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Abstract. Compared with depth-based 3D hand pose estimation, it is
more challenging to infer 3D hand pose from monocular RGB images,
due to substantial depth ambiguity and the difficulty of obtaining fully-
annotated training data. Different from existing learning-based monoc-
ular RGB-input approaches that require accurate 3D annotations for
training, we propose to leverage the depth images that can be easily ob-
tained from commodity RGB-D cameras during training, while during
testing we take only RGB inputs for 3D joint predictions. In this way, we
alleviate the burden of the costly 3D annotations in real-world dataset.
Particularly, we propose a weakly-supervised method, adaptating from
fully-annotated synthetic dataset to weakly-labeled real-world dataset
with the aid of a depth regularizer, which generates depth maps from
predicted 3D pose and serves as weak supervision for 3D pose regression.
Extensive experiments on benchmark datasets validate the effectiveness
of the proposed depth regularizer in both weakly-supervised and fully-
supervised settings.

Keywords: 3D hand pose estimation, weakly-supervised methods, depth
regularizer

1 Introduction

Articulated hand pose estimation has aroused a long-standing study in the past
decades [23, 38, 39], since it plays a significant role in numerous applications
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Fig. 1. Illustration of the concept of weakly supervised 3D hand pose estimation. Dif-
ferent from conventional fully-supervised methods (a) that use 3D labels to guide joint
predictions, our proposed weakly-supervised method (b) leverages the reference depth
map, which can be easily obtained by consumer-grade depth camera, to provide weak
supervision. Note that we only need the reference depth map during training as a reg-
ularizer. During testing, the trained model can predict 3D hand pose from RGB-only
input.

such as human-computer interaction and virtual reality. Although 3D hand pose
estimation with depth cameras [13, 7, 26, 41, 6] has gained tremendous success in
recent years, the advance in monocular RGB-based 3D hand pose estimation[46,
18, 27, 15], however, still remains limited. Due to the wide availability of RGB
cameras, the RGB-based solution for 3D hand pose estimation is more favored
than depth-based solutions in many vision applications.

Compared with depth images, single-view RGB images exhibit inherent depth
ambiguity, which makes 3D hand pose estimation from single RGB images a
challenging problem. To overcome the ambiguity, recent work on RGB-based 3D
hand pose estimation [46] relies on large amount of labeled data for training,
while comprehensive real-world dataset with complete 3D annotations is often
difficult to obtain, thus limiting the performance. Specifically, compared with 2D
annotations, providing 3D annotations for real-world RGB images is typically
more difficult since 2D locations can be directly defined in the RGB images
while 3D locations cannot be easily labeled by human annotator. To address this
problem, Zimmermann et al. [46] turned to render low-cost synthetic hands with
3D models, from which the ground truth of 3D joints can be easily obtained.
Although achieving good performance on the synthetic dataset, this method,
however, does not generalize well to real image dataset due to the domain shift
between image features. Paschalis[22] employed a discriminative approach to
localize the 2D keypoints and model fitting method to calculate the 3D pose.
Recently, Muller et al. [18] leveraged CycleGANs [45] to generate a “real” dataset
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Fig. 2. We present a weakly-supervised approach for 3D hand pose estimation from
monocular RGB-only input. Our method with depth regularizer (column 4) signifi-
cantly boosts the performance of other baselines (column 2 and column 3). Note that
columns 2-5 are shown in a novel viewpoint for better comparison.

transferred from synthetic dataset. However, limited performance shows that
there still exists gap between generated “real” images and real-world images.

Our proposed weakly-supervised adaptation method addresses this limitation
in a novel perspective. We observe that most of the previous works [46, 18, 27] for
hand pose estimation from real-world single-view RGB images focus on train-
ing with complete 3D annotations, which are expensive and time-consuming to
obtain, while ignoring the depth images that can be easily captured by commod-
ity RGB-D cameras. Moreover, it is indicated that such low-cost depth images
contain rich cues for 3D hand pose labels, as depth-based methods show decent
performance on 3D pose estimation. Based on these observations, we propose to
leverage the easily captured depth images to compensate the scarcity of entire 3D
annotations during training, while during testing we take only RGB inputs for
3D hand pose estimation. Fig. 1 illustrates the concept of our proposed weakly
supervised 3D hand pose estimation method, which alleviates the burden of the
costly 3D annotations in real-world datasets.

