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a b s t r a c t 

Despite recent progress of pedestrian detection, it remains a challenging problem to detect pedestrians 

that are partially occluded due to the uncertainty and diversity of partial occlusion patterns. Following 

a commonly used framework of handling partial occlusions by part detection, we propose a multi-label 

learning approach to jointly learn part detectors to capture partial occlusion patterns. The part detectors 

share a set of decision trees which are learned and combined via boosting to exploit part correlations and 

also reduce the computational cost of applying these part detectors for pedestrian detection. The learned 

decision trees capture the overall distribution of all the parts. When used as a pedestrian detector indi- 

vidually, our part detectors learned jointly show better performance than their counterparts learned sep- 

arately in different occlusion situations. For occlusion handling, several methods are explored to integrate 

the part detectors learned by the proposed approach. Context is also exploited to further improve the 

performance. The proposed approach is applied to hand-crafted channel features and features learned 

by a deep convolutional neural network, respectively. Experiments on the Caltech and CUHK datasets 

show state-of-the-art performance of our approach for detecting occluded pedestrians, especially heavily 

occluded ones. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Occlusions occur frequently in practical applications, which

resents a great challenge for pedestrian detection. Most state-of-

he-art pedestrian detection approaches [1–5] train a full-body de-

ector to detect pedestrians which are non-occluded or slightly oc-

luded but ignore situations in which pedestrians are heavily oc-

luded. Although these approaches show promising performance

or detecting pedestrians which are not heavily occluded, they of-

en fail to work well when heavy occlusions are present. For ex-

mple, RPN + BF [3] achieves a log-average miss rate of 9.6% on the

easonable subset of the Caltech dataset [6] , but its performance

rops dramatically to 74% on the Heavy subset in which pedes-

rian examples are heavily occluded. Since most of the body of a

eavily occluded pedestrian is invisible, a full-body detector would

robably be misled by the background region inside its detection

indow so that it tends to miss the pedestrian. As illustrated in

ig. 1 (a-b), the heavily occluded pedestrian (Blue bounding box)

s only ranked at 5th among the top five detections obtained by

 full-body detector. In this paper, we explore how to handle oc-
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lusions properly to improve the performance for heavily occluded

edestrian detection. 

A common solution to occlusion handling for pedestrian detec-

ion is to learn a set of part/occlusion-specific detectors which are

hen properly integrated for detecting both non-occluded and par-

ially occluded pedestrians [7–14] . This solution is based on the

ssumption that when a full-body detector fails to detect a par-

ially occluded pedestrian, the detectors of the parts which are

ot occluded can still have high detection scores on the pedes-

rian (See Fig. 1 (b-c)). For this solution, the reliability of part de-

ectors is of great importance, since part detectors are its building

locks. Usually, part detectors are learned separately [7–11,13,14] .

earning part detectors separately has two drawbacks: (1) Correla-

ions among parts are ignored, which would affect the reliability of

he learned part detectors; (2) The computational cost of applying

he learned part detectors increases linearly with the number of

arts. In [12] , part detector learning and integration are achieved

ointly using a single convolutional neural network. However, this

pproach only uses class labels and part detectors are learned im-

licitly in a weakly supervised fashion. We believe part-level su-

ervision can be exploited to further improve its performance. 

To address the above issues of learning part detectors, we pro-

ose a multi-label learning approach to jointly learn part detec-

https://doi.org/10.1016/j.patcog.2018.08.018
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Fig. 1. Occlusion handling. (a) Top five detections of a full-body detector. The heavily occluded pedestrian (Blue bounding box) is only ranked at 5th. (b) Scores of the five 

detections in (a) given by 20 part detectors. Each curve shows the 20 scores of one detection in the same color. The first detector is the full-body detector. Fig. 2 shows the 

20 parts. (c) The five detections in (a) are re-ranked by properly integrating the 20 part detectors. The heavily occluded pedestrian (Blue bounding box) is ranked at 2nd. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Part pool. Blue regions denote parts. The first part is the whole body which is modeled as a template of 6 × 3 cells. Parts 2–17 are designed to handle situations 

where occlusions occur from the left, right or bottom and the last three parts are used for detecting the lower body. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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tors with part-level supervision. The goal of joint learning is to (1)

improve the part detectors by exploiting correlations among parts,

e.g. some parts of the body tend to appear/disappear together, and

(2) reduce the computational cost of applying the learned part

detectors for pedestrian detection. Learning and combining a set

of decision trees via boosting to form a boosted forest is widely

adopted for pedestrian detection and has shown to work well in

practice [2,3,15,16] . We also choose decision trees to form our part

detectors. However, instead of learning a set of decision trees for

each part detector, we only construct one set of decision trees

which are shared by all the part detectors. To exploit part corre-

lations, these decision trees are learned and combined to capture

the overall distribution of all the parts. We adapt AdaBoost.MH

[17] , which is a multi-class, multi-label version of AdaBoost, to

learn these decision trees. For occlusion handling, we explore sev-

eral methods to integrate the part detectors jointly learned by the

proposed approach. We also exploit context to further improve the

performance. The effectiveness of our approach is demonstrated

on the Caltech [6] and CUHK [9] datasets. We apply the proposed

multi-label learning approach to channel features [18] and fea-

tures learned by a convolutional neural network (CNN features)

respectively. When used for pedestrian detection individually, the

part detectors learned jointly by the proposed approach show bet-

ter performance than their counterparts learned separately. Using

channel features our approach improves state-of-the-arts for de-

tecting pedestrians in different occlusion situations while using

CNN features our approach shows comparable performance for de-

tecting pedestrians that are non-occluded or slightly occluded and

achieves the best performance for detecting occluded pedestrians,

especially heavily occluded ones. 

In summary, our contributions are two-fold: (1) we propose a

multi-label learning approach to jointly learn part detectors which

share decision trees to exploit correlations among parts and also

a  
educe the computational cost of applying these part detectors; (2)

e explore several integration methods to integrate the part detec-

ors learned by the proposed approach for occlusion handling and

xploit context to further improve detection performance. A short

ersion of this work appears in [19] . The remainder of this pa-

er is organized as follows. Related work is discussed in Section 2 .

ection 3 presents the proposed multi-label part detector learning

pproach. How to exploit the learned part detectors for occlusion

andling is described in Section 4 . Experimental results are given

n Section 5 . Section 6 concludes the paper. 

