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Discriminative Spatio-Temporal Pattern Discovery
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Abstract— Despite the recent success of 3D action recognition
using depth sensor, most existing works target how to improve
the action recognition performance, rather than understanding
how different types of actions are performed. In this paper,
we propose to discover discriminative spatio-temporal patterns
for 3D action recognition. Discovering these patterns can not only
help to improve the action recognition performance but also help
us to understand and differentiate between the action category.
Our proposed method takes the spatio-temporal structure of 3D
action into consideration and can discover essential spatio-
temporal patterns that play key roles in action recognition.
Instead of relying on an end-to-end network to learn the 3D action
representation and perform classification, we simply present
each 3D action as a series of temporal stages composed by 3D
poses. Then, we rely on nearest neighbor matching and bilin-
ear classifiers to simultaneously identify both critical temporal
stages and spatial joints for each action class. Despite using
raw action representation and a linear classifier, experiments
on five benchmark data sets show that the proposed spatio-
temporal naïve Bayes mutual information maximization can
achieve a competitive performance compared with the state-
of-the-art methods that use sophisticated end-to-end learning,
and has the advantage of finding discriminative spatio-temporal
action patterns.

Index Terms— NBMIM, spatio-temporal pattern discovery,
discriminative skeleton-based action recognition.

I. INTRODUCTION

IN THIS decade, thanks to the availability of commod-
ity depth cameras and the contribution of pose extrac-

tion method [1], skeleton-based action recognition has drawn
considerable attention in computer vision community. Deep-
learning-based methods [8], [51]–[53] in action recogntion
from RGB data have made great success recently, which
also inspire the works in 3D action recognition. The leading
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methods for 3D action recognition so far are learning-based
classifiers including deep learning based methods [2]–[7],
which have shown promising results on benchmark datasets.

While learning-based methods have made significant
progress in 3D action recognition problem, non-parametric
models, which do not involve training or learning for parame-
ters, have not been well explored. Meanwhile, we have already
witnessed the success of NN-based model Naive-Bayes Mutual
Information Maximization (NBMIM) being applied to action
detection problem. Motivated by the success of NBMIM
in action detection problem, we explore it for 3D actions
recognition.

The motivation of applying NBMIM [9] to 3D action
recognition is on the basis of the following three observa-
tions. (1) Compared with RGB-based image or video analysis
problem which always faces millions or billions of pixels,
skeletal data only consists of tens of joints. We believe
that compared with sophisticated end-to-end model, a simple
NN-based model can still well handle such a lightweight
problem; (2) Similar to images that are the composition of
local visual primitives, actions can be represented as a set
of temporal primitives, as the temporal stage-descriptor we
defined in Sec. III-A. Therefore, it is possible to generalize
NBNN [10] to 3D action problem by applying the primitive-
to-class distance to recognize actions; (3) Considering that
actions from different action classes may share a great number
of similar temporal primitives, which are not helpful to action
classification, we can borrow the idea from NBMIM [9] to
introduce negative primitives into nearest neighbor matching
thus boosting the discriminative ability of temporal primitives.

Our Spatio-temporal Naive-Bayes Mutual Information Max-
imization is an extension of NBMIM. In our framework,
each 3D action is represented as a set of temporal stages
which are composed of 3D poses. Each 3D pose in a stage
is presented by a collection of spatial joints. Similar to
NBMIM, our ST-NBMIM also applies the summation of
temporal primitive mutual information with respect to action
classes to distinguish action instances. Moreover, ST-NBMIM
takes the spatio-temporal structure of action sequences into
consideration. Even though an action instance comprises a set
of temporal stages, not every temporal stage and the related
spatial joints are of equal importance in action recognition.
It is greatly important to discover the critical temporal stages
and spatial joints that matter for recognition. As illustrated
in Fig. 1, when performing right hand waving action, only
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Fig. 1. Illustration of key stage, joints, and motion for the action of waving right hand action.

the right hand and arm (key joints) are activated. Meanwhile,
when observing the timing (key stage) at which the right
hand and arm raise up and move horizontally towards left,
we can conclude that waving right hand action is being
performed. Such a spatio-temporal pattern described by key
temporal stages and spatial joints is critical to identify action
classes. The discovery of such patterns not only can improve
recognition accuracy but also provides answers to the deeper
questions of what an action instance are composed of and why
it is recognized as a particular action class. We consider that
the visual interpretability [47], [48], [54] of model is also an
important topic in action recognition. To this end, we represent
the mutual information of temporal primitives as the mutual
information matrix, which is the combination of the “mutual
information” of each spatial joint. Further, ST-NBMIM adopts
a bilinear classifier [11] to identify those key joints and stages
with discriminative “mutual information” and utilize these key
elements to classify the mutual information matrix of 3D
actions. This process is implemented by iteratively learning the
linear classification weight for both spatial joints and temporal
stages.

ST-NBMIM combines the strengths of non-parametric
model and parametric model by utilizing both the mutual
information of temporal stage w.r.t action class and bilinear
classifier [11]. Experiments show that with only a linear clas-
sifier, our proposed method achieves competitive performance
on four benchmark datasets compared with the state-of-the-art
models. We also witness the potential of ST-NBMIM on large
scale dataset. Furthermore, ST-NBMIM bears the ability to
capture the essential spatio-temporal patterns for each action
class, which play key roles in recognizing actions and provide
physical interpretations of action behavior.

II. RELATED WORK
In skeleton-based action recognition, the input is a sequence

of 3D poses that records the performing of a certain action,
and the output is the corresponding action label that sequence
belongs to. In these years, skeleton-based action recognition
problem has attracted a lot of attention and many learning-
based methods [2]–[8] have been proposed. Due to the con-
siderable amount of work in this area, we only focus our
review on the spatio-temporal modeling of skeleton-based
action recognition.