In particular, similar to the previous works [44, 32, 42, 37, 1] in body pose
estimation, we apply a cascaded network architecture including a 2D pose esti-
mation network and a 3D regression network. We note that directly transferring
the network trained on synthetic dataset to real-world dataset usually produces
poor estimation accuracy, due to the domain gap between them. To address this
problem, inspired by [19, 4], we innovate the structure with a depth regularizer,
which generates depth images from predicted 3D hand pose and regularizes the
predicted 3D regression by supervising the rendered depth map, as shown in
Figure 1 (b). This network essentially learns the mapping from 3D pose to its
corresponding depth map, which can be used for the knowledge transfer from
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the fully-annotated synthetic images to weakly-labeled real-world images with-
out entire 3D annotations. Additionally, we apply the depth regularizer to the
fully-supervised setting. The effectiveness of the depth regularizer is experimen-
tally verified for both our weakly-supervised and fully-supervised methods on
two benchmark datasets: RHD[46] and STB datasets[43].

To summarize, this work makes the following contributions:

• We innovatively introduce the weakly supervised problem of leveraging low-
cost depth maps during training for 3D hand pose estimation from RGB
images, which releases the burden of 3D joint labeling.

• We propose an end-to-end learning based 3D hand pose estimation model
for weakly-supervised adaptation from fully-annotated synthetic images to
weakly-labeled real-world images. Particulary, we introduce a depth regu-
larizer supervised by the easily captured depth images, which considerably
enhances the estimation accuracy compared with weakly-supervised base-
lines (see Figure 2).

• We conduct experiments on the two benchmark datasets, which show that
our weakly-supervised approach compares favorably with existing works and
our proposed fully-supervised method outperforms all the state-of-the-art
methods.

2 Related Work

3D hand pose estimation has been studied extensively for a long time, with
vast theoretical innovations and important applications. Early works [23, 17, 28]
on 3D hand pose estimation from monocular color input used complex model-
fitting schemes which require strong prior knowledge on physics or dynamics
and multiple hypotheses. These sophisticated methods, however, usually suffer
from low estimation accuracy and restricted environments, which result in lim-
ited prospects in real-world applications. While multi-view approaches [21, 35]
alleviate the occlusion problem and provide decent accuracy, they require so-
phisticated mesh models and optimization strategies that prohibit them from
real-time tasks.

The emergence of low-cost consumer-grade depth sensors in the last few years
greatly promotes the research on depth-based 3D hand pose estimation, since the
captured depth images provide richer context that significantly reduces depth
ambiguity. With the prevailing of deep learning technology[10], learning-based
3D hand pose estimation from single depth images has also been introduced,
which can achieve state-of-the-art 3D pose estimation performance in real time.
In general, they can be classified into generative approaches [20, 34, 16], discrim-
inative approaches [13, 40, 6, 7, 5, 8] and hybrid approaches [25, 31, 30].

Inspired by the great improvement of CNN-based 3D hand pose estimation
from depth images[24], deep learning has also been adopted in some recent works
on monocular RGB-based applications [46, 18]. In particular, Zimmermann et al.
[46] proposed a deep network that learns an implicit 3D articulation prior of joint
locations in canonical coordinates, as well as constructs a synthetic dataset to



Weakly-supervised 3D Hand Pose Estimation from Monocular RGB Images 5

tackle the problem of insufficient annotations. Muller et al. [18] embedded a
“GANerated” network which transfers the synthetic images to “real” ones so
as to reduce the domain shift between them. The performance gain achieved
by these methods indicates a promising direction, although estimating 3D hand
pose from single-view RGB images is far more challenging due to the absence
of depth information. Our work, as a follow-up exploration, aims at alleviating
the burden of 3D annotations in real-world dataset by bridging the gap between
fully-annotated synthetic images and weakly-labeled real-world images.