. Related work 

In the past decade, many effort s have been made to improve

edestrian detection [6,20–26] . Most recent approaches use either

and-crafted channel features or features learned by convolutional

eural networks (CNN features). For the approaches using hand-

rafted channel features [1,2,15,18,27–29] , boosting is usually ap-

lied to learn and combine a set of decision trees to form a pedes-

rian detector and pedestrian detection is carried out in a sliding-

indow fashion. In [27] , multiple registered image channels are

omputed by applying a set of linear and non-linear transforma-

ions, e.g. gradients, Gabor transformations and thresholding, to an

nput image. Features are extracted by computing sums over lo-

al rectangular regions, which can be implemented efficiently via

ntegral images. Then, boosting is applied to select a subset of

eatures for learning a pedestrian detector. Due to promising per-

ormance achieved by the combination of channel features and

oosting, some approaches are proposed to enrich channel features

1,2,18,29] and accelerate feature extraction [15] . A thorough study

f how to build an accurate pedestrian detector using the combina-

ion of channel features and boosting is presented in [28] . For the

pproaches using CNN features [3–5,9,12,14,30–34] , a deep convo-
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utional neural network is trained to either form a pedestrian clas-

ifier [5,9,12,30,32–34] or generate features which are combined

ith other types of classifiers for pedestrian detection [3,4,31] .

enerally, these approaches perform detection by classifying a set

f pedestrian proposals. In [9] , a Restricted Boltzmann Machine

RBM) is proposed to integrate detection scores from part detec-

ors to handle occlusions. A deep network architecture is proposed

n [12] to integrate feature extraction, deformation handling, occlu-

ion handling and classification in a single network. How to learn

 deep convolutional neural network for pedestrian detection is

horoughly studied in [30] . In [33] , a deep convolutional neural

etwork is proposed for multi-scale pedestrian detection. Differ-

nt types of information, e.g. attributes [32] , edges and segmenta-

ion channels [34] , and thermal data [5] are exploited to improve

edestrian detection performance. To validate the effectiveness of

ur multi-label learning approach, we apply it to both channel and

NN features. 

Since occlusions occur frequently in practical applications, many

pproaches have been proposed to handle occlusions for pedes-

rian detection. The approach in [35] adopts an implicit shape

odel to generate a set of pedestrian hypotheses which are fur-

her refined using local and global cues to obtain their visible re-

ions. In [36] , a pedestrian template is divided into a set of blocks

nd occlusion reasoning is conducted by estimating the visibility

tatus of each block. A probabilistic framework [37] is proposed to

xploit multi-pedestrian detectors to aid single-pedestrian detec-

ors, which can handle partial occlusions especially when pedestri-

ns occlude each other. In [38,39] , a set of occlusion patterns are

iscovered to capture occlusions of single pedestrians and multi-

le pedestrians and then a deformable part model [40,41] is em-

loyed to learn a mixture of occlusion-specific detectors. A widely

sed occlusion handling strategy for pedestrian detection is to

earn a set of part detectors which are then fused properly for de-

ecting partially occluded pedestrians [7–14,42,43] . Most of these

pproaches [7–11,13,14] focus on how to integrate part detectors.

art detectors are integrated by linear combination [7,13,14] , rules

8,10] and Restricted Boltzmann Machines [9,11] . Our approach also

dopts a similar framework. Different from these approaches in

hich part detectors are usually learned separately, part detectors

re learned jointly in our approach so as to exploit part correla-

ions for improving these detectors and reduce the computational

ost of applying the learned part detectors for pedestrian detec-

ion. 

Contextual information is commonly used to improve the per-

ormance for general object detection [40,44–48] . There are also

everal specific approaches which exploit context for pedestrian

etection [49–52] . In [52] , pedestrian-vehicle relationships are ex-

loited to suppress false positives located around vehicles in traffic

cenes. Cascaded classifiers are learned by boosting [49] or deep

earning [50] in a sequential way that the outputs of a classifier

rovide context for the classifier at the next stage. In [51] , the out-

ut from a two-pedestrian detector is taken as context for a single-

edestrian detector to improve the performance of the latter using

 probabilistic framework. Different from these approaches, we ex-

loit context by analyzing the detection distribution of a pedes-

rian detector. 

. Multi-label learning of part detectors 

.1. Part representation 

We model the whole body of a pedestrian as a rectangular tem-

late without distinguishing different viewpoints. The template is

ivided into an H × W grid. Any rectangular sub-region in the tem-

late is considered as a part. Mathematically, a part can be ex-

ressed as a 4-tuple p = (l, t, r, b) , where ( l, t ) and ( r, b ) are the
oordinates of the top-left and bottom-right corners of the part re-

pectively with 0 ≤ l < r ≤ W and 0 ≤ t < b ≤ H . In our implementa-

ion, we set H = 6 and W = 3 . According to prior knowledge that

edestrians are usually occluded from the left, right or bottom, we

anually design a pool of parts as shown in Fig. 2 . The part pool

an be expressed as P = { p k | 1 ≤ k ≤ K} , where p k = (l k , t k , r k , b k )

nd K = 20 . For pedestrian detection, images are usually repre-

ented by a set of feature maps, e.g. locally decorrelated channel

eatures (LDCF) [18] and convolutional channel features (CCF) [31] .

o represent a part on a pedestrian, a direct way is to crop regions

hat correspond to the part from the feature maps. One problem of

his representation is that small parts on a pedestrian are difficult

o be reliably detected as the information from the small parts is

elatively limited compared with that from large parts, especially

hen the pedestrian is small. To address this problem, we repre-

ent a part using features from the whole body instead. Features

rom the surrounding region of the part can be taken as its con-

ext. In this way, all the parts have the same representation. 

.2. Multi-label formulation 

Let X be an instance space which consists of image regions. For

ach part p k ∈ P, we want to learn a detector d k : X → R such that

or an image region x ∈ X , d k ( x ) > 0 if the image region contains p k 
nd d k ( x ) ≤ 0 otherwise. So, we need to learn K part detectors. A di-

ect solution is to learn the K part detectors separately. One prob-

em of this solution is that it ignores correlations among the parts.

or example, according to the part definition in Section 3.1 , if a

art appears in an image region, any smaller part within this part

s also visible. To exploit potential correlations among the parts,

e propose a multi-label learning approach to learn the K part de-

ectors jointly. 