The modeling of spatial domain can be divided into
two categories, part-based model and sub-pose model.
To date, the spatial domain modeling is mainly driven by
the fact that an action is usually only characterized by the

interactions or combinations of a subset of skeleton joints [4].
In the part-based model, the joints of a skeleton are partitioned
into several groups, and in each group the joints are skeletal
neighbors of each other. In [5] a part-aware LSTM is proposed
to construct the relationship between body parts. Similarly,
in HBRNN [2], skeletons are decomposed into five parts, two
arms, two legs, and one torso, and a hierarchical recurrent
neural network is built to model the relationship among
these parts. In sub-pose model, the focus is mainly on the
informative joints or their interactions. In SMIJ [12], the most
informative joints are selected simply based on measures such
as mean or variance of joint angle trajectories. The sequence
of these informative joints is then used as the representation
of actions. In Orderlet [13], interactions between joints are
modeled by a few comparisons of joints’ primitive feature, and
in action recognition only a subset of joints is involved. On the
temporal domain, temporal pyramid matching [14], [15],
dynamic time warping [16], and graphical models [17], [18]
are the commonly used methods for temporal modeling.
While in [19], sequential pattern mining method is used to
model temporal structures of a set of key poses.

Besides spatial modeling or temporal modeling, we also
see efforts on spatio-temporal modeling. Wang et al. [55]
apply data mining techniques to discover co-occurring dis-
tinctive spatial body-part structures and temporal pose evo-
lutions. In classification, bag-of-words model based on the
mined spatial-part-sets and temporal-part-sets is utilized for
action representation. Compared to [55], our proposed method
focuses on discriminative and class-related individual spatial
joints and temporal stages discovery. For a certain action
category, the classification decision is mainly determined by
the data from the discovered discriminative joints and stages.
In [56], a hierarchical model is proposed to recognize pose-
based, composable and concurrent actions and activities. Based
on the learned motions poselets and actionlets dictionaries,
the hierarchical model can provide spatio-temporal annota-
tions of complex actions. The annotation can tell when the
related body parts are activated for which atomic action, but
these annotations may not be discriminative in classification.
While in ST-NBMIM, key joints and key stages discovered
in ST-NBMIM are discriminative for classification. In [6],
a LSTM model is extended to spatio-temporal domain to
analyze skeletons. In Spatio-Temporal Naive-Bayes Nearest
Neighbor ST-NBNN [20], bilinear classifier is utilized to
discover the spatio-temporal structure of 3D action. Another
track on spatio-temporal modeling is the CNN-based 3D
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action recognition model [41], [49], [50]. In these models,
a 3D action sequence is first visualized as an image. The
pixels of these image samples are directly or indirectly related
to the joint coordinates, which means the spatio-temporal
information of a 3D sequence is re-organized as the combi-
nation of pixels. A further CNN-model is applied to extract
features and predict the label of actions based on the input
image samples. The CNN model in these works plays the
role of implicitly extracting spatio-temporal information from
3D sequences. Compared with these CNN-based methods,
the spatio-temporal modeling of ST-NBMIM is more explicit,
and spatio-temporal patterns discovered by ST-NBMIM is
physically interpretable.

Our ST-NBMIM is an extension of ST-NBNN [20]. In this
work, we introduce the idea of mutual information into
ST-NBNN. The involvement of negative samples can help
boost the discriminative ability of action representation. The
idea of applying mutual information calculation in NBNN
framework was first proposed in [9], in which NBNN was
re-designed as Naive-Bayes based Mutual Information Max-
imization (NBMIM) to solve action detection problem. One
interesting property of NBMIM is that negative samples
are involved in nearest neighbor matching to improve the
discriminative ability of descriptors. NBMIM is a nearest-
neighbor-based (NN-based) method since the calculation of
mutual information in NBMIM relies on the nearest neigh-
bor search. Even though NN-based methods are simple and
non-parametric, their successes in image classification and
action detection prove the effectiveness of these approaches.
Recently, the combination of NBNN and CNN [21], as well
as the effort to speed up NN search [22], revives the return of
NN-based methods in computer vision.

III. PROPOSED METHOD

In this section, we introduce how the involvement of
mutual information helps to improve the discriminative ability
of descriptors, and how the proposed method, ST-NBMIM,
predicts actions. The overview of our method is illustrated
in Fig. 2. We first introduce how to represent a 3D sequence of
actions, which includes single person action and two-person
interactive action (Sec. III-A). Then NBMIM [9] is used as
a basic framework to predict skeleton-based action instances
(Sec. III-B). Finally, the learning of spatial and temporal
weights is introduced to discover key poses and spatial joints
for 3D action recognition (Sec. III-C).

