
IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 2, FEBRUARY 2019 527

Hough Forest With Optimized Leaves for Global
Hand Pose Estimation With Arbitrary Postures

Hui Liang , Member, IEEE, Junsong Yuan, Senior Member, IEEE, Jun Lee, Member, IEEE,
Liuhao Ge, Student Member, IEEE, and Daniel Thalmann

Abstract—Vision-based hand pose estimation is important in
human–computer interaction. While many recent works focus on
full degree-of-freedom hand pose estimation, robust estimation
of global hand pose remains a challenging problem. This paper
presents a novel algorithm to optimize the leaf weights in a Hough
forest to assist global hand pose estimation with a single depth
camera. Different from traditional Hough forest, we propose to
learn the vote weights stored at the leaf nodes of a forest in a
principled way to minimize average pose prediction error, so that
ambiguous votes are largely suppressed during prediction fusion.
Experiments show that the proposed method largely improves
pose estimation accuracy with optimized leaf weights on both
synthesis and real datasets and performs favorably compared
to state-of-the-art convolutional neural network-based methods.
On real-world depth videos, the proposed method demonstrates
improved robustness compared to several other recent hand
tracking systems from both industry and academy. Moreover,
we utilize the proposed method to build virtual/augmented real-
ity applications to allow users to manipulate and examine virtual
objects with bare hands.

Index Terms—Gesture recognition, hand pose estimation,
Hough forest.

I. INTRODUCTION

V ISION-BASED hand tracking and pose estimation serves
as an effective tool for human–computer interaction

(HCI) [1], [2]. Recently, this field has gained considerable
progresses with the advent of depth cameras, such as ran-
dom forests [3], [4], articulated iterative-closest-point (ICP)
algorithm [5], and convolutional neural network (CNN)-based

Manuscript received June 19, 2016; revised February 18, 2017 and
October 4, 2017; accepted November 27, 2017. Date of publication
December 22, 2017; date of current version January 15, 2019. This work
was supported by the Singapore Ministry of Education Academic Research
Fund under Grant Tier 2 MOE2015-T2-2-114. This paper was recommended
by Associate Editor K.-S. Hwang. (Corresponding author: Hui Liang.)

H. Liang was with the Institute for Media Innovation, Nanyang
Technological University, Singapore (e-mail: hliang1@e.ntu.edu.sg).

J. Yuan is with the School of Electrical and Electronics Engineering,
Nanyang Technological University, Singapore (e-mail: jsyuan@ntu.edu.sg).

J. Lee was with the Institute for Media Innovation, Nanyang Technological
University, Singapore. He is now with the Division of Computer and
Information Engineering, Hoseo University, Asan 31499, South Korea.

L. Ge is with the Institute for Media Innovation, Nanyang Technological
University, Singapore.

D. Thalmann was with the Institute for Media Innovation, Nanyang
Technological University, Singapore. He is now with the École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2017.2779800

methods [6]–[8]. However, these methods mostly emphasize
on full degree-of-freedom (DOF) hand pose estimation, but
we find that their accuracy of global hand rotation estima-
tion with a single depth camera is still unsatisfactory for HCI
applications that require precise rotation control, especially for
some ambiguous hand postures. Consider the scenario of vir-
tual object grasping, in which a user needs to pose his/her
hand as a fist to perform a grasping motion and rotate the
fist to change the viewpoints of a virtual object. As a fist
posture has a relatively less discriminative pattern for hand
rotation estimation compared to that of a stretched hand, we
observe frequent hand rotation estimation failures with some
full-DOF solutions, such as [5] and [9]. Fig. 1 illustrates some
exemplar results for hand rotation estimation with a recent
full-DOF hand tracking framework [9], which is reasonably
accurate for a fully stretched hand posture but not reliable with
a fist posture. We conjecture that this may be due to differ-
ent emphasizes between full-DOF hand pose estimation and
global hand pose estimation. In the former, the entire hand
region is emphasized in order to recover all the finger and
palm pose parameters. In the latter, some discriminative local
hand parts tend to produce confident hand rotation estimations,
while some other parts tend to produce ambiguous estimations.
Finally, full DOF articulated pose estimation can benefit if the
hand rotation angles are accurately estimated [3], [10].

Therefore, we emphasize on robust estimation of 6-DOF
global hand pose for arbitrary postures with a single depth
camera. The global hand pose includes 3-D hand rotation and
translation, which are sufficient for many HCI applications
with a small alphabet of static hand postures despite high
dimensionality of full DOF hand pose [11]–[13]. A very sim-
ilar problem is 3-D global head pose estimation [14], [15] to
recover head rotation and translation in input images. However,
different from head which is nearly rigid, global hand pose
estimation is more challenging due to large hand posture
variations.

The Hough forest [16] is utilized to estimate global hand
pose using a single depth camera. The success of Hough for-
est in hand pose analysis is largely attributed to its voting
scheme. The basic concept is to fuse the votes cast by a set
of voting elements for robust prediction. To be specific, local
features, e.g., small image patches, are first sampled from a
number of different locations over input image and each of
them retrieves a pose vote from a pretrained Hough forest.
The final prediction is made by fusing all votes based on cer-
tain criteria, e.g., average pooling. Such voting techniques are

2168-2267 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2327-6870

528 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 2, FEBRUARY 2019

Fig. 1. Rotation estimation with [9] for a hand turning from right to left
in depth images. Upper: results with a stretched hand posture that has a
discriminative pattern. Lower: results with a fist posture that has ambigu-
ous appearance for rotation estimation. The thumb fingers are enclosed with
squares to illustrate hand rotation. �: reference thumb positions in input
depth images. �: reference thumb positions for correct rotation estimation.
�: reference thumb positions for incorrect rotation estimation.

common for discriminative pose estimation for a wide range of
objects, e.g., head [15], body [17], and hand [3], [18]. These
methods prove more efficient and robust compared to those
that rely on the global image features only. In the proposed
method, we also follow this principle to fuse the pose votes
from a set of densely sampled pixels to infer the global hand
pose.

Since the voting elements may contribute unequally to the
fused prediction, one important issue is to determine the strat-
egy to aggregate the Hough votes for hand pose. Take Fig. 2
as an example, in which we want to infer the yaw rotation
of the hand via Hough-voting. As many local features can
have similar appearances for different hand rotation angles, the
vote distributions from these local features often form multiple
peaks at ambiguous poses in the histograms. As a result, the
fused prediction via average-pooling or mode-seeking cannot
provide satisfactory results. The task to predict roll and pitch
rotation suffers from similar problems, and thus ambiguous
pose votes need to be suppressed. In some previous work
this is achieved by adding different weights to these votes
during fusion, in which a confident vote is assigned large
weight and vice versa, e.g., vote length threshold [17] or leaf-
variance-based weights [15]. However, they are not principled
solutions.

In contrast, we propose to automatically determine the
optimal voting weights during the training phase in global
hand pose estimation. These weights are stored in the leaf
nodes of the Hough forest and can be retrieved during the
testing phase. That is, each leaf node in the Hough forest
includes not only a vote for hand pose but also the corre-
sponding weight to reflect the confidence of this vote during
fusion, both of which are learned during forest training. To this
end, we first follow a way similar to that in [3] and [19] to
build the tree structures of Hough forest and to learn the pose
vote at the leaf nodes. Then, we propose a novel algorithm to

Fig. 2. Illustration of ambiguity encountered in Hough-voting-based yaw
rotation prediction. Note the rotation angle is periodic with 360◦. First row:
query depth images. Second row: per-pixel vote distributions in the interval
[0, 360◦]. Voting pixels are uniformly sampled over the hand region with
uniform voting weights. Third row: per-pixel vote distributions with optimized
voting weights. Red lines in histograms and texts at the bottom denote ground
truth rotation angles.

retrain the Hough forest with fixed tree structures in order to
optimize the voting weights stored at the leaf node, so that the
fused prediction error via Hough voting is minimized for each
training image. We show that the weight optimization problem
can be formulated as a constrained quadratic programming
problem and can be solved efficiently. Fig. 2 illustrates the
effectiveness of the proposed method by comparing the vote
distribution histograms for yaw rotation prediction from the
Hough forest with uniform leaf weights and optimized leaf
weights, and the detailed procedure to obtain the histograms
can be found in Section IV-A. The vote distribution is more
concentrated on the ground truth pose with optimized leaf
weights.