Specifically, we learn a function F : X → 2 P to predict a set

f parts P ⊆ P which appear in a given image region x . Let D =
 (x i , l i , B 

v 
i 
, B 

f 
i 
) | 1 ≤ i ≤ N} be a set of training examples, where x i ∈

 is an image region, l i ∈ {−1 , 1 } indicates whether the image re-

ion contains a pedestrian and if so, B v 
i 

and B 
f 
i 

are two bounding

oxes specifying the visible portion and full body of the pedestrian

espectively. To learn F , we need to construct for each instance x i a

abel vector Y i = (y ik ) ∈ {−1 , 1 } K for 1 ≤ k ≤ K , where y ik indicates

hether the image region x i contains the part p k . When a part is

nly partially visible on a pedestrian, it is not trivial to assign 1

r -1 to the part. Wrong assignment of part labels may cause the

earning of part detectors to fail. So, we introduce a cost vector

 i = (c ik ) ∈ R 

K for 1 ≤ k ≤ K to soften the label assignment, where

 ik (0 ≤ c ik ≤ 1) defines the cost incurred by a wrong prediction on

 i for p k . For l i = −1 , we set y ik = −1 and c ik = 1 . For l i = 1 , we set

 ik = 1 and determine the cost c ik based on B v 
i 

and B 
f 
i 

. We first

tandardize the full-body bounding box B 
f 
i 

as in [6] : the height

nd center of B 
f 
i 

are fixed and its width is adjusted to make the

atio of the width to the height equal to 0.41. Denote by R 
f 
i 

the

tandardized full body. Then, any image contents inside the visible

ortion B v 
i 

but outside the standardized full body R 
f 
i 

are discarded

o obtain a new visible portion R v 
i 
. Let R 

p 

ik 
be the image region of

he part p k on the instance x i . We calculate the intersection over

nion (IOU) of R 
p 

ik 
and R v 

i 
denoted by I ik , and the proportion of R 

p 

ik 
overed by R v 

i 
denoted by O ik . Finally, the cost c ik is determined as

ollows: 

 ik = 

{ 

O ik O ik ≥ 0 . 7 ; 
I ik O ik < 0 . 7 and I ik ≥ 0 . 5 ; 
0 otherwise. 

(1) 

n the first case, the majority of the part p k is visible on the in-

tance x i , so a large cost is set to prevent the part from being

rongly predicted. In the second case, the IOU of the part and vis-
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Fig. 3. Example labeling. The blue and red bounding boxes are the visible portion and full body of the pedestrian example respectively. The green bounding box is the 

standardized full body and the yellow bounding box is the new visible portion inside the standardized full body. The purple bounding box shows the image region of the 

upper-body part on the pedestrian example. The cost vector is calculated according to the purple and yellow bounding boxes. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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ible portion is over 0.5, thus we consider the part to be visible on

the instance and the cost of wrongly classifying it depends on the

IOU. In the third case, the part is largely occluded. We set c ik = 0

to ignore this training example for the k -th part. 

Fig. 3 illustrates how a pedestrian example is labeled. D F =
{ (x i , Y i , C i ) | 1 ≤ i ≤ N} forms the training set for learning F . We

identify F with a two-argument function H : X × P → R such that

p k ∈ F ( x ) if H ( x, p k ) > 0 and p k �∈ F ( x ) otherwise. For any predicate π ,

let [ π ] be 1 if π holds and 0 otherwise. We learn H by minimizing

the following loss function: 

L (H, D F ) = 

1 

N 

N ∑ 

i =1 

K ∑ 

k =1 

c ik [ sign (H(x i , p k )) � = y ik ] , (2)

where N is the number of training examples, sign (H(x i , p k )) = 1 if

H ( x i , p k ) > 0 and sign (H(x i , p k )) = −1 otherwise. 

3.3. Learning via boosting 

Since decision trees when learned and combined via boost-

ing have shown promising performance for pedestrian detection

[2,3,15,16] , we choose decision trees to form our part detectors. We

explore two approaches to minimize the loss function L (H, D F ) in

Eq. (2) for learning the K part detectors. 

The first approach learns the K part detectors separately. Define

the training loss related to the k -th part detector by 

L k ( H, D F ) = 

1 

N 

N ∑ 

i =1 

c ik [ sign (H(x i , p k )) � = y ik ] . (3)

L (H, D F ) can be decomposed as 

L ( H, D F ) = 

K ∑ 

k =1 

L k ( H, D F ) . (4)

So, L (H, D F ) can be minimized by minimizing L k (H, D F ) for

1 ≤ k ≤ K separately. Let Q k = 

∑ N 
i =1 c ik . We normalize the costs asso-

ciated with the k -th part by Q k to obtain 

ˆ C k = (c 1 k /Q k , . . . , c Nk /Q k ) .
ˆ 
 k can be considered as a distribution over the training examples

of the k -th part in D F . Boosting can be applied to learn and com-

bine T decision trees to form a detector for the k -th part with

example weights initialized to ˆ C k . This learning approach has two

limitations: (1) Correlations among the parts are ignored; (2) The

computational costs of training and testing increase linearly with

the number of parts. 
To address the limitations of the separate learning approach, we

ropose another approach to learn the K part detectors jointly. In-

tead of learning T decision trees for each part detector, we only

earn T decision trees which are shared by all the part detectors.

e adapt AdaBoost.MH [17] , which is a multi-class, multi-label

ersion of AdaBoost, to learn H of the form: 

(x, p) = 

T ∑ 

t=1 

αt h t (x, p) , (5)

here h t : X × P → R is a weak classifier which is a decision tree

n our case and αt is a weight associated with h t . First, we consider

 simplified case in which c ik = 1 for 1 ≤ i ≤ N and 1 ≤ k ≤ K . Ad-

Boost.MH can be directly applied to minimize L (H, D F ) . The idea

f AdaBoost.MH is to reduce the multi-label learning problem to

 binary classification problem for which AdaBoost can be used to

btain H . Each training example (x i , Y i , C i ) ∈ D F is replaced with K

raining examples (( x i , p k ), y ik ) for 1 ≤ k ≤ K . Note that since c ik = 1

or all i and k , C i in the example ( x i , Y i , C i ) can be ignored. y ik is

he binary label for ( x i , p k ). D B = { ((x i , p k ) , y ik ) | 1 ≤ i ≤ N, 1 ≤ k ≤
} forms the training set for the binary classification problem. H is

earned by minimizing the following loss function: 