A. Representation for 3D Actions

1) Single-Person Action: In skeleton-based action recogni-
tion, a 3D action instance is regarded as a sequence of 3D
poses. Different actions performed by different subjects may
have different action duration. In our proposed method, to pro-
vide a unified presentation, we partition each action into N
temporal windows of equal length. Each temporal window is
called temporal stage, and it is represented by the 3D poses
in its corresponding window. Assuming each 3D pose has
J joints for its skeleton, for a temporal stage descriptor x,
the 3D pose in its j th frame is denoted as p j ∈ R

3J , and

the related velocity of that pose is denoted as v j ∈ R
3J . More

specifically, p j is the concatenation of 3D coordinates (x, y, z)
of J joints of the pose in j th frame, and v j is the difference
between two pose features from consecutive frames, frame j
and frame j +1, namely v j = p j+1 − p j . For v j from the last
frame, we assume that the pose does not move, which means
that v j = 0. Then the pose part xp and velocity part xv of x
is defined as below,

xp = [( p1)
ᵀ, . . . , ( pl)

ᵀ]ᵀ
xv = [(v1)

ᵀ, . . . , (vl)
ᵀ]ᵀ (1)

We follow the idea in [23] to also normalize xp and xv .
A temporal stage descriptor x of l frames is then represented
as:

x = [(xp)
ᵀ, (xv )

ᵀ]ᵀ (2)

Based on the above notation, a 3D single person action video
is described by its N stages-descriptors V = {x i}N

i=1.
2) Two-Person Interaction: The description of two person

interactive action is similar to the one of single person action.
We partition each action into N temporal windows of equal
length. Each stage includes the interactive action of two
persons in a short temporal range. Inspired by the work in [24],
we notice that the relative position between joints from two
different persons is much more informative in interaction
recognition than the individual position. On the basis of this
idea, we use the difference between stages-descriptors of
person A and person B involved in an interactive action,
namely xa and xb, as the interaction representation. The delta
descriptor is defined as,

xδ = abs(xa − xb) (3)

where abs(·) denotes the element-wise absolute operation for
the input descriptor. This absolute operation can well handle
the problem that we do not bear any information about which
person is an “active” actor and which one is an “inactive”
actor. Therefore finally, a 3D interaction video is described by
its N delta stage-descriptors V = {x i

δ}N
i=1.

B. Naive-Bayes Mutual Information Maximization

Given a query action video Vq = {x i}N
i=1, the goal is

to find which class c ∈ {1, 2, . . . , C} the video Vq belongs
to. Naive-Bayes Mutual Information Maximization (NBMIM)
evaluates the mutual information I between the query video
and a specific class c to identify the action label:

c∗ = arg max
c

I (Vq ; c) = arg max
c

log
p(Vq |c)
p(Vq)

(4)

With the Naive-Bayes assumption (the stage-descriptors are
independent of each other), Eq. 4 can be written as Eq. 5

c∗ = arg max
c

log
p(Vq |c)
p(Vq)

= arg max
c

log
N∏

i=1

p(x i |c)
p(x i)

= arg max
c

N∑

i=1

log
p(x i |c)
p(x i)

= arg max
c

N∑

i=1

I (x i ; c) (5)
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Fig. 2. Overview of ST-NBMIM. 1) A 3D action sequence is uniformly divided into N stages, which is predefined, and is represented by a set of stage-
descriptors (orange query points); 2) Distances of stage-descriptors to action class sets (blue, green and red), namely distance descriptor, are calculated by
NN search; 3) Mutual information are estimated by calculating the difference between positive distance descriptor and the nearest negative distance descriptor
to generate mutual information descriptors; 4) Mutual information descriptors are gathered in temporal order to generate class-related mutual information
matrices (marked by class-related dashed rectangular boxes); 4) Weights on the spatial (left side of the matrix) and the temporal (bottom of the matrix) domain
are learned to discover key factors of actions and predict action labels.

where I (x i ; c) is the mutual information between the i th
stage-descriptor and the class c, and with the prior p(c) = 1/C
it can be derived as

I (x i ; c) = log
C

1 + p(x i |c̄)
p(x i |c) (C − 1)

(6)

where c̄ denotes the negative class of c, that is, all the classes
except c.

Based on the analysis of [9], the ratio between p(x i |c̄) and
p(x i |c) can be estimated according to the distance between x
and the nearest neighbor of x in class c and c̄,

p(x i |c̄)
p(x i |c) ≈ γ cex p

− 1
2δ2 (‖x i−N Nc̄ (x i )‖2−‖x i−N Nc (x i )‖2

) (7)

where γ c = Nc/Nc̄ , in which Nc is the number of stage-
descriptor from class c and Nc̄ is the number of stage-
descriptor from negative class c̄. δ is the kernel bandwidth in
density estimation. N Nc(x) and N Nc̄(x) indicate the nearest
neighbors of the query descriptor x in positive class c and
negative class c̄, respectively.

Based on Eq. 6 and Eq. 7, we can conclude that
I (x i ; c) ∝ ‖x i − N Nc̄(x i)‖2 − ‖x i − N Nc(x i )‖2

, and we
then simplify Eq. 5 as

c∗ = arg max
c

N∑

i=1

(‖x i − N Nc̄(x i)‖2 − ‖x i − N Nc(x i)‖2
)

= arg max
c

N∑

i=1

Ĩ (x i ; c) (8)

where Ĩ (x i; c) is the estimated mutual information between
stage-descriptor x i and class c.

For a query 3D action Vq = {x i}N
i=1, each of its stage-

descriptor will match against C classes separately by finding

the best matched temporal stage, i.e., nearest neighbor, in that
class. Note that different action classes may share similar
temporal stages, these similar stage-descriptors x i are not
discriminative. For those discriminative ones, the differences
between their distances to the positive class and negative
classes are large. Eq. 8 helps suppress the similar temporal
stages among C classes by applying difference operation
between negative and positive nearest neighbor distances.
The larger the difference between the negative and positive
distances, the stronger the temporal stage will vote for that
class c. As Vq has in total N temporal stages, the final decision
is the summation (average) over all of the N suppressed votes
towards to C classes, as described in Eq. 8.