The experimental results on a synthesized dataset and a real-
world dataset demonstrate that the proposed Hough forest with
optimized leaves can estimate hand pose accurately compared
to traditional Hough forest [3] and recent CNN-based meth-
ods [6], [8]. Particularly, in contrast to the CNN-based methods
that generally need powerful GPU cards for training/testing
and large amount of storage to store the learned parameters of
convolutional layers for feature extraction and fully connected
layers for prediction, the proposed method can achieve com-
parable prediction accuracy and frames-per-second but with
only CPU support and a hand-crafted feature [20], and the
trained model is very compact for storage. This makes the
proposed method flexible in application, such as on mobile
platforms. For qualitative evaluations, we have tested the
proposed method with different depth cameras, including a
SoftKinetic DS325 camera and an Intel Realsense camera
using the forest trained on synthesis dataset, which shows it
can correctly predict hand pose for very challenging postures,
e.g., a fist posture rotating backwards, while the state-of-the
art methods [5], [9] cannot work robustly for such cases.
Moreover, we utilize the proposed algorithm to build two
augmented/virtual reality applications to manipulate virtual
objects with bare hands for natural interaction.

LIANG et al.: HOUGH FOREST WITH OPTIMIZED LEAVES FOR GLOBAL HAND POSE ESTIMATION WITH ARBITRARY POSTURES 529

The remainder of this paper is organized as follows. In
Section II, we provide a literature review of related techniques.
In Section III, we present a detailed description and analysis of
the proposed hand pose estimation scheme. In Section IV, we
show the experimental results, performance comparison, and
the HCI application. In Section V, we give our concluding
remarks and further work.

II. RELATED WORK

There has been a lot of work on vision-based hand pose
estimation in literature. Among them, model-based fitting and
template-matching are two main categories of methods, in
which the optimal pose is inferred in either a generative or
discriminative manner, respectively. The model-based fitting
methods are usually built upon a generative deformable hand
model and seek for the optimal pose by iterative adjustment of
pose parameters of the model and compatibility check between
model features and input images [21]. In [22], multiple hand
silhouettes are extracted from the images captured with several
cameras around the hand, where the background is set using
blue boards for easy hand segmentation. A voxel model is
generated with the multiview data and matched to a 3-D hand
model, and the optimal pose is sought to make the hand model
surface stay inside the voxels. In [23], the texture and shading
of the skin are captured from input images and synthesized in
the hand model, and the illumination sources are controlled in
real scenario and simulated during hand modeling. A varia-
tional formulation is proposed to estimate the full DOF hand
pose. In this way, hand pose is recovered quite accurately
since matching ambiguity is largely reduced. However, this
method is difficult to use in real HCI scenarios. In [24], a
Kinect depth camera is adopted to capture the hand image as
it can better handle the background clutter and pose ambigu-
ity in monocular color image, the particle swarm optimization
algorithm is used to find the optimal pose that best fits the
image projection of a 3-D hand model to the input depth
image and skin silhouette. With the point clouds generated
by the depth camera, the iterative closest points algorithm and
its extensions to articulated objects are also commonly used
for hand pose estimation [25], [26], which iteratively build
point-to-point correspondences between model and input point
cloud and seek for the skeleton transform to minimize the dis-
tance between the point pairs. In [5], the hand model is fitted
to both input 3-D point cloud and 2-D hand silhouette for
hand pose estimation. Particularly, optimization of the model-
fitting problem is performed with respect to prelearned low
dimensional hand pose prior, kinematic prior, and temporal
prior altogether to avoid infeasible hand poses and to improve
temporal smoothness. In [27], an elaborate hand model is
adopted to fit to multiview inputs of eight HD cameras, so
that very subtle hand motion can be captured. The finger-
nails are detected in each view by Hough forest classifiers
and used to assist model-fitting for improved accuracy. Similar
ideas have been adopted for RGB-D cameras [28], [29], in
which fingertips are detected in depth images by SVM clas-
sification or morphological analysis and used in combination
with other low-level image features for model-fitting stage,

which can help to speed up convergence and to avoid local
optima. Generally, the initial pose is important to achieve good
model-fitting results, which can be obtained from either tem-
poral reference during tracking [5], [24] or template-matching
methods [29], [30].

The template-matching methods infer hand pose parameters
by directly mapping image features to preindexed templates.
Generally, they need to build a large dataset to cover the
possible hand postures and index it for fast search. During
testing, the input hand pose is recovered by looking for the
templates that share the similar features. In [31], the hand
edge image is encoded into a score value vector by match-
ing to a predefined set of shape templates, and a multivariate
relevance vector machine uses it as the input to retrieve some
pose hypotheses. The optimal pose is obtained by a verification
stage with the hand model projection. In [12], a two-camera
system is presented to capture 6-DOF palm motion and simple
gestures like pinching or pointing for both hands. A pair of
hand silhouettes is extracted and coded into binary strings for
fast query in the database to retrieve the hand pose. In [32],
an isometric self-organizing map is used to learn a nonlinear
mapping between image features and pose, which reduces the
dataset redundancy by grouping templates with similar fea-
tures and poses together. The hand edges are captured at only
depth discontinuities with a multiflash camera and encoded
into shape context for matching. In [20], the hand joint param-
eters are decomposed into many overlapping subsets and
the local sensitivity hashing algorithm is adopted to get the
partial estimations for the subsets, which are further inte-
grated by an EM-like algorithm to obtain the fused prediction.
Since monocular color images lack discriminative power for
hand pose recovery, template-matching-based methods usually
retrieve a set of ambiguous pose candidates. Traditionally,
this issue is solved using multicamera setting [12], [33],
temporal constraints [34], or verification with a hand
model [31], [35].

The depth cameras largely alleviate ambiguous predictions
of template-matching methods as they can capture more
detailed 3-D structure of the hand surface to resolve ambi-
guity. Girshick et al. [17] proposed to directly regress for the
body joints from the depth images. With a prelearned random
regression forest, a set of voting local image patches are ran-
domly sampled from the image and cast their votes for the
joint positions, and the votes from all the voting-elements are
fused by mean-shift algorithm to give the final predictions.
As each voting patch only utilizes partial image observations,
the method is more robust than that rely on global image
descriptors against imperfect inputs, e.g., inaccurate hand seg-
mentation. Very similar ideas are then used for head and hand
pose estimation [3], [15] and prove to be effective. However, in
these earlier works [3], [17], the correlations between different
body and hand joints are not well utilized during regression.
Therefore, many following researches have focused on how
to utilize such correlations with the random forest, e.g., hier-
archical regression [4], [36] and late fusion with hand joint
correlations [37], [38]. But these improvements do not directly
benefit our task to estimate the unconstrained 6-DOF hand
motion.

530 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 2, FEBRUARY 2019

(a) (b) (c)

Fig. 3. (a) Global hand pose to be predicted. This example has zero rota-
tion angles for all three axes. (b) Depth context descriptor [20]. The red
circle denotes the current pixel and the blue circles denote the context points.
(c) Random decision tree in Hough forest.

Recently, the CNN-based methods are gaining popularity in
the field of hand pose estimation [6]–[8], [39], which include
convolutional layers for image feature extraction and fully
connected layers for prediction. During training, the param-
eters of both convolutional layers and fully connected layers
are jointly learned to minimize prediction error, so that fea-
ture extraction is optimized for the hand pose estimation task.
With such capabilities, these methods have demonstrated supe-
rior performance for full-DOF hand pose estimation. However,
they generally need GPU support during runtime and rela-
tively large memory space to store the network parameters.
This may pose an issue on emerging mobile platforms, such
as Oculus Rift and Microsoft Hololens, which are limited in
computational power and storage.

III. HOUGH FOREST WITH OPTIMIZED LEAVES

As discussed in Section I, our goal is to estimate global
hand pose �, including 3-D hand rotation and translation from
depth images, which are defined as Euler angles of pitch, yaw,
and roll rotations of the hand and the 3-D hand position, i.e.,
� = (θ , v), where θ = (θx, θy, θz) is the global rotation angles,
and v = (xc, yc, zc) is the position of an anatomical stable point
on the hand such as the palm center, as illustrated in Fig. 3(a).