 ( H, D B ) = 

1 

N 

N ∑ 

i =1 

K ∑ 

k =1 

1 

K 

[ sign (H(x i , p k )) � = y ik ] . (6)

daBoost.MH maintains a sequence of weight matrices

( W 

1 , . . . , W 

T ) through T stages where W 

t = (w 

t 
ik 
) ∈ R 

N×K for

 ≤ t ≤ T with w 

t 
ik 

the weight of the training example ( x i , p k ) at

tage t . W 

1 is initialized to w 

1 
ik 

= 

1 
NK for all i and k . At each stage

 , AdaBoost.MH learns a weak classifier h t and a weight αt based

n W 

t . With h t , example weights are updated as follows: 

 

t+1 
ik 

= 

w 

t 
ik 

exp ( −αt y ik h t (x i , p k ) ) 

Z t 
, (7)

here Z t = 

∑ 

i,k w 

t 
ik 

exp(−αt y ik h t (x i , p k )) is a normalization fact or.

he training error of the learned H is bounded by 

 ( H, D F ) ≤
T ∏ 

t=1 

Z t . (8)

ow we introduce how to minimize L (H, D F ) for the general case.

ote that when 

1 
K in Eq. (6) is replaced with c ik , the loss function

n Eq. (6) is exactly the loss function in Eq. (2) . It is easy to verify

hat by initializing W 

1 to w 

1 
ik 

= 

c ik 
N for all i and k , AdaBoost.MH

an be used to minimize L (H, D F ) in Eq. (2) . The upper loss bound

iven in Eq. (8) still holds. 
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Next, we describe how to learn a decision tree h t at stage t

iven example weights W 

t . Starting with a root node, we construct

 t greedily. At the beginning, all training examples fall in the root

ode with sample weights W 

t . We examine one leaf node at a

ime. If a leaf node reaches a predefined maximum depth or the

raining examples falling in the node are pure enough, we stop

ranching the leaf node. Otherwise, we choose a feature and a

hreshold which have the minimum weighted classification error

n the training examples reaching the leaf node. With the chosen

eature and threshold, the training examples are split into two sub-

ets each of which is assigned to one new leaf node. The two new

eaf nodes are the children of the current leaf node. Assume h t has

 leaf nodes and the instance space X is partitioned into X 1 , ...

 X M 

with X j the set of instances falling in the j -th leaf node. For an

nstance x ∈ X j , h t is defined to output 

 t (x, p k ) = 

1 

2 

ln 

(
S + 

jk 

S −
jk 

)
, (9)

here S + 
jk 

= 

∑ 

x i ∈ X j w 

t 
ik 

[ y ik = 1] and S −
jk 

= 

∑ 

x i ∈ X j w 

t 
ik 

[ y ik = −1] . After

he decision tree is constructed, it can be proved that h t defined in

q. (9) minimizes Z t with αt set to 1 (See [17] for more details). 

According to the above adaptation of AdaBoost.MH for minimiz-

ng L (H, D F ) , the costs C = (c ik ) ∈ R 

N×K after normalization can be

onsidered as a distribution over D B . The decision trees are learned

o capture the overall distribution of all the parts. Part correlations

re exploited by sharing the decision trees among these part de-

ectors. When taken as a pedestrian detector individually, the part

etectors learned jointly show better performance than their coun-

erparts learned separately as demonstrated in Section 5 . For de-

ection, applying the part detectors with shared decision trees is

uch faster as it only involves a computational cost of T instead of

 × T decision trees. 

.4. Complexity analysis 

In general, when part detectors are learned separately, the com-

utational complexity of applying these part detectors for detec-

ion is O ( K × C ), where K and C are the number of part detectors

nd the cost of applying each part detector respectively. In our ap-

roach, T decision trees are shared by all the K part detectors and

ach leaf in a decision tree stores K responses. Assume the max-

mum depth of each decision tree is D. The computation cost of

pplying one decision tree is D − 1 comparisons + K additions. So,

he total computational complexity is T × (D − 1 + K) operations

r O (T × (D + K)) . When the part detectors are learned separately,

ach part detector consists of T decision trees. The computational

ost of applying one part detector is O ( T × D ). So, the total compu-

ational complexity is O ( K × T × D ). Compared with separate learn-

ng, our approach achieves a speedup of O ((K × D ) / (D + K)) . 

. Occlusion handling with part detectors 

.1. Integrating part detectors 

In a particular scene, pedestrians may be occluded by each

ther or other objects. Simply applying a full body detector usu-

lly does not work well when pedestrians are heavily occluded. As

e do not know in advance which parts are occluded, a simple

et effective way to handle occlusions is to apply a set of part de-

ectors. For a candidate region x in an image, the K part detectors

ould give K detection scores, s = (s 1 , . . . , s K ) , where s k = H(x, p k )

or 1 ≤ k ≤ K . We need to integrate these detection scores properly

o give a final score indicating how likely the candidate region con-

ains a pedestrian. We study three methods for this purpose. 
Let g : R 

K → R be an integration function. A common inte-

ration method is to take the maximum among the K detection

cores: 

( s ) = max 
1 ≤k ≤K 

s k . (10) 

e call this method Max integration. 

The second method we adopt is a variant of Max integra-

ion which takes the average of the top S detection scores with

 ≤ S ≤ K . Let s ′ be a vector obtained by sorting the detection scores

n s in descending order. The integration function can be expressed

s 

( s ) = 

1 

S 

∑ 

1 ≤k ≤S 

s ′ k . (11) 

e call this method TopS integration. This method is based on

wo observations as illustrated in Fig. 4 : (1) for a partially oc-

luded pedestrian, detectors of those parts which are inside or

ave a large overlap with the visible region of the pedestrian

ould probably give high detection scores, while the other part

etectors may give low detection scores due to occlusions; (2) for

 non-pedestrian region, part detectors tend to output low detec-

ion scores. 