Dibra et al. [4] is the closest work in spirit to our approach, which proposed
an end-to-end network that enables the adaptation from synthetic dataset to
unlabeled real-world dataset. However, we want to emphasize that our method
is significantly different from [4] in several aspects. Firstly, our work is targeted
at 3D hand pose estimation from single RGB input, whereas [4] focuses on depth-
based predictions. Secondly, compared with [4] that leverages a rigged 3D hand
model to synthesize depth images, we use a simple fully-convolutional network
to infer the corresponding depth maps from the predicted 3D hand pose. To the
best of our knowledge, our weakly-supervised adaptation is the first learning-
based attempt that introduces a depth regularizer to monocular-RGB based 3D
hand pose estimation. This presents an alternative solution for this problem and
will enable further research of utilizing depth images in RGB-input applications.

3 Methodology

3.1 Overview

Our target is to infer 3D hand pose from a monocular RGB image, where the
3D hand pose is represented by a set of 3D joint coordinates Φ = {φk}Kk=1 ∈
Λ3D. Here Λ3D is the K × 3 dimensional hand joint space with K = 21 in
our case. Figure 3 depicts the proposed network architecture, which utilizes a
cascaded architecture inspired from [44]. It consists of a 2D pose estimation
network (convolutional pose machines - CPM), a 3D regression network, and a
depth regularizer. Given a cropped single RGB image containing human hand
with certain gesture, we aim to get the 2D heatmap and the corresponding depth
of each joint from the proposed end-to-end network. The 2D joint locations
are denoted as Φ2D ∈ Λ2D, where Λ2D ∈ RK×2 and the depth values are
denoted as Φz ∈ Λz, where Λz ∈ RK×1. The final output 3D joint locations are
represented in the camera coordinate system, where the first two coordinates are
converted from the image plane coordinates using the camera intrinsic matrix,
and the third coordinate is the joint depth. Note that our depth regularizer is
only utilized during training. During testing, only 2D estimation network and
regression network are used to predict joint locations.

The depth regularizer is the key part to facilitate the proposed weakly su-
pervised training, i.e., relieve the painful joint depth annotations for real-world
dataset by making use of the rough depth maps, which can be easily captured
by consumer-grade depth cameras. In addition, our experiments show that the
introduced depth regularizer can slightly improve 3D hand pose prediction of
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Fig. 3. Overview of our proposed weakly-supervised 3D hand pose regression network,
which is trained in an end-to-end manner. During training, cropped images from both
synthetic dataset and real image dataset are mixed in each single batch as the input to
the network. To compensate the absence of ground truth annotations for joint depth
in real data, we extend the network with a depth regularizer by leveraging the corre-
sponding depth maps available in both synthetic and real datasets to provide a weak
supervision. During testing, real images only go through the part of the network in the
dashed line box. The obtained 2D heatmaps and joint depth are concatenated as the
output of the network.

fully-supervised methods as well, since it serves as an additional constraint for
the 3D hand pose space.

The entire network is trained with a Rendered Hand Pose Dataset (RHD)
created by [46] and a real-world dataset from Stereo Hand Pose Tracking Bench-
mark [43]. For ease of representation, the synthesized dataset and the real-world
dataset are denoted as IRHD and ISTB , respectively. Note that for weakly-
supervised learning, our model is pretrained on IRHD and then adapted to ISTB

by fusing the training of both datasets. For fully-supervised learning, the two
datasets are used independently in the training and evaluation processes.

3.2 2D Pose Estimation Network

For 2D pose estimation, we adopt the encoder-decoder architecture similar to
the Convolutional Pose Machines by Wei et al. [36] and [46], which is fully convo-
lutional with successively refined heatmaps in resolution. The network outputs
K low-resolution heatmaps. The intensity on each heat-map indicates the con-
fidence of a joint locating in the 2D position. Here we predict each joint by
applying the MMSE (Minimum mean square error given a posterior) estimator,
which can be viewed as taking the integration of all locations weighed by their
probabilites in the heat map, as proposed in [29]. We initialize the network with
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weights adapted from human pose prediction to IRHD, tuned by Zimmermann
et al. [46].