C. Spatio-Temporal NBMIM

When performing a specific action, often only a subset of
joints are activated, and for actions from different classes the
activated joints are different. Meanwhile, only those joints
with high mutual information, as estimated in Eq. 8, bears
strong classification ability. Based on this observation, we can
only select those spatial joints with high mutual informa-
tion and ignore the ones that are not informative. On the
temporal domain the situation is similar. Among a set of
temporal stages, not every stage is of equal importance neither.
Depending on the action class, a certain temporal stage can be
more discriminative than others for classification. As shown
in Fig. 2, the stage-descriptor (shadowed orange query square)
of stage i bears higher mutual information and is more
discriminative than both the beginning stage and the ending
stage.

To simultaneously identify informative spatial joints and
temporal stages, bilinear classifier [11] is used to mine saptio-
temporal patterns in the framework of NBMIM.
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1) Mutual Information Matrix: Although in Eq. 5 we
assume that the stages are independent of each other (Naive
Bayes assumption), they in fact depend on each other in
a certain spatio-temporal structure. Hence, to discover the
spatio-temporal structure of 3D actions, we first represent a
3D action instance from a set V = {x i}N

i=1 as a matrix. For a
given video sample with N stages, its spatio-temporal matrix
is defined as

X = [x1, . . . , x N ] (9)

Stage-descriptors of an action instance are re-organized
column by column following the temporal order. Then we
define the nearest neighbor matrix of X in c as X N N

c =
[N Nc(x1), . . . , N Nc(x N )], and the squared distance matrix
to class c is defined as

Xc = (X − X N N
c ) � (X − X N N

c ) (10)

where � is an element-wise product. Xc is regarded as a
representation of X for class c, and it is a combination of
element-wise stage-to-class distances of the testing sample.
Similarly, if we regard class c as the positive class, then the
negative squared distance matrix is X c̄ = (X − X N N

c̄ )� (X −
X N N

c̄ ). Based on the definition above, the mutual information
matrix is defined as

X I
c = X c̄ − Xc (11)

Summation of all the elements in X I
c is equivalent to the∑N

i=1 Ĩ (x i; c) in Eq. 8. The mutual information matrix X I
c ,

as illustrated in Fig. 2, is the representation of the action
instance V in class c.

Since the summation of elements in X I
c determines the

final classification decision, as shown in Eq. 8, each element
contributes equally to the recognition task. However, only
the discriminative elements have great impacts to the final
decision and therefore this NBMIM framework, Eq. 8, should
be parameterized to emphasize those discriminative ones. Let’s
simply vectorize X I

c as χ I
c , and the NBMIM decision function

Eq. 8 is then redefined as c∗ = arg min
c

wᵀχ I
c , where the

weight w can be learned by linear SVM. However, since the
mutual information matrix X I

c is a large matrix, there will be a
large number of weight parameters that need to be determined.
Learning weights by linear SVM is not only time-consuming
but also has the risk of over-fitting. Therefore in our work,
we leverage bilinear classifier [11] to solve the weight learning
problem.

With the mutual information matrix X I
c of a query matrix

X , the classification score is then determined by a bilinear
function fc(·), which is defined as

fc(X I
c ) = (us

c)
ᵀ X I

c ut
c (12)

where us
c ∈ R

M and ut
c ∈ R

N are the spatial and temporal
weights of action class c. As a result, the classification
becomes

c∗ = arg min
c

fc(X I
c ) (13)

As can be seen from Eq. 12, the proposed method provides
weights for both temporal stages and spatial joints. After a
rearrangement, Eq. 13 can be represented as,

c∗ = arg min
c

N∑

i=1

ut
c(i) ‖ Ĩ (x i; c)

ᵀ√
us

c‖
2

(14)

where
√· is an element-wise square-root of a vector. As we

can see, NBMIM is a special case of ST-NBMIM. When
us

c and ut
c are assigned to 1, Eq. 14 becomes NBMIM

in Eq. 8. With the break of Naive-Bayes rule, ST-NBMIM
becomes a generalization of NBMIM. We introduce the spatio-
temporal structure of 3D action into our framework to break
the assumption of stage independence. And the key joints and
stages can be discovered by the learned weights us

c and ut
c.

2) Spatial and Temporal Weight Learning: For the learn-
ing of us

c and ut
c, we introduce the objective function that

is similar to tensor SVM. Following the learning strategy
of [25], we adopt the one-vs.-all strategy to classify actions.
With empirical loss, the objective function of spatio-temporal
weight learning is defined as

min
us

t ,ut
c

1

2
‖us

c(ut
c)

ᵀ‖2 + λ

K∑

i=1

ξi

s.t
∑N

i=1
ut

c(i) = N, ut
c 	 0

ξi � max(0, 1 − ci fc(X I (i)
c ))

2

ξi � 0, i = 1, . . . , K (15)

in which K is the number of training video samples, and ci ∈
{−1, 1} is the action label of the corresponding sample. X I (i)

c
is the i th training sample (mutual information matrix) in class
c. λ is a parameter for classification error penalty.

Here we apply linear constraints to the temporal domain
but not to the spatial domain. The reason is that for the
spatial domain the number of involved key joints is uncertain.
Some spatial joints like the hip joint usually do not have
any contributions to recognition. Compared with spatial key
joints, on temporal domain every stage of an action counts
in classification. Experiment results also show that linear
constraints on the spatial domain do not bear any contribution
to performance, but the temporal constraints do.

The optimization of Eq. 15 is solved through an iterative
process. There are two steps in each iteration, 1) fix ut

c and
update us

c, 2) fix us
c then update ut

c. ut
c is initialized to 1.

3) Fix ut
c and Update us

c: With ut
c fixed, Eq. 15 is treated

as a l2-regularized l2 loss SVM problem shown below

min
us

c

1

2
β1‖us

c‖2 + λ

K∑

i=1

max(0, 1 − ci fc(X I (i)
c ))

2
(16)

where β1 = ‖ut
c‖2.