The Hough forest [16] is utilized to predict � from a sin-
gle input frame I. It is an ensemble of T random decision
trees, each of which is trained independently with a bootstrap
training set. Following the previous work on Hough-voting-
based pose estimation [3], [18], the Hough forest is learned
to map the local features of a set of Hough voting pixels to
the probabilistic votes for the hand pose. During testing, the
per-pixel votes from all voting pixels are fused to predict �,
which proves quite robust against noisy inputs. We adopt the
depth context descriptor [20] as local pixel feature for regres-
sion with the Hough forest. For a pixel p, its depth context
descriptor D is defined as the set of depth differences between
p and a number of context points

D =
{

I

(
p + ui

I(p)

)
− I(p)

∣∣∣i = 1, . . . ,B

}
(1)

where I(p) is the depth value at pixel p, ui is the offset between
the context point and the current pixel and p + ui/I(p) is the
depth-normalized coordinate of the context point to ensure

depth invariance of the descriptor. Fig. 3(b) shows an exam-
ple of D. This kind of features relying on the depth difference
is depth-invariant, fast to compute and has demonstrated their
good performance for both pose estimation and gesture recog-
nition [3], [18], [20]. To ensure D can capture the fine 3-D
structure of the neighborhood, its dimensionality is around sev-
eral hundreds. Each tree in the Hough forest contains a set of
nonleaf nodes and leaf nodes, which are denoted as green and
pink circles in Fig. 3(c), respectively. The root node is at the
top level of each tree. Each nonleaf node contains a split func-
tion and has two children nodes. The split function is defined
as a Boolean function to determine which child branch a pixel
should reach based on the feature value of its depth context
descriptor during testing, i.e., a pixel reaches the left branch
if the split function value is true and vice versa. Each leaf
node stores a single relative vote for hand pose and the asso-
ciated voting weight, which are also learned ruing training.
During testing, if a pixel reaches a leaf node, its pose vote
and weight are assigned to this pixel for Hough voting. Let
the vote and weight be (θ̄ , �̄,w), where θ̄ is the prediction
of hand rotation angles, �̄ is the 3-D offset between a pixel
and the predicted palm center, and w is a 6-D vector to repre-
sent the voting weight of each dimension of hand pose. Their
detailed description can be found in Section III-A.

Fig. 4 illustrates the Hough-voting-based hand pose
prediction pipeline for a query image It using a pretrained
Hough forest. First, a set of Ns voting pixels {pi} are uniformly
sampled over the hand region in It. Second, these pixels cast
their pose votes independently with the Hough forest. To this
end, each pixel pi is sent to the root node of each tree, and
determines to reach whether the left or right branch based
on its depth descriptor value at the nonleaf nodes, and thus
gradually branches down each tree in the forest until a leaf
node is reached. Therefore, each voting pixel retrieves totally
T votes from the leaf nodes it reaches in all the trees. Let the
votes be {�ij,wij}T

j=1, where �ij is the vote for the hand pose
and wij is the voting weight. Here, �ij is converted from the
relative pose vote (θ̄ ij, �̄ij) retrieved from the forest by set-
ting vij = �̄ij + vi, where vi is the 3-D position of the pixel.
Finally, the fused pose prediction is obtained via Hough voting
as follows.

To perform Hough-voting, a score function P(�|I) is
obtained by aggregating the individual votes from all the
voting pixels. Since � is unconstrained in 6-D space, its differ-
ent dimensions are thus uncorrelated. Therefore, we can take
P(�|I) = ∏

φ∈� P(φ|I), where φ is one dimension of �. This
allows us to solve for each dimension of the six parameters in
� independently during inference. Similar to [3], we use the
weighted Parzen density estimator to evaluate P(φ|I)

P(φ|I) =
∑

i

P(φ|pi) =
∑
i,j

wijP(φ|φij) (2)

where φij is one dimension of the pixel vote �ij. Based on this
expression, each retrieved pose vote contributes to the fused
prediction via linear weighting. For hand translation parame-
ters φ ∈ v we adopt the Gaussian kernel for P(φ|φij) with an

LIANG et al.: HOUGH FOREST WITH OPTIMIZED LEAVES FOR GLOBAL HAND POSE ESTIMATION WITH ARBITRARY POSTURES 531

Fig. 4. Hand pose estimation procedure with a trained Hough forest. Here
only hand rotation is illustrated for clarity, which is represented by the rotated
3-D coordinate system. w is the voting weight of the leaf node.

isotropic variance δv in all three dimensions

P(φ|φij) = 1

δv
√

2π
exp

(
−
∥∥φ − φij

∥∥2

δ2
v

)
. (3)

For hand rotation parameters φ ∈ θ we cannot assume a
Gaussian distribution for P(φ|φij) since the angle is in non-
Euclidean space. Instead, we utilize an 1-D wrapped Gaussian
kernel [40] to model P(φ|φij) for these rotation parameters
within the range [0, 2π]

P(φ|φij) =
∑
z∈Z

N (φ − 2zπ;φij, δ
2
θ) (4)

which is basically infinite wrappings of linear Gaussian within
[0, 2π]. In practice it is shown that the summation over
z ∈ [−2, 2] approximates the infinite summation in (4) well
enough [41]. Combining (2)–(4) we see that P(φ|I) is still sum
of Gaussians for both the translation and rotation parameters.
Therefore, for single-frame hand pose, we can seek the optimal
φ∗ by maximizing P(φ|I) for each dimension of � indepen-
dently. Note that P(φ|I) takes the form of sum of Gaussians,
this can be efficiently solved by the Mean-shift algorithm [42].

A. Tree Structure Learning

To train the Hough forest, we collect a set of depth images
{Im}M

m=1, and annotate each of them with the ground truth rota-
tion angles and center positions of hand, i.e., �m = (θm, vm).
From each image Im we uniformly sample a fixed number of
N training pixels {pi,m}N

i=1 and associate them with their depth
context descriptor Di,m. Besides, each training pixel is anno-
tated with the ground truth hand rotation θ i,m = θm, the offset
�i,m between the 3-D position vi,m of the pixel and the ground
truth palm center position vm. The forest is trained to learn a
nonlinear mapping between local pixel features and hand pose
parameters.

During training, each tree of the forest is built with a boot-
strap subset of the annotated data. Starting from the root node,
the training samples are split into two subsets recursively to
reduce the prediction errors at the child nodes. At the nonleaf
nodes, a set of candidate split functions {ψ} are randomly
generated as the proposals for node splitting, which takes the
following form:

Di ≤ τ (5)

where Di is a randomly selected dimension of D by sam-
pling the feature dimension index i ∈ [1, . . . ,B], and τ is

also a random threshold value to determine whether to branch
to the left or right children. The optimal split function is
selected to maximize a gain measure G(ψ) based on hand
pose distribution in the training samples that reach the node

ψ∗ = arg max
ψ

G(ψ)

= arg max
ψ

⎡
⎣H(A)−

∑
s∈{l,r}

|As(ψ)|
|A| H(As(ψ))

⎤
⎦ (6)

where A is the set of samples reaching the current node and Al

and Ar are the two subsets of A split by ψ . The function H(A)
is defined as the variance of the hand pose among the samples
in A to measure the pose uncertainty. Given the optimal split
function ψ∗ is learned, the pixels for which ψ∗ takes Boolean
value true are split into the left child branch and vice versa.
Since we assume that the global hand pose is unconstrained,
the different dimensions of � are regarded as independent. Its
variance is calculated via H = δ2

	 = δ2
�+δ2

θx
+δ2

θy
+δ2

θz
. Here,

δ2
� is the variance of the 3-D sample offsets

δ2
� = 1

|A|
∑
j∈A

∥∥�j − �̄
∥∥2

(7)

where �j is the offset associated with a sample and �̄ is the
mean offset in A. δ2

θ is the variance of a rotation angle. Since
the angle follows circular distribution, the circular variance δ2

θ

is defined by [40]:

δ2
θ = 1 −

√√√√
[∑

j∈A cos θj

|A|

]2

+
[∑

j∈A sin θj

|A|

]2

. (8)

At the start, each tree is initialized with an empty root node
at first, and the training samples at the root node are split into
the left and right branches based on the optimal split func-
tion ψ∗. The samples reaching each branch are then used to
construct a new tree node by either continuing the splitting
procedure or ending up splitting to obtain a leaf node. This
is done by checking whether certain stopping criteria are met,
e.g., the pose of the samples are pure enough, or the maxi-
mum depth is reached. For each leaf node, its pose vote is
represented by the mean pose in the sample set A reaching it

�̄ = 1

|A|
∑
j∈A

�j

θ̄ = atan2

⎡
⎣ 1

|A|
∑
j∈A

sin θj,
1

|A|
∑
j∈A

cos θj

⎤
⎦. (9)

Since the discriminative power of the leaf nodes are gener-
ally unequal for hand pose estimation, we use a weighting
coefficient vector w to represent their importance during
Hough-voting. The next section addresses the problem to seek
for the optimal weighting coefficients for all the leaf nodes.

B. Leaf Weight Optimization

According to Section III-A, the Hough forest is learned to
minimize the prediction error for the sampled training pix-
els and focuses more on per-pixel prediction performance.