The third method learns a weight vector v = (v 1 , . . . , v K ) to lin-

arly combine the K detection scores: 

( s ) = 

∑ 

1 ≤k ≤K 

v k s k + b. (12)

here b is a bias term. Let D = { ( s i , y i ) | 1 ≤ i ≤ N} be a set of train-

ng examples, where s i represents the K detection scores of the i -

h training example and y i ∈ {−1 , 1 } . We learn v by logistic regres-

ion. Specifically, v is learned by solving the following optimization

roblem: 

in 

v 
φ( v ) + λ

N ∑ 

i =1 

log ( 1 + exp ( −y i g( s i ) ) ) , (13) 

here N is the number of training examples and φ( v ) is a regu-

arization term. Following [13] , we adopt two types of regulariz-

rs, i.e. φ(v ) = 

1 
2 v 

T v and φ(v ) = || v || 1 . When the L1 norm || v || 1 is

sed, a subset of part detectors are selected with a proper choice

f λ. We call this method L1 integration if the L1 norm is used in

q. (13) and otherwise L2 integration. 

.2. Contextual rescoring 

Context is commonly used to improve performance for object

etection [40,46,49] . We exploit context based on the observa-

ion that for our part detectors, detections are densely distributed

round a true detection while rare detections are found around

 false detection as illustrated in Fig. 5 . For each detection d , we

ollect M top-scoring neighboring detections whose intersection

ver union (IOU) with d is greater than 0.5. Let q be the score

or the detection d and q nb 
i 

be the scores for the i -th neighboring

etection. These scores come from a specific integration method,

.g. L2 integration. The scores q nb 
i 

(1 ≤ i ≤ M ) are sorted in de-

cending order. We represent the detection d by a score vector

 = (q, q nb 
1 

, . . . , q nb 
M 

) with q nb 
1 

≥ . . . ≥ q nb 
M 

. If the detection d only

as less than M neighboring detections, the remaining entries in u

re filled with 0. The score vector of a true detection tends to have

ore high scores than the score vector of a false detection, which

an be exploited to further distinguish between true and false de-

ections. To do this, we learn a rescoring model based on the above

epresentation using a non-linear support vector machine (SVM)
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Fig. 4. Part scores on top 5 scoring image regions. The number above each region denotes its ranking. For the fully visible pedestrian (Red bounding box), all part detectors 

give high detection scores consistently (Red curve). For the partially occluded pedestrian (Blue bounding box), only the detectors of visible parts (e.g. P3, P4, P5, P9, P10, P14 

and P15) output high detection scores (Blue curve). Background regions (Green, yellow and cyan bounding boxes) receive relatively low scores from all the part detectors 

(Green, yellow and cyan curves). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Detection distribution. Red bounding boxes are thirty detections with the 

highest scores. Detections are densely located around the two pedestrians marked 

by green bounding boxes. Detections are sparsely distributed in other regions. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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with an intersection kernel. Specifically, we learn a rescoring func-

tion of the following form: 

r( u ) = 

N ∑ 

i =1 

αi κ( u , u i ) , (14)

where N is the number of training examples, u i is the i -th training

example, αi for 1 ≤ i ≤ N are the parameters to be learned and 

κ( u , u i ) = 

M+1 ∑ 

j=1 

min ( u ( j) , u i ( j)) , (15)

with u ( j ) the j -th entry in u . To accelerate training and testing, we

approximate the intersection kernel by a linear kernel 

κ( u , u i ) ≈ u 

′ T u 

′ 
i , (16)

where u 

′ and u 

′ 
i 

are approximate explicit mappings of u and u i 

respectively obtained by the technique proposed in [53] . Then, we

learn the rescoring model by a linear SVM. 

5. Experiments 

We apply our approach to two types of features, hand-crafted

channel features and features learned by a convolutional neu-
al network (CNN features), and evaluate its effectiveness on two

edestrian detection datasets, Caltech [6] and CUHK [9] . 

The Caltech dataset is commonly used for evaluating pedestrian

etection approaches and provides both visible portion and full

ody annotations. Following the standard evaluation protocol, we

se video sets S0-S5 for training and video sets S6-S10 for test-

ng. A log-average miss rate, which is calculated by averaging miss

ates at 9 false positive per-image (FPPI) points sampled evenly in

he log-space ranging from 10 −2 to 10 0 , is used to summarize the

etection performance. As the purpose of our approach is to han-

le occlusions, we evaluate it on three subsets: Reasonable, Partial

nd Heavy . In the Reasonable subset, only pedestrians with at least

0 pixels tall and under no or partial occlusion are used for eval-

ation. This subset is widely used for evaluating pedestrian detec-

ion approaches. In the Partial and Heavy subsets, pedestrians are

t least 50 pixels tall and are partially occluded (1–35% occluded)

nd heavily occluded (36–80% occluded) respectively. 

The CUHK dataset is specially collected for evaluating occlusion

andling approaches for pedestrian detection. The dataset consists

f 1063 images from Caltech, ETHZ, TUD-Brussels, INRIA, Caviar

nd other sources. In this dataset, each image contains at least one

artially occluded pedestrian. As this dataset only contains a small

umber of images, we do not train detectors on this dataset. In-

tead, we use this dataset to evaluate the generalizability of detec-

ors trained on the Caltech dataset. Similar to the Caltech dataset,

valuation is done on the Reasonable, Partial and Heavy subsets,

nd detection performance is summarized by the log-average miss

ate. 

.1. Experiments with channel features 

.1.1. Implementation 

We choose locally decorrelated channel features (LDCF)

18] which are frequently used for pedestrian detection in recent

ears to represent the parts in our approach. We use the same set-

ing as in [18] : 4 filters of size 5 × 5 are learned to locally decorre-

ate aggregated channel features (ACF) [15] of 10 channels to gen-

rate LDCF of 40 channels. We sample training data from video sets

0-S5 at an interval of 3 frames. Pedestrian examples which are at

east 50 pixels tall and occluded not more than 70% are collected

s positive examples. Five rounds of bootstrapping are adopted to

rain 64, 512, 1024, 2048 and 4096 decision trees respectively. The

aximum depth of a decision tree is 5. We use S = 15 for the TopS

ntegration method. C = 0 . 1 and C = 0 . 001 are used for L2 integra-

ion and L1 integration respectively. 
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Fig. 6. Results of part detectors using different part representations on the Caltech dataset. 