To train this module, we employ mean square error (or L2 loss) between the

predicted heat map Φ̂HM ∈ RH×W and the ground-truth Gaussian heat map
G(Φgt

2D) generated from ground truth 2D labels Φgt
2D with standard deviation

σ = 1. The loss function is

L2D(Φ̂HM ,Φ
gt
2D) =

H∑
h

W∑
w

(Φ̂
(h,w)
HM −G(Φgt

2D)(h,w))2. (1)

3.3 Regression Network

The objective of the regression network is to infer the depth of each joint from
the obtained 2D heatmap. Most previous work [46, 2, 32] in 3D human pose
and hand pose estimation based on single image attempt to lift the set of 2D
heatmaps into 3D space dirctly, while a key issue for this strategy is how to
distinguish between the multiple 3D poses inferred from a single 2D skeleton.
Inspired from [44], our method exploits contextual information to reduce the
ambiguity of lifting 2D heatmaps to 3D locations, by extracting the intermediate
image evidence in 2D pose estimation network concatenated with the predicted
2D heatmaps as the input to the regression network. We employ a simple yet
effective depth regression network structure with only two convolutional layers
and three fully-connected layers. Note that here we infer a scale-invariant and
translation-invariant representation of joint depth, by subtracting each hand
joint with the location of root keypoint and then normalizing it by the distance
between a certain pair of keypoints, as done in [46, 18].

For fully-supervised learning, we simply apply smooth L1 loss introduced
in [9] between our predicted joint depth Φ̂z and the ground truth label Φgt

z . For
weakly-supervised learning, no penalty is enforced because of the absence of 3D
annotations. To address this issue, we introduce a novel depth regularizer as weak
supervision for joint depth regression, which will be elaborated in Section 3.4.

Overall, the loss function of the regression network is defined as

Lz(Φ̂z,Φ
gt
z ) =

{
smoothL1(Φ̂z,Φ

gt
z ) , if full supervision

0 , if weak supervision
(2)

in which

smoothL1(x) =

{
0.5x2, if |x| < 1
|x| − 0.5, otherwise.

(3)

3.4 Depth Regularizer

The purpose of the depth regularizer is to take the easily-captured depth im-
ages as an implicit constraint of physical structures that can be applied to both
weakly-supervised and fully-supervised situations. Figure 4 shows the architec-
ture of the proposed depth regularizer, which is fully-convolutional with six lay-
ers, inspired by [19, 3]. Each layer contains a transposed convolution followed by
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Fig. 4. Network architecture of our proposed depth regularizer. Given 3D hand joint
locations as the input, the depth regularizer is able to render the corresponding depth
map by gradually enlarging the intermediate feature maps and finally combining them
into a single depth image.

a Relu, after which the feature map is expanded along both image dimensions.
In the first five layers, batch normalization [12] and drop out [11] are introduced
before Relu in order to reduce the dependency on the initialization and alleviate
from overfitting the training data. The final layer combines all feature maps to
generate the corresponding depth image from 3D hand pose.

Let (Φ̂3D, D) denote a training sample, where Φ̂3D is the input of the depth
regularizer containing a set of 3D hand joint locations, and D is the correspond-
ing depth image. We normalize D into Dn:

Dn =
∑
i,j

dmax − dij
drange

(4)

where dij is the depth value at the image location (i, j), and dmax and drange
represent the maximum depth value and the depth range, respectively. Note that
the normalized depth value tends to be larger when located closer to the camera
and background is set to 0 in this process.

The input of the network Φ̂3D = {(Φgt
2D,Xz)} contains two parts: the ground

truth 2D labels Φgt
2D in the image coordinate system and the joint depth Xz.