532 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 2, FEBRUARY 2019

However, during the testing stage, the goal is to fuse the
pose votes from the Hough-voting pixels to get more robust
prediction for the query image, which lays more stress on per-
frame prediction performance. Especially, these voting pixels
do not contribute equally to the per-frame prediction and it is
necessary to weigh their votes according to their confidence
during fusion. However, the problem is not well studied in
literature. In [17], a vote length threshold scheme is adopted
in the problem of human pose estimation, in which a vote
for certain joint position is assigned zero weight if its norm
exceeds certain threshold. In [15], a variance-based weighting
scheme is used for head pose estimation with Hough forest,
and a leaf node in the forest is assigned a zero weight if the
pose variance of training samples reaching that node exceeds
certain threshold. However, they are not principled solutions,
e.g., the threshold value is found by testing many different
thresholds values on validation datasets to pick up the one
that produces the best prediction. Besides, those votes that
are filtered out by threshold may still contain useful informa-
tion for prediction, e.g., contribution to fused prediction in a
relatively small weight.

Based on (2), the contribution of each per-pixel pose vote
to the fused prediction is represented as a linear weighting
coefficient. Since the per-pixel votes are obtained at the leaf
nodes of the Hough forest which are reached by each voting
pixel, the weighting coefficient largely relies on the discrimi-
native power of these leaves. This suggests a way to gap the
per-pixel training objective and the per-frame testing objective.
To this end, we derive a per-frame pose prediction for each
training image based on the sampled training pixels used dur-
ing tree-structure learning, and propose to further minimize the
per-frame prediction error on the training dataset by adjusting
the linear weighting coefficient w of the leaf nodes with fixed
prelearned tree structures.

Fig. 5 illustrates the pipeline to learn the voting weights of
the leaves. Here, we consider the case of a single tree and a
single pose dimension φ ∈ �. Let V = {φ̄k,wk}K

k=1 be the set
of pose votes stored at all the leaf nodes and the associated
voting weights to be optimized, where K is the number of
leaf nodes. Basically, our goal to optimize the weights of the
leaf nodes is achieved by minimizing the average per-frame
prediction error on the entire training dataset

W∗ = arg min
W

M∑
m=1

E
(
φ̃m, φm

)
+ λ‖W‖2

s.t. W ≥ 0 (10)

where W = [w1, . . . ,wK]T is the concatenated vector of the
leaf weights, φ̃m is the per-frame prediction, φm is the ground
truth pose, and E(φ̃m, φm) is the prediction error on Im. W ≥ 0
enforces all the leaf weights to be non-negative. ‖W‖2 is a
regularization term and λ is a positive constant to weigh its
significance. For hand translation parameters φ ∈ v, the error
metric E is defined as the squared difference between φ̃m and
φm. For hand rotation parameters φ ∈ θ , though, the error
metric cannot be defined in this way since the angle is in non-
Euclidean space. Thus, we define E as the squared distance
between the two points corresponding to the angles φ̃m and

φm on a unit circle to avoid introducing discontinuity in the
error metric

E =

⎧⎪⎨
⎪⎩

∥∥∥φ̃m − φm

∥∥∥2
φ ∈ v∥∥∥cos φ̃m − cosφm

∥∥∥2 +
∥∥∥sin φ̃m − sinφm

∥∥∥2
φ ∈ θ .

(11)

Now, we provide the derivation of per-frame predictions
as a function of leaf weight vector W on the training images.
According to Section III-A, we uniformly sample a fixed num-
ber of N pixels from each training image Im to construct the
forest. For each image used in tree structure learning, we
keep track of the destination leaf nodes of the training pix-
els sampled from it, and define its per-frame prediction as the
weighted sum of the votes stored at the reached leaf nodes. As
shown in Fig. 5, after the tree structure is learned, each of the
N pixels reaches one leaf node, and it is possible that multiple
pixels from one image reach the same leaf node. This can be
represented by a vector qm = [qm,1, . . . , qm,K]T , in which each
element qm,k is the number of pixels that are sampled from
the training image Im and reach the kth leaf node. qm can be
normalized so that its elements sum to one to simplify the
following derivation. Let φ = [φ̄1, . . . , φ̄K]T be the concate-
nation of all the leaf votes from V . For each training image
Im, its prediction φ̃m can be expressed as

φ̃m =
{
(qm ◦ φ)TW φ ∈ v
atan2

[
(qm ◦ sin φ)TW, (qm ◦ cos φ)TW

]
φ ∈ θ

(12)

where ◦ denotes the Hadamard product and sin φ and cos φ

calculate the element-wise sine and cosine values for the rota-
tion angles in φ. By combining (11) and (12) we show the
optimization problem (10) can be converted to a standard
bound-constrained least squares problem.

Here, we define three auxiliary matrices Q,A ∈ R
M×K ,

and B ∈ R
M to express E as a quadratic form of W. Q =

[q1, . . . , qM]T records the hits on the leaf nodes of the forest
for all the training images. A = [φ, . . . ,φ]T stacks the vec-
tor φ for M repetitive rows. B = [φ1, . . . , φM]T stores the
ground truth pose of the training images. First, consider the
translation parameters φ ∈ v. Let AQ = Q ◦ A. The error term∑M

m=1 E(φ̃m, φm) in (10) can be rewritten as
∥∥AQW − B

∥∥2.
Thus, we have

W∗ = arg min
W

WTAT
QAQW − 2BTAQW + λ‖W‖2

= arg min
W

WT
(

AT
QAQ + λI

)
W − 2BTAQW

s.t. W ≥ 0. (13)

We can see the task to find W∗ is now a standard constrained
quadratic programming problem. Similarly, the derivation
holds for the rotation parameters φ ∈ θ , except that the matri-
ces Q, A, and B need to include both the cosine and sine
parts based on the error metric for rotation angles in (11).
Specifically, Q′ = [QT ,QT]T stacks the matrix Q for twice;
A′ = [cos AT , sin AT]T stacks both the element-wise cosine
and sine values of A. B′ = [cos BT , sin BT]T stores the

LIANG et al.: HOUGH FOREST WITH OPTIMIZED LEAVES FOR GLOBAL HAND POSE ESTIMATION WITH ARBITRARY POSTURES 533

Fig. 5. Example to illustrate leaf weight optimization for a single rotation parameter. The red arrows denote the rotation angles. In this simple example three
pixels are sampled from each training image, which are denoted as pink crosses. q1, . . . , qM records the hit counts of the sampled training voting pixels on
the leaf nodes for each training image. The objective of leaf weight learning is to minimize the sum of per-frame prediction error on the training dataset.

element-wise cosine and sine values for the ground truth rota-
tion angles. Let A′

Q = Q′ ◦ A′ and substitute A′
Q and B′

into (13), and the problem to find W∗ for φ ∈ θ is also
converted to a constrained quadratic programming problem.

In general, the numbers of the training images and the leaf
nodes in the regression forest are very huge, and the size of
the matrix AQ is very huge, i.e., at the magnitude of 104 ×
104. However, since the number of training pixels per image
is relatively small, i.e., several hundreds, and usually many
of the pixels from the same image also go to the same leaf
node, AQ is actually very sparse. Therefore, we utilize the
interior-point-convex quadric programming algorithm [43] to
solve (13), which usually takes less than one hour to converge
for a single dimension φ ∈ � in a single tree.

IV. EXPERIMENTAL RESULTS

This section presents the experiments of global hand pose
estimation on a synthesized dataset, a real-world dataset and
real-time video sequences. The synthesized dataset is obtained
by driving a 3-D hand model [20] with various finger artic-
ulation and hand rotation parameters to generate synthesize
hand depth images with computer graphic methods, which
thus contain accurate global hand pose annotations. In addi-
tion, the proposed method is also evaluated on the real-world
hand pose dataset [36] to demonstrate its capability to han-
dle noisy real depth data. Finally, we use the SoftKinetic
DS325 and Intel Realsense depth camera to capture real-
world hand depth videos and compare the proposed method
to state-of-the-art hand tracking solutions from industry
and academy.

In all the tests in this section, the resolution of the images
is 320 × 240. The forests consist of three trees, which
follows previous work on Hough forest-based hand pose
estimation [18]. To train each tree of the Hough forest,
200 pixels are uniformly sampled from each training image
and 10 000 candidate split functions are generated. During
testing, 1000 pixels are uniformly sampled from the hand
region for spatial voting. All evaluated methods were coded
in C++/OpenCV except that the leaf weight optimization
algorithm in Section III-B was implemented in MATLAB.
Training is performed on a workstation with Intel Xeon
E5620 2.4 GHz CPU and 32 GB RAM. The online tests

Fig. 6. Basic hand posture templates to generate the synthesis dataset.

are performed on a PC with Intel i5 3.2 GHz CPU without
parallelization.