Table 1 

Comparison of separate learning (SL) and joint learning (JL) using channel features 

on the Caltech dataset. P1-P4, P6 and P11 are six typical parts shown in Fig. 2 . The 

last row shows the average improvements on the three subsets brought by joint 

learning. 

Method Reasonable Partial Heavy 

SL-P1 18.2 36.1 72.1 

JL-P1 17.0 34.2 70.5 

SL-P2 19.3 40.2 71.9 

JL-P2 17.4 35.8 70.1 

SL-P3 18.6 39.4 69.4 

JL-P3 17.2 34.3 68.7 

SL-P4 18.6 39.7 69.9 

JL-P4 17.8 35.5 67.9 

SL-P6 19.2 37.7 72.1 

JL-P6 17.3 34.1 70.7 

SL-P11 19.2 42.4 73.8 

JL-P11 16.9 35.2 70.8 

Avg. Imp. + 1.6 + 4.4 + 1.8 
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Table 2 

Comparison of cost-sensitive labeling and hard learning using channel features on 

the Caltech dataset. P1–P4, P6 and P11 are six typical parts shown in Fig. 2 . The 

last row shows the average improvements on the three subsets brought by cost- 

sensitive labeling. 

Method Reasonable Partial Heavy 

HL-P1 20.9 44.2 79.5 

JL-P1 17.0 34.2 70.5 

HL-P2 22.1 43.7 77.9 

JL-P2 17.4 35.8 70.1 

HL-P3 24.5 46.0 74.1 

JL-P3 17.2 34.3 68.7 

HL-P4 31.4 53.2 73.6 

JL-P4 17.8 35.5 67.9 

HL-P6 22.6 44.0 82.0 

JL-P6 17.3 34.1 70.7 

HL-P11 22.4 46.3 83.0 

JL-P11 16.9 35.2 70.8 

Avg. Imp. + 6.7 + 11.4 + 8.6 

Table 3 

Results of full-body detectors and integration methods using channel features on 

the Caltech dataset. 

Method Reasonable Partial Heavy 

LDCF-P1 18.1 38.8 72.4 

SL-P1 18.2 36.1 72.1 

HL-P1 20.9 44.2 79.5 

JL-P1 17.0 34.2 70.5 

JL-Max 17.5 34.8 68.8 

JL-TopS 16.6 32.7 69.6 

JL-L1 16.7 33.1 69.0 

JL-L2 16.5 33.0 68.9 

p  

J

 

a  

c  

i  

S  

l  

e  

a  

d  

i  

l  

l  

o  

c  

i

 

i  

[  
.1.2. Experimental results on Caltech 

Fig. 6 shows the results of part detectors learned using differ-

nt part representations. PR1 denotes the representation method

n which a part is represented by the features from its own im-

ge region. The part detectors using PR1 are learned independently.

R2 is the representation method in which all the parts share the

eatures from the whole body. The part detectors using PR2 are

earned jointly using our multi-label formulation. It can be seen

hat the performances of the part detectors learned using PR1 vary

argely from part to part on the Reasonable, Partial and Heavy sub-

ets. The detectors of small parts (e.g. P5, P10 and P20) usually

erform worse than those of large parts (e.g. P1, P6 and P11) since

ith PR1, the information from the small parts is relatively lim-

ted compared with that from the large parts (See Fig. 2 for part

orrespondence). The part detectors using PR2 perform much bet-

er than those using PR1. The performances of different part detec-

ors using PR2 do not change much on the three subsets. Although

hese part detectors show similar performances, they do behave

ifferently. The exam ple distribution of each part is captured by its

etector. When a pedestrian example is occluded, those parts in-

ide or have large overlap with the visible portion usually get large

etection scores while the other parts tend to have low detection

cores (See the blue curve in Fig. 4 ). 

Table 1 shows the results of the detectors of six typical parts

P1-P4, P6 and P11) learned by two different approaches, sepa-

ate learning (SL) and joint learning (JL). SL learns part detectors

eparately by minimizing Eq. (3) , while JL learns all part detectors

ointly by minimizing Eq. (2) using AdaBoost.MH. For the six parts,

he detectors learned by JL perform better than their counterparts

earned by SL on all the three subsets, which shows the effective-

ess of sharing decision trees to exploit correlations among the
arts. The average improvements on the three subsets brought by

L are 1.6%, 4.4% , and 1.8% respectively. 

Table 2 compares two labeling strategies: cost-sensitive labeling

nd hard labeling. The proposed joint learning approach adopts a

ost-sensitive labeling strategy: besides a class label, each train-

ng example is also associated with a misclassification cost (See

ection 3.2 ). To demonstrate the effectiveness of the cost-sensitive

abeling strategy, we consider a hard labeling strategy in which

very training example has a misclassification cost of 1. JL is our

pproach with cost-sensitive labeling and HL also learns the part

etectors jointly by minimizing Eq. (2) but with the hard label-

ng strategy. The detectors of six typical parts (P1–P4, P6 and P11)

earned by JL perform significantly better than their counterparts

earned by HL with mean improvements of 6.7%, 11.4% and 8.6%

n the Reasonable, Partial and Heavy subsets respectively. From the

omparison, we can see that proper labeling of training examples

s important for our multi-label learning approach to work well. 

Table 3 shows the results of different full-body detectors and

ntegration methods. LDCF-P1 is our implementation of LDCF

18] which only uses fully visible pedestrian examples as positive
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Fig. 7. Comparison with state-of-the-art using channel features on the Caltech dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Results of approaches with different part pools on the Caltech dataset. 