Note that the reason we use ground truth 2D locations rather than our predicted
2D results is to simplify the training process since no back-propagation from the
depth regularizer is fed back into the 2D pose estimation network. For the joint
depth Xz, we apply the same normalization:

Xz =
dmax − Φ̂z · Lscale − droot

drange
(5)

where Φ̂z denotes the predicted joint depth from the regression network, which
is a set of root-relative and normalized values and can be recovered to global
coordinates by multiplying with hand scale Lscale and shifting to root depth
droot.

To train the depth regularizer, we adopt L1 norm to minimize the difference
between the generated depth image D̂nand the corresponding ground truth Dn:

Ldep(D̂n,Dn) = |D̂n −Dn| (6)
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3.5 Training

Combining the losses in Eq. (1), (2), and (6), we obtain the overall loss function
as

L = λ2DL2D(Φ̂HM ,Φ
gt
2D) + λzLz(Φ̂z,Φ

gt
z ) + λdepLdep(D̂n,Dn). (7)

Adam optimization [14] is used for training. For weakly-supervised learning,
similar to [44] and [33], we adopt fused training where each mini-batch contains
both the synthetic and the real training examples (half-half), shuffled randomly
during the training process. In our experiments, we adopt a three-stage training
process, which is more effective in practice compared with direct end-to-end
training. In particular, Stage 1 initializes the regression network and fine-tunes
the 2D pose estimation network with weights from Zimmermann et al. [46],
which are adapted from the Convolutional Pose Machines [36]. Stage 2 initializes
the depth regularizer, as described in Section 3.4. Stage 3 fine-tunes the whole
network with all the training data, which is an end-to-end training.

4 Experiments

4.1 Implementation Details

Our method is implemented with Pytorch. For the first training stage described
in Section 3.5, we take 60 epochs with an initial learning rate of 10−7, a batch
size of 8 and a regularization strength of 5 × 10−4. For Stage 2 and Stage 3,
we spend 40 and 20 epochs, respectively. During the fine-tunning process of the
whole network, we set λ2D = 1, λz = 0.1 and λdep = 1. All experiments are
conducted on one GeForce GTX 1080 GPU with CUDA 8.0.

4.2 Datasets and Metrics

We evaluate our method on two publicly available datasets: Rendered Hand Pose
Dataset (RHD) [46] and a real-world dataset from Stereo Hand Pose Tracking
Benchmark (STB) [43].

RHD is a synthetic dataset of rendered hand images with a resolution of
320 × 320, which is built upon 20 different characters performing 39 actions
and is composed of 41,258 images for training and 2,728 images for testing. All
samples are annotated with 2D and 3D keypoint locations. For each RGB image,
the corresponding depth image is also provided. This dataset is considerably
challenging due to the large variations in viewpoints and hand shapes, as well as
the large visual diversity induced by random noise and different illuminations.
With all the labels provided, we train the entire proposed network, including the
2D pose estimation network, the regression network and the depth regularizer.

STB is a real world dataset containing two subsets with an image resolution
of 640 × 480: the stereo subset STB-BB captured from a Point Grey Bum-
blebee2 stereo camera and the color-depth subset STB-SK captured from an
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Fig. 5. Left: Comparisons of 3D PCK results of different baselines with our method
on STB [43]. Our proposed weakly-supervised method, w/ 2D + w/ depth regularizer,
significantly outperforms other weakly-supervised baselines(Orange and Green curve).
Right: Different annotation schemes on RHD [46] and STB [43] dataset. Note that we
move the root joint location of STB dataset from palm to wrist keypoint to make the
two datasets consistent with each other.

active depth camera. Note that the two types of images are captured simultane-
ously with the same resolution, identical camera pose, and similar viewpoints.
Both STB-BB and STB-SK provide 2D and 3D annotations of 21 keypoints.
For weakly-supervised experiments, we use color-depth pairs in STB-SK with
2D annotations, as well as root depth (i.e., wrist in the experiments) and hand
scale (the distance between a certain pair of keypoints). For fully-supervised
experiments, both color-depth pairs (STB-BB) and stereo pairs (STB-SK) with
2D and 3D annotations are utilized to train the whole network. Note that all
experiments conducted on STB dataset follow the same training and evaluation
protocol used in [46, 18], which trains on 10 sequences and tests on the other
two.