A. Quantitative Evaluation on Synthesis Dataset

In this experiment, we test the performance of the proposed
Hough forest on a synthesis dataset. The 3-D hand model [20]
to generate this dataset consists of a skeleton system and a
skin surface mesh to simulate the real hand. The skeleton is
modeled as kinematic chains of bones in a tree structure with
the root at the wrist. The skin mesh consists of 7000 trian-
gles. The palm center is set as the central point on the middle
Metacarpal bone on the model skeleton. Give a hypothesized
hand pose, the skeleton is updated via forward kinematics,
and skin mesh is then updated via skeleton subspace defor-
mation. The hand poses for data synthesis contain variations
of both global hand rotation and local finger articulation. The
global hand rotation is confined within (−20◦, 60◦) around the
x-axis, (−180◦, 30◦) around y-axis and (−60◦, 60◦) around
the z-axis, which have covered most of the natural hand rota-
tion ranges. It is uniformly discretized into 864 viewpoints.
The definition of rotation axis can be referred to Fig. 3.
The local finger articulation consists of ten basic hand pos-
ture templates, as illustrated in Fig. 6. For each of the ten
basic templates, the fingers are also allowed to move in small
ranges, which give in total 60 static hand postures. Overall,
the number of images in this dataset is around 50 k, and
each of them is annotated with ground truth global hand pose
parameters.

534 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 2, FEBRUARY 2019

(a) (b) (c) (d) (e)

Fig. 7. Hand pose estimation results on the synthesis dataset for different values of maximum tree depth. (a) Translation v prediction. (b) Pitch angle θx
prediction. (c) Yaw angle θy prediction. (d) Roll angle θz prediction. (e) Avg. per-frame time cost.

Fig. 8. Illustration of vote distribution histograms obtained with optimized leaf weights within [0, 360◦] for the three rotation angles, where the ground truth
angles are illustrated with red lines. First row: input depth images. Second row: θx prediction. Third row: θy prediction. Fourth row: θz prediction.

The experimental results are based on single-frame eval-
uation as the synthesis images are generated independently.
To evaluate the prediction accuracy, we perform fivefold cross
validation, and in each fold 80% of all the images are used
for forest training and the rest 20% for testing. For 3-D hand
translation, the prediction accuracy is evaluated in terms of the
average distance between the prediction and the ground truth.
For 3-D hand rotation angles we follow the conventions [44]
to define the prediction error between prediction φ̃ and ground
truth φ as their absolute difference:

D(φ̃, φ) =
∣∣∣(φ̃ − φ) mod ± 180◦

∣∣∣. (14)

Similarly, the prediction performance is evaluated in terms of
the average angle error between the prediction and the ground
truth. To perform the experiment, we use the training data to
learn the tree structures for several different values of maxi-
mum tree depth ranging within [8, 20] to better understand the
performance of our leaf weight optimization algorithm with
respect to different numbers of leaf nodes. Table I provides
the average number of leaf nodes per-tree and the correspond-
ing times costs for Hough forest training and leaf weight
optimization during the training stage.

In Fig. 7, we compare hand pose estimation results obtained
by optimized and uniform leaf weights, which show the
prediction errors for 3-D translation and rotation angles and
the average per-frame time costs for different tree depths
of the forest. Overall, the proposed leaf weight optimization

TABLE I
AVERAGE NUMBER OF LEAF NODES PER-TREE AND THE

CORRESPONDING TRAINING TIME COSTS WITH RESPECT TO DIFFERENT

TREE DEPTHS. FT: FOREST TRAINING. LWO: LEAF WEIGHT

OPTIMIZATION. H: HOUR. M: MINUTE. S: SECOND

algorithm largely improves the prediction accuracy for both
3-D hand translation and rotation compared to uniform leaf
weights. For hand translation, the proposed leaf weight
optimization scheme reduces the prediction error by 11.6%
on average. For hand rotation, even with relatively low tree
depth, e.g., 8, the prediction errors with optimized leaf weights
are only 17.2◦, 17.9◦, and 13.9◦ for the three rotation angles,
which is even better than the performance of the depth-10
forest with uniform leaf weights. Particularly, for the θy rota-
tion which ranges between (−180◦, 30◦) and has the largest
appearance ambiguity, the forest with optimized leaf weights
reduces the prediction error by 49.8% on average. In Fig. 7(e),
we also present the average per-frame time costs for hand pose
prediction, which shows that the proposed method does not
require extra time costs compared to the forest with uniform
leaf weights. The time costs do not change much with dif-
ferent tree depths, and are below 12 ms on average, which

LIANG et al.: HOUGH FOREST WITH OPTIMIZED LEAVES FOR GLOBAL HAND POSE ESTIMATION WITH ARBITRARY POSTURES 535

TABLE II
AVERAGE PREDICTION ERRORS FOR HAND TRANSLATION (CM) AND ROTATION (DEGREE)

FOR EACH BASIC HAND TEMPLATE IN SYNTHESIZED DATASET

(a) (b) (c) (d) (e)

Fig. 9. Hyper-parameter tests for the number of per-frame training pixels N. (a) Translation v prediction. (b) Pitch angle θx prediction. (c) Yaw angle θy
prediction. (d) Roll angle θz prediction. (e) Training time cost.

(a) (b) (c) (d) (e)

Fig. 10. Hyper-parameter tests for the number of candidate split functions. (a) Translation v prediction. (b) Pitch angle θx prediction. (c) Yaw angle θy
prediction. (d) Roll angle θz prediction. (e) Training time cost.

is sufficient for most real-time applications. Fig. 8 illustrates
the vote distribution histograms with optimized leaf weights,
in which ground truth rotation angles are shown in red lines.
The vote distribution histograms are obtained by first discretiz-
ing angle range 0◦, 360◦ into 180 bins and then counting the
weighted number of voting pixels that falls into each bin of
the histograms. That is, if the angle vote of a voting pixel
falls into a certain bin of the histogram, the bin value is then
increased by the voting weight of the pixel. This process is
repeated for all the voting pixels to obtain the final histogram.
As the rotation angle is periodic with 360◦, we round the neg-
ative angle values into [0, 360◦] by adding 360◦ to them to
simplify drawing the histograms. We can see that the distribu-
tions with optimized weights generally concentrate on ground
truths.

As ten basic hand posture templates are used to synthe-
size this dataset, in Table II, we provide the pose prediction
results for each of them separately for tree depth of 20.
The average and standard deviation are also calculated for
prediction errors of the ten templates to evaluate the capability
of consistent prediction for different hand shapes. As shown
in Table II, the proposed leaf weight optimization method not
only reduces pose prediction error but also produces consistent
predictions for different postures. Again, it is worth noting that
the proposed method can work for hand pose estimation with
arbitrary postures and is not limited to these ten templates.

We have also investigated influence of certain hyper-
parameters on system performance, including the numbers of
per-frame training pixels N and candidate split functions. The
results are illustrated in Figs. 9 and 10. For each test, the

536 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 2, FEBRUARY 2019

Fig. 11. Failure cases for yaw rotation prediction. Red lines indicate ground
truth and blue lines indicate predicted pose.

uninvestigated parameters take the same values as in the begin-
ning of Section IV. Meanwhile, despite that the proposed leaf
weight optimization algorithm improves hand pose prediction
accuracy considerably, there are still cases in which the hand
appearance poses ambiguity for prediction, as in Fig. 11.
In these examples the hand looks very similar from several
different perspectives, e.g., frontal and back views.

B. Quantitative Evaluation on Real Dataset

The experiments on real-world data is performed on MSRA
Hand Gesture database [36], which includes totally 76 k
annotated depth images from nine different subjects. There
are some other datasets such as NYU and ICVL hand pose
datasets [4], [6], but the hand rotation range in their test-
ing images is relatively small compared to [36]. Thus, they
are more suitable for full-DOF hand pose estimation rather
than 3-D hand rotation estimation. In contrast, the MSRA
dataset contains hand images in larger hand rotation range,
as illustrated in Fig. 12. As the annotations in MSRA dataset
are the 3-D positions of 21 hand joints in each image as
in left of Fig. 13, we need to convert them to 3-D hand
translation and rotation for evaluation. To this end, we define
the 3-D hand translation as the wrist position, i.e., joint 1
in Fig. 13. To calculate the 3-D rotation angles, we define
the rotated y-axis of hand to be along the vector pointing
from wrist to the middle metacapophalangeal joint (joint 10)
as in right of Fig. 13. Let this normalized vector be �y. We
then calculate three normalized vectors pointing from hand
wrist to the middle metacapophalangeal joints of pinky (joint
18), ring (joint 14), and index (joint 6) fingers, i.e., �α1, �α2,
and �α3. The rotated z-axis of hand is taken to be the aver-
age of the cross products �y × �α1, �y × �α2, and �α3 × �y to
reduce the influence of annotation noise. The rotated x-axis
is obtained by applying orthogonality, and the 3-D Euler rota-
tion angles are calculated based on the rotated hand coordinate
system.