Part pool Method Reasonable Partial Heavy 

PP10 JL-P1 17.5 34.6 70.2 

JL-L2 17.3 34.5 70.0 

JL-L2-Ctx 17.3 33.7 69.3 

PP20 JL-P1 17.0 34.2 70.5 

JL-L2 16.5 33.0 68.9 

JL-L2-Ctx 15.9 31.0 68.3 
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examples. LDCF-P1 and SL-P1 performs closely on the Reasonable

and Heavy subsets, but SL-P1 outperforms LDCF-P1 by 2.7% on the

Partial subset since SL-P1 uses additional partially occluded pedes-

trian examples for training according to the definition of the mis-

classification cost in Eq. (1) . JL-P1 achieves the best performance

among the four full-body detectors on all the three subsets. Par-

ticularly, JL-P1 outperforms SL-P1 by 1.2%, 1.9% and 1.6% on the

three subsets respectively. JL-Max, JL-TopS, JL-L1 and JL-L2 repre-

sent the four integration methods (Max, TopS, L1 and L2 described

in Section 4.1 ) applied to the 20 part detectors learned by JL. Ex-

cept JL-Max, the other three integration methods outperform JL-

P1 on all the three subsets, which demonstrates that properly in-

tegrating part detectors can improve the performance in different

occlusion situations. JL-TopS performs slightly worse than JL-Max

on the Heavy subset, but outperforms it by 0.9% and 2.1% on the

Reasonable and Partial subsets respectively. Overall, TopS integra-

tion is more robust than Max integration. JL-TopS, JL-L1 and JL-L2

perform closely on the three subsets. Particularly, JL-L1 does not

show advantage over JL-L2, which is different from the results re-

ported in [13] . This is because the part detectors used in [13] are

learned independently using PR1 while JL-L1 and JL-L2 uses the

part detectors learned jointly using PR2. The performances of the

detectors learned using PR1 vary largely while the part detectors

learned jointly using PR2 are more robust as illustrated in Fig. 6 . In

[13] , the L1 regularization can remove unstable detectors to elimi-

nate the negative effects of these detectors. For JL-L1 and JL-L2, all

the part detectors show stable performances and it is not neces-

sary to remove any part detectors. Contrarily, JL-L2 shows slightly

better performance than JL-L1 on the three subsets. In addition,

the advantage of JL-L2 over JL-Max is not as significant as that re-

b  
orted in [13] . This is because the part detectors used in JL-L2 are

earned jointly, which makes their outputs more comparable. 

Table 4 shows the results of three approaches with two differ-

nt part pools. JL-L2-Ctx is an approach which combines JL-L2 and

he contextual rescoring model described in Section 4.2 . PP20 =
P1–P20} is the part pool defined in Fig. 2 . PP10 = {P1–P6, P11,

16–P18} is a subset of PP20. For both part pools, JL-L2 performs

etter than JL-P1 and JL-L2-Ctx performs best on the three subsets,

hich shows that both L2 integration and contextual rescoring

ontribute to performance improvement. These approaches work

etter with PP20 since a larger part pool can better cover occlu-

ion situations in the dataset. 

Fig. 7 gives a comparison of our approach and state-of-the-art

pproaches using channel features, ACF [15] , InformedHaar [29] ,

AMC [54] , LDCF [18] , Katamari [20] , SpatialPooling + [1] , SCCPri-

rs [55] and Checkerboards [2] . Our approach achieves the best

erformance among these channel-feature based approaches. Our

ull-body detector (JL-P1) already outperforms Checkerboards on

ll the three subsets. The improvement of JL-P1 over Checker-

oards is significant (7%) on the Heavy subset. With L2 integration
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Fig. 8. Results using channel features on the CUHK dataset. 

Table 5 

Results of full-body detectors and integration methods using CNN features on the 

Caltech dataset. 

Method Reasonable Partial Heavy 

RPN + BF-P1 10.1 18.9 58.9 

SL-P1 10.3 18.0 56.6 

HL-P1 10.8 22.9 66.6 

JL-P1 9.9 17.2 50.5 

JL-Max 10.3 17.2 48.4 

JL-TopS 10.0 16.6 49.2 

JL-L1 10.0 16.5 49.3 

JL-L2 10.0 16.6 49.2 

a  

s  

C  

t  

o

5

 

d  

L  

o  

r  

s  

t  

v  

d  

t  

1  

L  

t

5

5

 

a  

t  

a  

(  

d  

a  

l  

R  

a  

w  

a  

o  

i  

l  

a  

t  

p  

t  

a  

r  

1  

m  
nd contextual rescoring, JL-L2-Ctx outperforms JL-P1 on the three

ubsets by 1.1%, 3.2% and 2.2% respectively. Both JL-P1 and JL-L2-

tx outperform Checkerboards significantly (7% and 9.2% respec-

ively) on the Heavy subset, which demonstrates the effectiveness

f our approach for detecting heavily occluded pedestrians. 

.1.3. Experimental results on CUHK 

We compare our approach with Checkerboards [2] on this

ataset. Fig. 8 shows the results of Checkerboards, JL-P1 and JL-

2-Ctx. For Checkerboards, we use the code and its model trained

n the Caltech dataset which are publicly available to generate the

esult. JL-P1 performs 2% worse than Checkerboards on the Rea-

onable subset but outperforms Checkerboards by 7.9% and 9.3% on

he Partial and Heavy subsets respectively, which shows the ad-

antage of learning the full-body detector jointly with other part

etectors to exploit part correlations. With L2 integration and con-

extual rescoring, JL-L2-Ctx outperforms JL-P1 by 11.8%, 16.6% and
9.7% on the Reasonable, Partial and Heavy subsets respectively. JL-

2-Ctx shows significant advantage over Checkerboards on all the

hree subsets. 

.2. Experiments with CNN features 

.2.1. Implementation 

Recently, several approaches using CNN features have

chieved the state-of-the-art performance for pedestrian de-

ection [3,4,14,33] . The proposed multi-label learning approach

lso applies to CNN features. We use a region proposal network

RPN) from [3] for feature extraction and then learn a set of part

etectors jointly as described in Section 3.3 . RPN + BF [3] also

dopts a similar framework in which a set of decision trees are

earned to form a full-body detector using CNN features from the

PN. The major differences between RPN + BF and our approach

re two-fold: (1) our approach jointly learns the full-body detector

ith the other part detectors to exploit part correlations; (2) our

pproach further integrates the part detectors to better handle

cclusions. We sample training data from video sets S0-S5 at an

nterval of 3 frames as in [3] . Pedestrian examples which are at

east 50 pixels tall and occluded not more than 70% are collected

s positive examples. These positive examples are also used for

raining the RPN (See [3] for the network architecture and training

rocedure of the PRN). To speed up training and testing, we use

he RPN to generate pedestrian proposals. About 10 0 0 proposals

nd 400 proposals per image are generated for training and testing

espectively. Six rounds of bootstrapping are adopted to train 64,

28, 256, 512, 1024 and 2048 decision trees respectively. The

aximum depth of a decision tree is 5. We use S = 15 for the
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Fig. 9. Comparison with state-of-the-art using CNN features on the Caltech dataset. 
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TopS integration method. C = 0 . 1 and C = 0 . 005 are used for L2

integration and L1 integration respectively. 