4) Fix us
c and Update ut

c: With updated us
c, Eq. 15

is regarded as a convex optimization problem with linear
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constraints shown below

min
ut

c

1

2
β2‖ut

c‖2 + λ

K∑

i=1

max(0, 1 − ci fc(X I (i)
c ))

2

s.t
∑N

i=1
ut

c(i) = N, ut
c 	 0 (17)

where β2 = ‖us
c‖2.

The optimization problem defined in Eq. 15 can be solved
by solving Eq. 16 and Eq. 17 iteratively.

The time complexity is based on what optimization solution
we use. Eq. 16 is a l2-regularized l2-loss linear SVM problem.
The optimal parameters can be obtained by trust region newton
method proposed in [45]. It’s time complexity is not higher
than O(L ∗ K ∗ M) for each iteration, where L is the number
of conjugate gradient iterations, K is the number of training
samples, and M is the dimension of stage-descriptor. Eq. 17
is the same problem with linear constraints. Here we use
the interior point method to obtain the optimal parameters.
It’s time complexity is around O(

√
K ∗ N) when the self-

concodance condition holds, as discussed in [46]. Considering
that M 
 N , most of the time is consumed in the spatial
weight learning part.

In ST-NBMIM, two steps, one for spatial weight update
and one for temporal weight update, are regarded as one
iteration. Let us

c0 be the initial value of spatial weight. When
ut

c0 is fixed, we obtain us
c0 by solving the optimization

problem in Eq. 16. Likewise, fixing us
c0, we can obtain ut

c1 by
solving Eq. 17. Notice that each sperate optimization problem,
as defined in Eq. 16 and Eq. 17, is convex, so the solutions
of them are globally optimums. Therefore we have,

h(us
c0, ut

c0) ≥ h(us
c0, ut

c1) ≥ h(us
c1, ut

c1) ≥ . . . (18)

where h(·) is the objective function defined in Eq. 15.
Considering that h(·) is larger than zeros, the optimization
process converges.

IV. EXPERIMENT

In this section, we evaluate the proposed method on five
3D action datasets and compare its performance to existing
methods. Implementation details are provided in Sec. IV-A.
The description of the five benchmark datasets, the MSR-
Action3D dataset [26], the UT-Kinect dataset [18], the Berke-
ley MHAD dataset [27], the SBU-Interaction dataset [24],
and the NTU RGB+D dataset [5], is provided in Sec. IV-B.
Among the five datasets, SBU-Interaction and NTU RGB+D
contain interactive actions of two people. Comparison results
on these datasets are provided and discussed in Sec. IV-C.
The experiment results show that the introduction of mutual
information helps to improve the action recognition accuracy
over ST-NBNN. The discriminative matching helps boosting
the discriminative ability of action representation. Although
ST-NBMIM is simple, it is able to achieve comparable per-
formance with state-of-the-arts and also effectively discover
the key factors of an action class.

TABLE I

COMPARISON WITH STATE-OF-THE-ARTS ON MSR-ACTION3D (%)

A. Implementations

1) 3D Action Representation: The one-vs.-all strategy is
utilized in this method. To ensure the responses of linear
functions fc(·) are comparable with each other, each sample
X I (i)

c is mean-centralized by μi = ∑C
c=1 sum(X I (i)

c )/(C ×
M × N), where sum(·) sums up entries of the input matrix.

In Sec. IV-B, the setting of N is indicated. Due to the
variation of action sequences’ duration, stages defined in
Sec. III-A may have overlaps when a sequence is too short.

To ensure that the representation introduced in Sec. III-A
is location-invariant, for actions of single person each joint of
the skeleton is centralized by subtracting coordinates of the
hip joint. For interactive actions of two persons, two skeletal
poses in each frame are centralized by subtracting the average
coordinates of the two hip joints.

2) Nearest Neighbor Search: In our experiment, KD-tree
implementation [28] and FLANN library [29] are used to boost
the nearest neighbor searching process.

3) Spatio-Temporal Weight Learning: The training matrices
X I

c are generated by a leave-one-video-out strategy, which
means all the stage-descriptors of a query training video are
excluded from the nearest neighbor search. In our optimiza-
tion, us

c and ut
c are learned iteratively. To solve the SVM

problem of Eq. 16, we use a SVM toolbox [30] implemented
by Chang and Lin, and to update ut

c, a convex optimization
toolbox [31] is used.

B. Datasets

1) MSR-Action3D: There are 557 skeletal action sequences
included in this dataset, and 20 human actions are involved.
The actions recorded are common indoor daily actions. Each
action is performed by 10 subjects twice or three times.
The evaluation protocol we use is described in [26]. In this
protocol, the 20 actions are grouped into three subsets AS1,
AS2, and AS3, where each subset consists of eight actions.
In this dataset, the number of poses in each local window is
10, and the number of stages N is set to 15.

2) UT-Kinect: This dataset contains 10 action classes per-
formed by 10 subjects. Each action are performed by each
subject twice. We use the leave-one-out validation protocol
described in [18] to evaluate our proposed method. Based
on the description, there are 20 rounds of testing in our
experiment. The parameters chosen for spatio-temporal weight
learning are the same in each round. The number of local poses
l is set to 3, and the number of stages N is 15.
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Fig. 3. Parameter Sensitivity Analysis on SBU Interaction Dataset. The x-axis indicates the chosen number of local poses. The sub-title indicates the chosen
number of temporal stages.