We further implemented the single-view CNN-based
method [6] with the Torch7 [45] framework for compari-
son. The method in [6] first adopts CNN to regress for the
2-D positions of hand joints, and then applies a generative
model-fitting phase to refines hand pose prediction from CNN.
For fair comparison, we only implemented their CNN regres-
sion framework and compare their results to the proposed
method. Specifically, we convert the estimated 2-D hand joint
positions to 3-D positions by taking the depth of a joint
to be the value at the predicted 2-D position in the depth

Fig. 12. Exemplar images in MSRA Hand Gesture database [36].

Fig. 13. Left: annotated hand joint positions in MSRA Hand Gesture
database [36]. Right: conversion of joint annotation to Euler angles of 3-D
hand rotation.

images. The 3-D hand joint position can be obtained by cam-
era back-projection based on 2-D hand joint position and
depth value. With the 3-D positions of all hand joints, the
3-D hand translation and rotation angles are calculated via
the process in right of Fig. 13. In addition, we also com-
pare the proposed method to the state-of-the-art multiview
CNNs algorithm [8], which directly predicts 3-D positions
of hand joints. Similarly, its prediction can be converted to
global hand pose following Fig. 13. Both methods [6], [8]
are tested on a GPU workstation with two Nvidia Tesla
K20 GPUs.

Table III presents the pose prediction errors, per-frame time
costs, and trained model sizes obtained by Hough forests
with both uniform and optimized leaf weights and the CNN-
based method [6], [8]. The results are obtained by training
Hough forest and CNN on eight of the subjects in MSRA
Hand Gesture database [36] and testing on the remaining one.
It again shows that the optimized leaf weights reduce hand
pose prediction error, particularly for hand rotation angles.
Besides, the proposed method largely outperforms single-
view CNN method [6], and has comparable accuracy with
the multiview CNN method [8]. It is worth noting that our

LIANG et al.: HOUGH FOREST WITH OPTIMIZED LEAVES FOR GLOBAL HAND POSE ESTIMATION WITH ARBITRARY POSTURES 537

TABLE III
HAND POSE PREDICTION ERROR ON REAL-DATASET USING THE FORESTS WITH UNIFORM AND OPTIMIZED LEAF

WEIGHTS AND THE SINGLE-VIEW CNN METHOD [6] AND MULTIVIEW CNNS METHOD [8]

(a) (b) (c) (d)

Fig. 14. Hand pose prediction accuracy with respect to different tolerance Dv and Dθ on MSRA Hand Gesture database [36]. (a) Translation v prediction.
(b) Pitch angle θx prediction. (c) Yaw angle θy prediction. (d) Roll angle θz prediction.

Fig. 15. Real-time hand pose estimation of the proposed algorithm with a DS325 camera. Row 1: input depth images. Row 2: tracked hand pose.

Fig. 16. Real-time hand pose estimation of the proposed algorithm with an Intel Realsense camera. Row 1: input depth images. Row 2: tracked hand pose.

method requires only CPU in run-time, while both CNN meth-
ods require GPU support. Without any parallelization, the
proposed Hough forest can achieve similar time-performance
to CNN methods that heavily rely on GPU for acceleration.
Moreover, as CNN needs a large number of network parame-
ters to store the convolutional layers for feature extraction and
the full-connected layers for prediction, the resulting model
size is generally quite large compared to Hough forest. As
shown in Table III, our implementation of the single-view
CNN [6] with their network structure requires around 378
MB storage and the multiview CNNs algorithm [8] requires
1.1 GB storage. In contrast, the proposed Hough forest only
occupies 16 MB storage. Thus, it is more flexible for differ-
ent computation platforms, such as Microsoft Hololens and
Oculus Rift. Fig. 14 provides the overall prediction accu-
racy with respect to different values of tolerance Dv and Dθ ,
i.e., the percentage of predictions with errors less than Dv

for translation and Dθ for rotation. The results are consistent
to Table III.

C. Qualitative Comparison With State-of-the-Arts

In this section, we utilize the forests trained on the synthesis
data in Section IV-A and qualitatively test them on real-world
depth image sequences from a SoftKinetic DS325 camera and
an Intel Realsense camera. The hand region is segmented in the
depth images with the SDKs provided by these two cameras.
For each dimension of 6-D global hand pose, a Kalman filter
is utilized to smooth its prediction independently in succes-
sive frames both in Sections IV-C and IV-D. We illustrate the
predicted global hand pose in terms of transformed 3-D coor-
dinate, and the results obtained with the DS325 camera and
Intel Realsense camera on several exemplar frames are pro-
vided in Figs. 15 and 16. Note that the colors of the coordinate
axes and the definition of zero rotation are in line with that
in Fig. 3. The positive direction of each axis is indicated with
the yellow cap. The results show that the predicted hand pose
obtained by the proposed method is visually very consistent
to real pose.

538 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 2, FEBRUARY 2019

Fig. 17. Hand pose estimation results of [9] with Intel Realsense camera input. First row: input depth images. Second row: estimated hand pose. The red
rectangles denote the positions of thumb fingertip in both the input and reconstructed hand model for reference, and the hand rotation prediction is wrong
when the thumb positions are on different sides of the hand.

Fig. 18. Hand pose estimation results of [5] with DS325 camera input. First row: input depth images (the released runnable file only illustrates the binary
hand mask during running). Second row: estimated hand pose. The red rectangles denote the positions of thumb fingertip in both the input and reconstructed
hand model for reference, and the hand rotation prediction is wrong when the thumb positions are on different sides of the hand.

For qualitative comparison, we test the state-of-the-art
Intel Hand Tracking Library [9] from industry and the
Articulated-ICP method [5] from academia, and the user per-
forms similar postures as that in Figs. 15 and 16. Both methods
provide full-DOF hand tracking functionality. Since 6-DOF
global hand pose is an intrinsic subset of full-DOF hand
pose parameters, we focus on their 3-D hand translation and
rotation prediction performance in this test. The former is
used with the Intel Realsense camera and the latter is used
with the DS325 camera due to the requirement of the SDKs.
Figs. 17 and 18 present some exemplar frames of the results
obtained with [5] and [9]. Overall, for postures that have a dis-
tinctive pattern, such as fully stretched hand postures, these
two SDKs perform relatively well. However, for ambiguous
postures, such as fist posture or when all fingers are side-by-
side, they usually cannot predict the correct hand pose well and
can get confused between the back and frontal viewpoints. In
contrast, the proposed algorithm with optimized leaf weights
can predict hand pose much more robustly against rapidly
changing hand postures and rotation angles. Even for postures
like a rotating fist, the hand pose can still be predicted accu-
rately. The detailed video results for the proposed algorithm
with optimized leaf weights on Intel/DS325 cameras and that
of [5] and [9] can be found on our website.1

D. Applications

This section presents two virtual/augmented reality applica-
tions based on the proposed hand pose estimation algorithm,
which allow users to manipulate virtual objects with bare
hands. For command inputs we implement the shape classifica-
tion forest in [46] to recognize user’s hand gestures. As in [46],
during training, a number of pixels are sampled from each
training image and associated with the corresponding depth
context features, and each pixel takes the same gesture label
to the image that they are from. The forest is trained to mini-
mize the entropy of gesture label distributions for intermediate

1https://sites.google.com/site/seraphlh

Fig. 19. Virtual object manipulation via global hand pose estimation and
gesture recognition. The up-left corner of each frame shows the input image.

node splitting. At the leaf node, we store a histogram to repre-
sent the probabilistic gesture class distribution. During testing,
a number of Ng gesture voting pixels retrieve a set of gesture
votes {Hij}T

j=1, where Hij is the gesture distribution histogram
retrieved by pixel i from tree j and Hij(l) represents the proba-
bility that the gesture prediction is l. The optimal hand gesture
l∗ is predicted by

l∗ = arg max
l

1

Ng × T

∑
i,j

Hij(l). (15)

The first application is virtual object manipulation in virtual
reality, in which a user can grasp a virtual ball and examine it
from different perspectives. The shape classification forest rec-
ognizes open and close hand gestures to allow the grasp action.
We adopt the grasping control pipeline in [47] to map the dis-
crete open/close hand states to continuous grasping motion.
During runtime, the system checks the states of grasping when
the 6-D hand pose and gesture are recovered. In case that a
close hand gesture is detected, i.e., grasping motion, it per-
forms collision detection between the virtual hand and the
virtual ball. If collision occurs, the ball moves and rotates fol-
lowing the 6-D hand motion. The object is released if an open
hand gesture is detected after a successful grasping. Fig. 19
illustrates the scenario and a grasping example.