We evaluate the 3D hand pose estimation performance with two metrics.
The first metric is the area under the curve (AUC) on the percentage of correct
keypoints (PCK) score, which is a popular criterion to evaluate the pose esti-
mation accuracy with different thresholds, as proposed in [46, 18]. The second
metric is the mean error distance in z-dimension over all testing frames, which is
used to further analyse the impact of the proposed depth regularizer. Following
the same condition used in [46, 18], we assume that the global hand scale and
the root depth are known in the experimental evaluations so that we can report
PCK curve based on 3D hand joint locations in the global domain, which are
computed from the output root-relative articulations.

4.3 Quantitative Results

Weak supervision. We first evaluate the impact of weak label constraints on
STB dataset compared with fully-supervised methods with complete 2D and 3D
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Fig. 6. The effect of the proposed depth regularizer in fully-supervised setting on
RHD [46] and STB datasets [43]. Left: 3D PCK on RHD dataset. Middle: 3D PCK
on STB dataset. Right: mean joint error distances in z-dimension on RHD and STB
datasets.

annotations. Specifically, we compare our proposed weakly-supervised approach
(w/ 2D + w/ depth regularizer) with three baselines: a) w/o 2D + w/o
depth regularizer: directly using pretrained model based on RHD dataset; b)
w/ 2D + w/o depth regularizer: tuning the pretrained network with 2D
labels in STB dataset and c) w/ 2D + w/ 3D: fully-supervised method with
complete 2D and 3D annotations.

As illustrated in the left part of Figure 5, the fully-supervised method achieves
the best performance while directly transferring the model trained on synthetic
data with no adaptation (baseline-a) yields the worst estimation results. This
is not surprising, since the fully-supervised method provides the most effective
constraint in the 3D hand pose estimation task and real-world images have con-
siderable domain shift from synthetic ones. Note that these two baselines serve
as upper bound and lower bound for our weakly-supervised method. Compared
with baseline-a, by fine-tuning the pretrained model with the 2D labels of the
real images, baseline-b significantly improves the AUC value from 0.667 to 0.807.
Moreover, adding our proposed depth regularizer further increases AUC to 0.889,
which demonstrates the effectiveness of the depth regularizer.

We note that STB and RHD datasets adopt different schemes for 2D and 3D
annotations, as shown in the right part of Figure 5. In particular, STB dataset
annotates palm position as root joint, which is different from RHD dataset that
uses wrist position as root keypoint. Thus, we move the palm joint in STB
to wrist point so as to make the annotations consistent for fused training. To
evaluate the introduced noise of moving root joint, we compare our results of
fully-supervised method on STB dataset with palm-relative and wrist-relative
representations. Original palm-relative representation performs slightly better,
reducing the mean error by about 0.6mm. Besides, it is also noted that MCP
(Metacarpophalangeal joints) positions are closer to wrist joint in STB dataset
and labels for STB dataset are relatively noisy compared with synthetic dataset
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Fig. 7. Comparisons with state-of-the-art methods on RHD [46] and STB [43]. Left:
3D PCK on RHD dataset. Right: 3D PCK on STB dataset.

RHD (e.g., thumb dip is annotated in the background). Due to these differences,
we argue that there exists a bias between our pose predictions and the ground
truth provided by STB dataset, which might decrease the reported estimation
accuracy of our proposed weakly-supervised approach. Furthermore, these in-
consistencies, on the other hand, suggest the necessity of the introduced depth
regularizer, since it provides certain prior knowledge of hand pose and shapes.