3) Berkeley MHAD: The actions in this dataset are captured
by a motion capture system. 11 action classes are included,
and each action is performed by 12 subjects. We follow the
experimental protocol described in [27] on this dataset. The
sequences performed by the first seven subjects are for training
while the ones performed by the rest subjects are for testing.
Due to the high sampling rate, most of the data is redundant.
We down-sample each sequence by selecting one frame for
every ten frames. Under this setting, the number of local poses
l is 20, and the number of stages N is 20.

4) SBU-Interaction: This dataset contains eight classes of
two-person interactive actions. 282 skeleton sequences are
captured by Kinect depth sensor. For each skeleton, there are
15 joints in total. We follow the protocol proposed in [24]
to evaluate our method. There is a five-fold cross validation.
The evaluation is based on the average accuracy on these five
folds. The number of stages N is 17, and there are three poses
in each stage. Considering that there are pair actions in this
dataset, when performing the nearest neighbor search, only the
related stages are involved.

5) NTU RGB+D: NTU-RGBD dataset is currently the most
challenging dataset in 3D action recognition. It is collected
with Kinect V2 depth camera. There are around 56 thousand
sequences in total. 60 different action classes are performed
by 40 subjects aged from 10 to 35. 25 joints are included
in each skeletal pose. We follow the protocol introduced
in [5] to conduct the experiment. In the nearest neighbor
search, we only search for the related stage since there are
10 pair actions in this dataset. This dataset has two standard
evaluation settings, the cross-subject (CS) evaluation and the
cross-view (CV) evaluation. In cross-subject setting, half of
the subjects are used for training and the remaining are for
testing. In cross-view setting, two of the three views are used
for training and the left one is for testing. The number of local
poses l is set to 5, and the number of stages N is 20.

C. Results and Analysis

1) Comparison With Baselines: We compare the pro-
posed method with spatio-temporal naive-bayes nearest
neighbor (ST-NBNN) and four related baselines on five

benchmark datasets, MSR-Action3D (M.), UT-Kinect (U.),
SBU-Interaction (S.), Berkeley MHAD (B.), and NTU RGBD
(N.CS for cross-subject setting, N.CV for cross-view setting).
The baselines are (1) NBNN with N stages (NBNN-N); (2)
NBNN with weight learning by linear SVM (NBNN+SVM);
(3) Spatio-temporal NBNN (ST-NBNN); (4) NBMIM with
N stages (NBMIM-N); and (5) NBMIM with weight learn-
ing by linear SVM (NBMIM+SVM). The results are shown
in Table. VI

As we can see from Table. VI, ST-NBMIM main-
tains or improves the performance of ST-NBNN. On SBU
interaction dataset, ST-NBMIM improves by 4% over
ST-NBNN. We can also see the accuracy improve-
ment or maintenance from NBNN to NBMIM on all five
benchmark datasets. As we discussed in Sec. III-C, if we
only use linear SVM as the weight learning method, there will
be a large number of parameters to be determined, and this
strategy may cause over-fitting. From Table. VI, in most of the
cases, there are drops from NBMIM to NBMIM+SVM, which
indicates the over-fitting caused by SVM, and we can see that
the performance of ST-NBMIM is better than NBMIM+SVM.

The results from NTU-RGBD dataset show that the weight
learning does not work for NBNN in this dataset. There are
3.3% and 3.6% drops from NBNN to ST-NBNN under cross-
subject setting and cross-view setting respectively. However
for NBMIM, the improvement is significant (3.7% improve-
ment under cross-subject setting, 3.8% improvement under
cross-view setting). The reason is that there are many actions
that are very similar to each other in terms of the skeleton
motion in NTU-RGBD dataset, e.g., drinking water and eat-
ing snack. The involvement of mutual information can help
suppress elements that are similar among stage-descriptors
and emphasize the elements that are discriminative. A further
weight learning by our proposed method can help pick out
those discriminative elements and improve the performance.

The motivation of extending ST-NBNN to ST-NBMIM via
involving mutual information is to boost the discriminative
ability of action representation. Fig. 4 shows the comparison
of confusion matrix between ST-NBNN and ST-NBMIM on
SBU Interaction dataset. As can be seen from the figure, there
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Fig. 4. Comparison of confusion matrix between ST-NBNN and ST-NBMIM.
1. Approaching, 2. Departing, 3. Kicking, 4. Pushing, 5. Shaking hands, 6.
Hugging, 7. Exchanging, 8. Punching.

TABLE II

COMPARISON WITH STATE-OF-THE-ARTS ON UT-KINECT (%)

are great improvements of classification accuracy on action
“Pushing” and “Shaking Hand”. The actions “Shaking Hand”
and “Exchanging” are very similar with each other. After
involving mutual information into ST-NBNN, the confusion
between these two action becomes less than before, and the
overall performance of ST-NBMIM is better than ST-NBNN.

2) Combination With Convolutional Neural Network: In
this section, we combine the proposed method ST-NBMIM
with CNN model, ResNet18 [42]. Since our method mainly
focus on skeleton-based action recognition, we can not apply
CNN model on the data we use directly. Therefore we first
transform the pose data of each video sample to an image
by using the visualization method proposed in [43]. Then a
ResNet [42] with 18 layers is used to extract CNN features
for representing each video sample. In order to learn the
spatio-temporal weights, we randomly pick 20% of the training
samples as the validation set, and 80% of the training samples
for fine-tuning ResNet18. Then the fine-tuned ResNet is used
to extract CNN feature for both the validation set and testing
set. We use the proposed ST-NBMIM as the classifier to
predict the label of each sample based on the extracted CNN
feature. We evaluate the combination version on NTU-RGBD
dataset [5], and the results are shown in Table. VII. As can
be seen from the table, CNN feature with ST-NBMIM can
perform better than ResNet18, which means that ST-NBMIM
can benefits CNN model. Besides, as can be seen from the
Table. V, the performance of ST-NBMIM with CNN feature
is comparable with the state-of-the-arts.