5.2.2. Detection speed 

On an NVIDIA K5200 GPU, it takes about 0.6 s (0.5 s for feature

extraction and 0.1 s for detection) to test the jointly learned part

detectors on a 480 × 640 image, while it takes about 2.2 s (0.5 s +
1.7 s) to apply 20 separately learned detectors. Excluding the time

for feature extraction, the speedup factor of the jointly learned part

detectors is close to 20 × . 

5.2.3. Experimental results on Caltech 

Table 5 shows the results of different full-body detectors and

integration methods using CNN features. RPN + BF-P1 is our imple-

mentation of RPN + BF [3] . SL-P1 and JL-P1 are two full-body de-

tectors learned by separate learning (SL) and joint learning (JL) re-

spectively. SL-P1 outperforms slightly worse than RPN + BF-P1 on

the Reasonable subset but outperforms it on the Partial and Heavy

subsets. The use of some partially occluded pedestrian examples

for training makes SL-P1 achieve better performance for occluded

pedestrian detection. JL-P1 outperforms SL-P1 on the three sub-

sets by 0.4% ( Reasonable ), 0.8% ( Partial ) and 6.1% ( Heavy ) respec-

tively. The performance improvement on Heavy is significant. In

our multi-label learning approach, the full-body detector (JL-P1) is

learned jointly with the other part detectors by sharing decision

trees. These decision trees are learned to capture the overall dis-

tribution of pedestrian examples including heavily occluded ones.

When the full-body detector is learned separately, most heavily oc-

cluded pedestrian examples are ignored, which makes SL-P1 per-

form relatively poorly on the Heavy subset. Using CNN features,
L-P1 performs much worse than JL-P1, which is consistent with

he case of channel features. JL-Max, JL-TopS, JL-L1 and JL-L2 are

our methods which use Max, TopS, L1 and L2 respectively to in-

egrate the 20 part detectors learned by JL. The four integration

ethods show better performance than the single full-body de-

ector JL-P1 on the Partial and Heavy subsets, which justifies that

roperly integrating part detectors can better handle occlusions

han a single full-body detector. On the Reasonable subset, all the

our integration methods perform slightly worse than JL-P1. Since

L-P1 already works well for detecting pedestrians which are non-

ccluded or slightly occluded, integrating the other part detectors

ith the full-body detector does not help. JL-Max has better per-

ormance than JL-TopS on the Heavy subset, while JL-TopS outper-

orms JL-Max on the Reasonable and Partial subsets. JL-TopS, JL-L1

nd JL-L2 have similar performances. 

Fig. 9 gives a comparison of our approach and some state-

f-the-art CNN-feature based approaches, TA-CNN [32] , CCF [31] ,

CF + CF [31] , DeepParts [14] , CompACT-Deep [4] , MS-CNN [33] and

PN + BF [3] . On the Reasonable subset, JL-P1 performs compara-

ly to the top two approaches RPN + BF and MS-CNN which also

nly use a single full-body detector. This is because the three ap-

roaches use similar deep convolutional neural networks (variants

f VGG-16 [56] ). On the Partial and heavy subsets, JL-P1 outper-

orms the most competitive approach MS-CNN by 2.0% and 9.4%

espectively. The advantage of JL-P1 over MS-CNN on Heavy is sig-

ificant, which shows the effectiveness of learning the full-body

etector jointly with the other part detectors. With L2 integration

nd contextual rescoring, JL-L2-Ctx further improves the perfor-

ance over JL-P1, especially on the Partial and Heavy subsets. JL-

2-Ctx outperforms MS-CNN by 0.2%, 3.6% and 11.3% on the Rea-
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Fig. 10. Detection examples of our approach on the Caltech dataset. 

Fig. 11. Results on CUHK using CNN features. 
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onable, Partial and Heavy subsets respectively. Fig. 10 shows some

etection examples of our approach on the Caltech dataset. 

.2.4. Experimental results on CUHK 

We compare our approach with RPN + BF [3] and MS-CNN

33] on this dataset. For RPN + BF and MS-CNN, we use the pub-

ished models trained on the Caltech dataset. Fig. 11 shows the re-

ults of RPN + BF, MS-CNN, JL-P1 and JL-L2-Ctx. MS-CNN performs
oorly on this dataset. JL-P1 performs 2.9% worse than RPN + BF on

he Reasonable subset, but outperforms it by 7% and 27% on the

artial and Heavy subsets, which demonstrates the effectiveness of

ur multi-label learning approach. With linear integration and con-

extual rescoring, JL-L2-Ctx achieves better performance than JL-

1. Fig. 12 shows some detection examples of our approach on the

UHK dataset. 
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Fig. 12. Detection examples of our approach on the CUHK dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

In this paper, we propose a multi-label learning approach to

learn part detectors jointly. AdaBoost.MH is adapted to learn a set

of decision trees which are shared by all the part detectors. Thanks

to the sharing of decision trees, part correlations are exploited and

the computational cost of applying these part detectors is reduced.

The learned decision trees capture the overall distribution of all

the parts. We explore several methods to integrate the part de-

tectors learned by the proposed approach for occlusion handling.

We also proposes a contextual rescoring model to further improve

the performance. The proposed approach is applied to hand-crafted

channel features and CNN features respectively. Its effectiveness

is validated on the Caltech and CUHK datasets. The experimen-

tal results show that (1) the part detectors learned jointly by the

proposed approach perform better than their counterparts learned

separately; (2) proper integration of these part detectors can im-

prove the performance for detecting occluded pedestrians, espe-

cially heavily occluded ones; (3) contextual rescoring can further

improve the performance for pedestrian detection. Currently, we

use features from a deep CNN to construct a set of decision trees

as part detectors which are then integrated to handle occlusions

for pedestrian detection. Training and integration of part detectors

are done in two separate steps. In future work, we will explore

how to train the set of part detectors as well as integrate them in

a single deep CNN. 
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