61] with multiple cameras for visual
surveillance.

APPENDIX

DERIVATION OF THE OPTIMAL SOLUTION

The optimization problem is formulated as follows:

�∗ = arg min
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⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

T

· [e1, e2, · · · , eM ] = 0

Thus, we can get M linear equations for M unknown
variables α1, α2, · · · , αM :

K∑

k=1

⎡

⎣

⎛

⎝
M∑

j=1

α j eT
j,k +uT

k −μT
k

⎞

⎠�−1
k ei,k

⎤

⎦= 0, i =1, 2, · · · , M

∴∴∴
M∑

j=1

[(
K∑

k=1

eT
j,k�

−1
k ei,k

)

α j

]

=
K∑

k=1

(μk − uk)
T �−1

k ei,k

Let Aα = b, then:

Ai j =
K∑

k=1

eT
j,k�

−1
k ei,k, bi =

K∑

k=1

(μk − uk)
T �−1

k ei,k

i, j = 1, 2, · · · , M

At last, we can get the solution for the optimization
problem: α∗ = A−1b.
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