3) Comparison With the State-of-the-Arts: In this section
we compare the proposed method ST-NBMIM with the exist-
ing methods on five benchmark datasets. The results are shown
in Table. I, Table. II, Table. III, Table. IV, and Table. V.

TABLE III

COMPARISON WITH STATE-OF-THE-ARTS ON MHAD (%)

TABLE IV

COMPARISON WITH STATE-OF-THE-ARTS ON SBU (%)

TABLE V

COMPARISON WITH STATE-OF-THE-ARTS ON NTU RGB+D (%)

TABLE VI

COMPARISON WITH BASELINES ON FIVE DATASETS (%)

We can see that ST-NBMIM achieves the best accuracy on the
MSR-Action3D dataset, Berkeley MHAD dataset and SBU-
Interaction dataset. On the UT-Kinect dataset, the result is
comparable with the state-of-the-arts.

On the NTU RGBD dataset, the proposed method
ST-NBMIM can still perform better than the deep-learning-
based method HBRNN [2] and Part-Aware LSTM [5]. How-
ever, we can also see that ST-NBMIM is not as good as other
deep-learning-based model like [6], [39], [44]. The reason
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Fig. 5. An example of spatio-temporal weight matrix and comparison between squared distance matrix from NBNN (first row) and mutual information
matrix from NBMIM (second row). The matrices are from the pushing action. ST-weight matrix is on the top-left corner, and squared distance matrices as
well as mutual information matrices are on the right side. Each matrix is 45 by 13. The related feature of discovered joints are marked by red box.

Fig. 6. Influence of noisy joints on accuracy of berkeley MHAD dataset.

TABLE VII

COMBINATION OF CNN FEATURE AND ST-NBMIM (%)

why ST-NBMIM is not better than the these models is that,
compared with them, our proposed method only uses raw
features directly from skeletal data, and only a linear method
is utilized as the classifier, which does not have such large
model capacity as the deep learning models. We also try
to combine CNN feature from ResNet18 [42] with our ST-
NBMIM classifier, and we witness great improvement from
ST-NBMIM with raw data feature. From Table. V we can see
that our combination version is comparable with the state-of-
the-arts.

4) Parameter Sensitivity Analysis: There are two main
parameters in ST-NBMIM, the number of temporal stages N
and the number of poses in each local stage l. The evaluation
of parameter sensitivity is conducted on the SBU interaction
dataset in this section. We change l from 1 to 10 and change N
from 1 to 21. As Fig. 3 shows, ST-NBMIM needs a sufficient

number of stages to learn the spatio-temporal weights and
obtain good performance on action recognition. When the
number of stages is larger than three, ST-NBMIM can still
help improve the performance with only one pose in each
stage. However, when the number of stages is larger than nine,
further increasing N and l will not improve the performance
explicitly. Fig. 3 also shows that when the stage number
N is sufficient, ST-NBMIM achieves better accuracy than
ST-NBNN, which indicates the effectiveness and robustness
of the proposed method.

5) Robustness to Noise: In this section, we evaluate the
tolerance and robustness of ST-NBMIM to random noise
of skeleton data on Berkeley MHAD dataset. We randomly
choose 10%, 20%, 30%, 40% and 50% of the 35 joints. For
the randomly selected joints, we add noises ranging from
-5 to 5 to each dimension of joints coordinates. This setting
will result in mismatches of nearest neighbor search. The
influence of noisy joint on accuracy is shown in Fig. 6.
As we can see, as the percentage of noisy joints increases,
the performance of NBMIM drops dramatically. Compared
with NBMIM, ST-NBMIM can still pick out the informative
elements and maintain the accuracy at high level. The average
accuracy of ST-NBMIM in these six situations is 98.24%.
We can also see that in most of the cases, ST-NBNN can
not perform better than ST-NBMIM. The average accuracy of
ST-NBNN in these six situations is 97.58%, which is not as
good as ST-NBMIM.

6) Time Cost Analysis: In this section, we also experi-
mented on SBU Interaction dataset to test the time cost of
each step of the proposed method. In the training phase,
the nearest neighbor search is conducted first to obtain the
mutual information matrices for each training sample. Then
the spatio-temporal weights learning part is conducted. In the
testing phase, each stage-descriptor of a testing sample will
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TABLE VIII

TIME COST IN TRAINING PHASE

TABLE IX

TIME COST IN TESTING PHASE

be a query to search its nearest neighbors. After that class-
related mutual information matrices will be generated. The
classification part is then conducted to apply learned spatio-
temporal weights on mutual information matrices. The test
results are shown in Table. VIII and Table. IX respectively.
There are five data splits in SBU Interaction dataset. We record
the time cost of these five data splits on training phase
and testing phase. The recorded time in Training part is
from just one round (including one spatial weight update
and one temporal weight update). In all the dataset we test,
two rounds are already enough for spatio-temporal weight
learning. This experiment is conducted on a Intel Xeon E5-
2609 CPU with 2.50GHz clock frequency. As we can see,
the proposed method does not take much time on training and
testing. However, the most time-consuming part is the nearest
neighbor search. As the number of stage-descriptors increases
in the search area, the searching time will increase relatively.
Therefore, our method is not suitable for real-time application.
However, as we witness works like [22] focusing on boosting
nearest neighbor search speed, we believe that the situation
caused by low searching speed will be alleviated.