The second application is an augmented reality system so
that a virtual teapot is visually put upon the real hand in RGB
images and three hand gestures are used to change the teapot
color, as shown in Fig. 20. This application is publicly demoed

LIANG et al.: HOUGH FOREST WITH OPTIMIZED LEAVES FOR GLOBAL HAND POSE ESTIMATION WITH ARBITRARY POSTURES 539

Fig. 20. Teapot inspection and color selection via global hand pose estimation
and gesture recognition.

in real-time at ACM MM15 [48]. The SoftKinetic DS325 cam-
era is used to capture both RGB and depth images of user’s
hand and the global hand motion and gesture information are
predicted from depth images. The depth and color sensors
of the DS325 camera are calibrated in advance to transform
the global hand pose recovered from the depth to the coor-
dinate system centered at the color sensor. The virtual teapot
is then rendered according to the transformed hand pose and
gesture, and projected onto the image plane with OpenGL,
which is then overlaid on the RGB image. To get realistic
visual feedback, we define a visibility term for the teapot
based on hand rotation angles to reflect hand-object occlusion,
which is implemented via controlling the transparency effect
in OpenGL with the roll angle of hand. That is, the teapot is
fully opaque when the palm is facing the camera, and becomes
gradually transparent when it rotates backwards. The whole
video for both applications can be found on our website.1

V. CONCLUSION

In this paper, we present a Hough forest-based algo-
rithm to estimate global hand motion with arbitrary postures.
To improve per-frame pose prediction in the Hough-voting
scheme, we propose to optimize the voting weights of leaf
nodes so that the average error between the ground truth hand
pose and the fused predictions of the training images is min-
imized. The task is formulated as a constrained quadratic
programming problem and can be solved efficiently. The
method is tested on both a synthesis dataset and a real-world
dataset containing large viewpoint variations and various finger
motions, and improves prediction accuracy considerably com-
pared to rivals. Comparison to state-of-the-art hand tracking
systems also demonstrates the effectiveness of the proposed
algorithm. Based on these techniques, we develop two real-
time HCI applications to allow users to manipulate virtual
objects with bare hands. The proposed algorithm still has
large potential to exploit in the areas of visualization and HCI,
and we plan to integrate it with real-world applications, such
as virtual mechanical part manipulation in computer-aided
design.

REFERENCES

[1] M. A. A. Aziz, J. Niu, X. Zhao, and X. Li, “Efficient and robust learning
for sustainable and reacquisition-enabled hand tracking,” IEEE Trans.
Cybern., vol. 46, no. 4, pp. 945–958, Apr. 2016.

[2] S. Poularakis and I. Katsavounidis, “Low-complexity hand gesture
recognition system for continuous streams of digits and letters,” IEEE
Trans. Cybern., vol. 46, no. 9, pp. 2094–2108, Sep. 2016.

[3] C. Xu and L. Cheng, “Efficient hand pose estimation from a single depth
image,” in Proc. Int. Conf. Comput. Vis., Sydney, NSW, Australia, 2013,
pp. 3456–3462.

[4] D. Tang, H. J. Chang, A. Tejani, and T.-K. Kim, “Latent regression
forest: Structured estimation of 3D articulated hand posture,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, 2014,
pp. 3786–3793.

[5] A. Tagliasacchi et al., “Robust articulated-ICP for real-time hand track-
ing,” in Proc. Eurograph. Symp. Geometry Process., Graz, Austria, 2015,
pp. 101–114.

[6] J. Tompson, M. Stein, Y. Lecun, and K. Perlin, “Real-time continu-
ous pose recovery of human hands using convolutional networks,” ACM
Trans. Graph., vol. 33, no. 5, p. 169, 2014.

[7] M. Oberweger, P. Wohlhart, and V. Lepetit, “Hands deep in deep learning
for hand pose estimation,” in Proc. Comput. Vis. Win. Workshop, 2015,
pp. 21–30.

[8] L. Ge, H. Liang, J. Yuan, and D. Thalmann, “Robust 3D hand pose
estimation in single depth images: From single-view CNN to multi-view
CNNs,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las Vegas,
NV, USA, 2016, pp. 3593–3601.

[9] The Intel Skeletal Hand Tracking Library. Accessed: Oct. 15, 2015.
[Online]. Available: http://www.intel.com

[10] M. Sun, P. Kohli, and J. Shotton, “Conditional regression forests for
human pose estimation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Providence, RI, USA, 2012, pp. 3394–3401.

[11] P. Song, W. B. Goh, W. Hutama, C.-W. Fu, and X. Liu, “A handle
bar metaphor for virtual object manipulation with mid-air interaction,”
in Proc. ACM Conf. Human Factors Comput. Syst., Austin, TX, USA,
2012, pp. 1297–1306.

[12] R. Y. Wang, S. Paris, and J. Popović, “6D hands: Markerless hand-
tracking for computer aided design,” in Proc. ACM Symp. User Interface
Softw. Technol., Santa Barbara, CA, USA, 2011, pp. 549–558.

[13] M. Schlattmann, F. Kahlesz, R. Sarlette, and R. Klein, “Markerless
4 gestures 6 DOF real-time visual tracking of the human hand with
automatic initialization,” Comput. Graphics Forum, vol. 26, no. 3,
pp. 467–476, 2007.

[14] Q. Ji, “3D face pose estimation and tracking from a monocular camera,”
Image Vis. Comput., vol. 20, no. 7, pp. 499–511, 2002.

[15] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. V. Gool, “Random
forests for real time 3D face analysis,” Int. J. Comput. Vis., vol. 101,
no. 3, pp. 437–458, Feb. 2013.

[16] A. Yao, J. Gall, and L. V. Gool, “A hough transform-based voting frame-
work for action recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., San Francisco, CA, USA, 2010, pp. 2061–2068.

[17] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgibbon,
“Efficient regression of general-activity human poses from depth
images,” in Proc. Int. Conf. Comput. Vis., 2011, pp. 415–422.

[18] D. Tang, T.-H. Yu, and T.-K. Kim, “Real-time articulated hand pose esti-
mation using semi-supervised transductive regression forests,” in Proc.
Int. Conf. Comput. Vis., 2013, pp. 3224–3231.

[19] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[20] H. Liang, J. Yuan, and D. Thalmann, “Parsing the hand in depth images,”
IEEE Trans. Multimedia, vol. 16, no. 5, pp. 1241–1253, Aug. 2014.

[21] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision with
microsoft kinect sensor: A review,” IEEE Trans. Cybern., vol. 43, no. 5,
pp. 1318–1334, Oct. 2013.

[22] E. Ueda, Y. Matsumoto, M. Imai, and T. Ogasawara, “Hand pose esti-
mation using multi-viewpoint silhouette images,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2001, pp. 1989–1996.

[23] M. de La Gorce, D. J. Fleet, and N. Paragios, “Model-based 3D hand
pose estimation from monocular video,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 33, no. 9, pp. 1793–1805, Sep. 2011.

[24] I. Oikonomidis, N. Kyriazis, and A. A. Argyros, “Efficient model-based
3D tracking of hand articulations using kinect,” in Proc. Brit. Mach. Vis.
Conf., Dundee, U.K., 2011, pp. 1–11.

[25] S. Pellegrini, K. Schindler, and D. Nardi, “A generalisation of the ICP
algorithm for articulated bodies,” in Proc. Brit. Mach. Vis. Conf., Leeds,
U.K., 2008, pp. 1–10.

[26] M. Schröder, J. Maycock, H. Ritter, and M. Botsch, “Real-time hand
tracking using synergistic inverse kinematics,” in Proc. IEEE Int. Conf.
Robot. Autom., Hong Kong, 2014, pp. 5447–5454.

540 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 2, FEBRUARY 2019

[27] L. Ballan, A. Taneja, J. Gall, L. V. Gool, and M. Pollefeys,
“Motion capture of hands in action using discriminative salient
points,” in Proc. Eur. Conf. Comput. Vis., Florence, Italy, 2012,
pp. 640–653.

[28] S. Sridhar, A. Oulasvirta, and C. Theobalt, “Interactive marker-
less articulated hand motion tracking using RGB and depth data,”
in Proc. Int. Conf. Comput. Vis., Sydney, NSW, Australia, 2013,
pp. 2456–2463.

[29] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun, “Realtime and robust
hand tracking from depth,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Columbus, OH, USA, 2014, pp. 1106–1113.

[30] X. Wei, P. Zhang, and J. Chai, “Accurate realtime full-body motion
capture using a single depth camera,” ACM Trans. Graph., vol. 31, no. 6,
p. 188, 2012.