Fully-supervised 3D Hand Pose Estimation. We also evaluate the effec-
tiveness of the depth regularizer in the fully-supervised setting on both RHD
and STB datasets. Note that the two datasets are trained independently in this
case. As presented in Figure 6 (left) and Figure 6 (middle), our fully-supervised
method with depth regularizer outperforms that without depth regularizer on
both RHD and STB dataset, with improvement of 0.031 and 0.001 in AUC,
respectively. Figure 6 (right) shows the mean joint error in z-dimension, indicat-
ing that adding depth regularizer is able to slightly improve the fully-supervised
results in the joint depth estimation.

Comparisons with State-of-the-arts. Fig 7 shows the comparisons with
state-of-the-art methods [46, 43, 18, 27, 22] on both RHD and STB datasets.
It can be seen that on RHD dataset, even without the depth regularizer, our
fully-supervised method significantly outperforms the state-of-the-art method
[46], improving the AUC value from 0.675 to 0.887. On STB dataset, our fully-
supervised method achieves the best results compared with all existing methods.
Note that our weakly-supervised method is also superior to some of the exist-
ing works, which demonstrates the potential values for the weakly-supervised
exploration when complete 3D annotations are difficult to obtain in real-world
dataset. It is also noted that the AUC values of our proposed methods in Figure 7
are slightly different from their counterparts in Section 4.3. This is because here
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Fig. 8. Samples of the generated depth maps by the trained depth regularizer with the
input of ground truth 3D hand joint locations. Our trained depth regularizer is able to
render plausible and convincing depth maps. Note that the errors are mainly located
around contours of the hand, where the reference depth images (e.g. captured by depth
camera) are typically noisy.

we test on the stereo pair subset STB-BB rather than the color-depth subset
STB-SK.

4.4 Qualitative Results

Figure 9 shows some visual results of our proposed weakly-supervised approach
and baselines. For a better comparison, we show the 3D skeleton reconstructions
at a novel view and the skeleton reconstructions of our method at the original
view are overlaid with the input images. It can be seen that, after additionally
imposing the depth regularizer with the reference depth images, our weakly-
supervised approach on real-world dataset yields considerably better estimation
accuracy, especially in terms of global orientation, which is consistent with our
aforementioned quantitative analysis.

Figure 10 shows some visual results of our fully-supervised methods on RHD
and STB datasets. We exhibit samples captured from various viewpoints with
serious self-occlusions. It can be seen that our fully-supervised approach with the
depth regularizer is robust to various hand orientations and complicated pose
articulations.

Although the depth regularizer is only used in training but not in testing, it
is interesting to see whether it has learned a manifold of hand poses. Thus, we
collect some samples of the depth images generated by our well trained depth
regularizer, given ground truth 3D hand joint locations, as shown in Figure 8.
We can see that our depth regularizer is able to to render smooth and convincing
depth images for hand poses in large variations and self-occlusions.
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Fig. 9. Visual results of our proposed weakly-supervised approach (column 1,4) and
other baselines (column 2,3), compared with ground truth (column 5). Note that
columns 2-5 are shown at a novel viewpoint for easy comparison.

Fig. 10. Visual results of our fully-supervised method on RHD and STB datasets. First
row: RHD dataset. Second row: STB dataset. Note that skeletons are shown at a novel
viewpoint for easy comparison.

5 Conclusions

Building a large real-world hand dataset with full 3D annotations is often one of
the major bottlenecks for learning-based approaches in 3D hand pose estimation
task. To address this problem, our approach presents one way to adapt weakly-
labeled real-world dataset from fully-annotated synthetic dataset with the aid of
low-cost depth images, which, to our knowledge, is the first exploration of lever-
aging depth maps to compensate the absence of entire 3D annotations. To be
specific, we introduce a simple yet effective end-to-end architecture consisting
of a 2D estimation network, a regression network and a novel depth regular-
izer. Quantitative and qualitative experimental results show that our weakly-
supervised method compares favorably with the existing works and our fully-
supervised approach considerably outperforms the state-of-the-art methods. We
note that we only show one way for weakly-supervised 3D hand pose estimation.
There is a large space for un-/weakly-supervised learning.
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