7) Convergence Analysis: In this section, we record the
objective function value of each iteration in training on SBU
Interation dataset. The result is shown in Fig. 7. The conver-
gence curve shown in Fig. 7 is the average curve of eight
binary classifiers of ST-NBMIM. In most of the case, only
two or three iterations is enough for the training process to
converge.

8) Visualization: In this section, we visualize the mutual
information matrix and learned spatio-temporal weight matrix
in Fig. 5 to help better understand the proposed method.
Besides, the discovered key joints and key temporal stages
are shown in Fig. 8. In Fig. 5, we provide an example of
the learned spatio-temporal weight matrix and the estimated
mutual information matrices X I

c from Pushing action in SBU
Interaction dataset. Due to space limitation, we only provide

Fig. 7. Convergence curve of ST-NBMIM.

the first position feature of each stage and their related weights.
Elements ai j of the spatio-temporal weight matrix are deter-
mined by ai j = us

c(i) × ut
c( j), i = 1, . . . , M, j = 1, . . . , N .

The brighter the elements of the matrix, the larger the value of
the elements. We can see from Fig. 5 that the Pushing matrix is
the darkest one in NBNN and the brightest one in NBMIM. For
NBNN described in ST-NBNN [20] and NBMIM described
in Eq. 8, the classification is based on the summation of
elements of each class-related squared-distance matrices of
NBNN and mutual information matrices of NBMIM respec-
tively. As we discussed in Sec. III-C, each elements of the
matrices in NBNN and NBMIM bears the same contribution
to the classification, and the motivation of the proposed weight
learning method is to pick out those discriminative elements
shared in each class-related matrices. Let’s take the Pushing
action for example. The ideal situation is that the elements that
picked out by our weights learning method bear very high
value in matrix 5, shown in Fig. 5, and very low value in
other class-related matrices. In this case, the learned weight
can help the summation of positive matrix, matrix 5 (Pushing)
in this case, be the maximum one, and therefore help the
classifier predict the true label. If the elements selected by
our proposed weight learning method bear hight values in both
positive matrix and negative matrices, the selected ones are not
discriminative enough for the classification task. From Fig. 5
we can see that the discriminative elements as we described
above in the mutual information matrices of NBMIM have
more sparse pattern than those in NBNN, which is easier
for the spatio-temporal weight learning method to discover,
and therefore the mutual information representation is more
suitable than squared distance representation in NBNN for the
weights learning method. Meanwhile, compared with the ones
in NBNN, the “negative” matrices in NBMIM have similar
“sparse pattern” making it easy for the proposed method
to discover discriminative elements and help distinguishing
positive matrices from the negative ones. We can also see that
the learned weights shown on the upper-left corner of Fig. 5 is
able to correctly discover those discriminative elements. The
red-square-marked region of the spatio-temporal weight matrix
is related to the x, y, z coordinates of right and left hands
(joint 6 and 9), which are the most active joints in “Pushing”
action.
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Fig. 8. Key stages and key joints with related key motions from MSR-Action3D. Colored joints are with weights larger than average weights. The most
informative joints are marked by bright color, and the second most informative joints are marked by light color. Other key joints are marked by dark blue.
The global key motions are indicated by different colors. For example, the key motion directing in the x direction is colored by bright red for the 1st most
informative joint, and by light red for the 2nd most informative joint. Only the motion of 1st and 2nd key joints are marked. The temporal weights for each
action are shown as gray images. Each square in this image represents a temporal stage. The whiter the square, the higher the temporal weight. The key stage
is highlighted by a red box. We illustrate each key stage using its 4 representative 3D poses. The bottom two actions have two key stages each.

Fig. 8 shows the key spatial joints and temporal stages
discovered by the proposed method. For the “Forward Kick”
action, ST-NBMIM selects the right hand as the most discrim-
inative joint and right toe as the second most discriminative
joint. When performing “Forward Kick”, the dominant direc-
tion of joints’ motion is z, and we can see that the proposed
method discovers the direction. For the “Tennis Swing” action,
the motion direction that is discovered by the proposed method
is y-z, since when performing this action, the right hand mainly
moves “down” (y) and “forward” (z). In the MSR-Action 3D
dataset, “Side Boxing” and “Hand Catch” are similar to each
other. ST-NBMIM selects the x direction of the second most
discriminative joints for both of these two actions. In order to
differentiate these two actions, the difference is on the 1st most
informative joint (right hand). ST-NBMIM focuses on the y-z
motion direction for the “Side Boxing” action, but on the x
motion direction for the “Hand Catch” action. Interestingly,
as shown in Fig. 8 i) and j), the proposed method can also
indicate different phases of actions. The two peaks of the
temporal weight of “Hand Clap” are related to the stages when
two hands are close to each other and when the two hands are
far apart from each other. For “Pick Up and Throw”, the two
peaks of the temporal weight are related to the “Pick Up” and
“Throw” two phases respectively.

V. CONCLUSION

In this work, we combine the idea of spatio-temporal
pattern discovery with the non-parametric model NBMIM to
recognize 3D action. The spatio-temporal pattern mining in the
proposed method ST-NBMIM is capable of discovering critical
spatial joints and temporal stages of action instances simulta-
neously, which help not only increase the action recognition
performance, but also physically explain each action recog-
nized. We introduce the idea of mutual information into our
framework. The involvement of negative stage-descriptors in
mutual information calculation helps to improve the discrimi-
native ability of action representation. Experiments show that
ST-NBMIM can achieve better performance than baseline like
ST-NBNN. Despite using only a linear classifier, the proposed
method works surprisingly well on four benchmark datasets
and beats some sophisticated end-to-end models on large scale
dataset NTU RGB+D. Our results demonstrate the efficiency
of the proposed spatio-temporal pattern discovery method for
skeleton-based action recognition.
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