[31] A. Thayananthan, R. Navaratnam, B. Stenger, P. H. S. Torr, and
R. Cipolla, “Pose estimation and tracking using multivariate regression,”
Pattern Recognit. Lett., vol. 29, no. 9, pp. 1302–1310, 2008.

[32] H. Guan, R. S. Feris, and M. Turk, “The isometric self-organizing map
for 3D hand pose estimation,” in Proc. Int. Conf. Autom. Face Gesture
Recognit., Southampton, U.K., 2006, pp. 263–268.

[33] H. Guan, J. S. Chang, L. Chen, R. S. Feris, and M. Turk,
“Multi-view appearance-based 3D hand pose estimation,” in Proc.
Comput. Vis. Pattern Recognit. Workshop, New York, NY, USA, 2006,
p. 154.

[34] J. Romero, H. Kjellström, and D. Kragic, “Monocular real-time 3D artic-
ulated hand pose estimation,” in Proc. Int. Conf. Humanoid Robots,
Paris, France, 2009, pp. 87–92.

[35] M. Potamias and V. Athitsos, “Nearest neighbor search methods for
handshape recognition,” in Proc. Int. Conf. Pervasive Tech. Related
Assistive Environ., Athens, Greece, 2008, Art. no. 30.

[36] X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun, “Cascaded hand pose
regression,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Boston,
MA, USA, 2015, pp. 824–832.

[37] H. Liang, J. Yuan, and D. Thalmann, “Resolving ambiguous hand pose
predictions by exploiting part correlations,” IEEE Trans. Circuits Syst.
Video Technol., vol. 25, no. 7, pp. 1125–1139, Jul. 2015.

[38] F. Kirac, Y. E. Kara, and L. Akarun, “Hierarchically constrained
3D hand pose estimation using regression forests from single
frame depth data,” Pattern Recognit. Lett., vol. 50, pp. 91–100,
Dec. 2013.

[39] X. Zhou, Q. Wan, W. Zhang, X. Xue, and Y. Wei, “Model-based deep
hand pose estimation,” in Proc. Int. Joint Conf. Artif. Intell., New York,
NY, USA, 2016, pp. 2421–2427.

[40] N. I. Fisher, Statistical Analysis of Circular Data. Cambridge, U.K.:
Cambridge Univ. Press, 2000.

[41] C. Herdtweck and C. Curio, “Monocular car viewpoint estimation with
circular regression forests,” in Proc. IEEE Intell. Veh. Symp., Gold Coast,
QLD, Australia, 2013, pp. 403–410.

[42] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 5, pp. 603–619, May 2002.

[43] N. Gould and P. L. Toint, “Preprocessing for quadratic programming,”
Math. Program. B, vol. 100, no. 1, pp. 95–132, 2004.

[44] A. Agarwal and B. Triggs, “Recovering 3D human pose from monoc-
ular images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 1,
pp. 44–58, Jan. 2006.

[45] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7:
A MATLAB-like environment for machine learning,” in Proc.
BigLearn NIPS Workshop, 2011, Art. no. EPFL-CONF-192376.

[46] C. Keskin, F. Kirac, Y. E. Kara, and L. Akarun, “Hand pose esti-
mation and hand shape classification using multi-layered randomized
decision forests,” in Proc. Eur. Conf. Comput. Vis., Florence, Italy, 2012,
pp. 852–863.

[47] J. Lee, N. Magnenat-Thalmann, and D. Thalmann, “Shared object
manipulation,” in Context Aware Human–Robot and Human-Agent
Interaction. Cham, Switzerland: Springer, 2016, pp. 191–207. [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-319-19947-
4_9

[48] H. Liang, J. Yuan, D. Thalmann, and N. M. Thalmann, “Ar in hand:
Egocentric palm pose tracking and gesture recognition for augmented
reality applications,” in Proc. 23rd Annu. ACM Conf. Multimedia Conf.,
Brisbane, QLD, Australia, 2015, pp. 743–744.

Hui Liang (M’13) received the B.Eng. degree in
electronics and information engineering and the
M.Eng. degree in communication and information
system from the Huazhong University of Science
and Technology, Wuhan, China, in 2008 and 2011,
respectively, and the Ph.D. degree from Nanyang
Technological University, Singapore, in 2016.

He was a Research Associate with the Institute
for Media Innovation and a Research Fellow
with the Rapid-Rich Object Search Lab, Nanyang
Technological University. He is currently a Research

Scientist with the Institute of High Performance Computing, A*STAR,
Singapore. His current research interests include computer vision, machine
learning, and human–computer interaction.

Junsong Yuan (M’08–SM’14) received the
graduation degree from the Special Class for the
Gifted Young, Huazhong University of Science and
Technology, Wuhan, China, in 2002, the M.Eng.
degree from the National University of Singapore,
Singapore, and the Ph.D. degree from Northwestern
University, Evanston, IL, USA.

He is currently an Associate Professor with the
School of Electrical and Electronics Engineering,
Nanyang Technological University (NTU),
Singapore. His current research interests include

computer vision, video analytics, gesture and action analysis, and large-scale
visual search and mining.

Dr. Yuan was a recipient of the Best Paper Award from International
Conference on Advanced Robotics (ICAR17), the 2016 Best Paper Award
from the IEEE TRANSACTIONS ON MULTIMEDIA, the Doctoral Spotlight
Award from IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’09), the Nanyang Assistant Professorship from NTU, and Outstanding
EECS Ph.D. Thesis Award from Northwestern University. He is currently
a Senior Area Editor of the Journal of Visual Communications and Image
Representations, an Associate Editor of the IEEE TRANSACTIONS ON

IMAGE PROCESSING and the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS FOR VIDEO TECHNOLOGY, and served as a Guest Editor for
the International Journal of Computer Vision. He is the Program Co-Chair
of ICME18 and the Area Chair of ACM Multimedia Conference, the
IEEE Conference on Computer Vision and Pattern Recognition, the IEEE
International Conference on Image Processing, the International Conference
on Pattern Recognition, and the Asian Conference on Computer Vision.

Jun Lee (M’12) received the B.S. and M.S. degrees
in computer science and engineering and the Ph.D.
degree in advanced technology fusion from Konkuk
University, Seoul, South Korea, in 2004, 2006, and
2012, respectively.

He was a Post-Doctoral Researcher with the
Center for Robotics Research, Korea Institute of
Science and Technology, Seoul, South Korea. He
is an Assistant Professor with the Division of
Computer and Information Engineering, Hoseo
University, Asan, South Korea, in 2017. He was

a Research Fellow with the Institute for Media Innovation, Nanyang
Technological University, Singapore, being involved in various research
projects on immersive virtual environments and 3-D telepresence systems.
His current research interests include consistency management, grasping vir-
tual object and manipulation, shared object manipulation, and increasing sense
of presence in the virtual environments.

LIANG et al.: HOUGH FOREST WITH OPTIMIZED LEAVES FOR GLOBAL HAND POSE ESTIMATION WITH ARBITRARY POSTURES 541

Liuhao Ge (S’16) is currently pursuing the Ph.D.
degree from the Institute for Media Innovation,
Interdisciplinary Graduate School, Nanyang
Technological University, Singapore.

His current research interests include computer
vision, multimedia, and machine learning.

Daniel Thalmann received the Ph.D. degree in
computer science from the University of Geneva,
Geneva, Switzerland, in 1977 and the Honorary
Doctorate degree from University Paul-Sabatier,
Toulouse, France, in 2003.

He is currently a Honorary Professor with the
École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland, where he is the Director of
Research Development with MIRALab Sarl. He has
been the Founder of the Virtual Reality Lab, EPFL.
From 2009 to 2017, he was a Visiting Professor

with the Institute for Media Innovation, Nanyang Technological University,
Singapore. He has published over 600 papers in graphics, animation, and vir-
tual reality. He is one of the most highly cited scientists in Computer Graphics.
Pioneer in research on virtual humans, his current research interests include
social robots, crowd simulation, and virtual reality.

Prof. Thalmann was a recipient of the Eurographics Distinguished Career
Award in 2010, the 2012 Canadian Human Computer Communications Society
Achievement Award, and the CGI 2015 Career Achievement. He is the Co-
Editor-in-Chief of the Journal of Computer Animation and Virtual Worlds
and a member of the Editorial Board of 12 other journals. He was the
Program Chair and the Co-Chair of several conferences, including IEEE
Virtual Reality Conference, the ACM Symposium on Virtual Reality Software
and Technology, and the ACM SIGGRAPH International Conference on
Virtual-Reality Continuum and its Applications in Industry. More details on
http://en.wikipedia.org/wiki/Daniel_Thalmann.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

