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Real-time 3D Hand Pose Estimation
with 3D Convolutional Neural Networks

Liuhao Ge, Hui Liang, Member, IEEE, Junsong Yuan, Senior Member, IEEE, and Daniel Thalmann

Abstract—In this paper, we present a novel method for real-time 3D hand pose estimation from single depth images using 3D
Convolutional Neural Networks (CNNs). Image-based features extracted by 2D CNNs are not directly suitable for 3D hand pose
estimation due to the lack of 3D spatial information. Our proposed 3D CNN-based method, taking a 3D volumetric representation of the
hand depth image as input and extracting 3D features from the volumetric input, can capture the 3D spatial structure of the hand and
accurately regress full 3D hand pose in a single pass. In order to make the 3D CNN robust to variations in hand sizes and global
orientations, we perform 3D data augmentation on the training data. To further improve the estimation accuracy, we propose applying
the 3D deep network architectures and leveraging the complete hand surface as intermediate supervision for learning 3D hand pose
from depth images. Extensive experiments on three challenging datasets demonstrate that our proposed approach outperforms
baselines and state-of-the-art methods. A cross-dataset experiment also shows that our method has good generalization ability.
Furthermore, our method is fast as our implementation runs at over 91 frames per second on a standard computer with a single GPU.

Index Terms—3D hand pose estimation, 3D convolutional neural networks, deep learning

1 INTRODUCTION

‘ x J ITH the success of real-time human body pose estima-

tion [1], [2], [3] and the availability of mid-range and short-
range depth cameras, such as Intel RealSense, SoftKinetic and
Primesense Carmine, accurate real-time 3D hand pose estimation
has aroused a lot of research attention in recent years [4], [5], [6],
[71, [8], [9], [10], [11], [12]. Articulated 3D hand pose estimation
is one of the core technologies for human computer interaction
in virtual reality and augmented reality applications, since this
technology provides a natural way for users to interact with virtual
environments and virtual objects. The estimated 3D hand pose
can also be used for gesture recognition, such as sign language
recognition [13], [14] and driver hand gesture analysis [15], [16].
However, it is still challenging to achieve efficient and robust hand
pose estimation performance because of large variations in hand
pose, high dimensionality of hand motion, severe self-occlusion
and self-similarity of fingers in the depth image.

Many recent works on hand pose estimation have achieved
good performance due to the success of Convolutional Neural
Networks (CNNs) [7], [17], [18], [19], [20], [21], [22], [23],
[24], [25] and the availability of large hand pose datasets [7],
[8], [26]. Most of these methods directly take the depth image
as input to 2D CNNs which output heat-maps [7] (Figure la),
3D joint locations [17], [18], [20], [21], [24] (Figure 1c) or hand
model parameters [22]. Nevertheless, we argue that image-based
features extracted by 2D CNNs are not directly suitable for 3D
hand pose estimation due to the lack of 3D spatial information.
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For example, in [18], the initial result of 2D CNN is poor, and
it is iteratively refined by a feedback loop to incorporate 3D
information from a generative model. Ge et al. [19] better utilize
the depth cues by projecting the depth image onto three views
and applying multi-view CNNs to regress three views’ heat-
maps (Figure 1b). However, the multi-view CNNs still cannot
fully exploit 3D spatial information in the depth image, since the
projection from 3D to 2D will lose certain information. Although
increasing the number of views may improve the performance, the
computational complexity will increase when using more views.

In this paper, we propose a 3D CNN-based hand pose es-
timation approach that can capture the 3D spatial structure of
the input and accurately regress full 3D hand pose in a single
pass, as illustrated in Figure 1d. Specifically, human hand is first
segmented from the depth image; the 3D point cloud of the hand
is encoded as 3D volumes storing the projective Directional Trun-
cated Signed Distance Function (D-TSDF) [27] values, which are
then fed into a 3D convolutional neural network. We design a 3D
deep dense network to boost the learning ability of the network.
The output of this network is a lower dimensional representation of
3D hand joints’ relative locations in the 3D volume. By performing
PCA reconstruction and coordinate transformations, we can finally
obtain the 3D hand joint locations in the camera’s coordinate
system. Benefiting from 3D features extracted by 3D convolutions,
our method is able to understand the hand pose structure in 3D
space and infer 3D hand joint locations efficiently and robustly.

Compared to previous CNN-based methods for hand pose
estimation, our proposed 3D CNN-based method has the following
advantages:

e Our proposed 3D CNN is capable of learning 3D features
from the 3D volumetric representation for accurate 3D hand
pose estimation. Compared to 2D CNN-based methods that
regress 3D joint locations from 2D features [17], [18], [21],
[28], 3D CNN can directly regress 3D joint locations from
3D features in a single pass. This not only achieves superior
estimation accuracy, but also avoids the time-consuming
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Fig. 1: Different schemes for 3D hand pose estimation. (a) 2D CNN taking depth image as input and outputting heat-maps. (b) Multi-
view 2D CNNs taking multi-view projections as inputs and outputting multi-view heat-maps. (c) 2D CNN taking depth image as input
and regressing 3D joint locations directly. (d) We use 3D CNN which takes volumetric representations as input and regresses a lower

dimensional representation of 3D joint locations.

iterative refinement process.

e Our proposed 3D CNN can be easily trained in an end-to-end
manner. Both the 3D shallow plain network and the 3D deep
dense network we designed in this paper can run at real-time
speed on a single GPU.

o Our proposed method is robust to variations in hand sizes and
global orientations, since we perform 3D data augmentation
on the training set. Different from traditional data augmen-
tation that performs 2D transformations on 2D images, our
proposed 3D data augmentation applies 3D transformations
on 3D point clouds, thus can better enrich the training data in
3D space.

This paper is an extension of our conference paper [29]. The
new contributions of this paper are summarized as follows:

e We have proposed leveraging the complete hand surface as
intermediate supervision for learning 3D hand pose from
depth images. Experimental results have shown that, with
the intermediate hand surface completion step, the estimation
accuracy of 3D hand pose can be further improved.

e We have investigated the performance of deep neural net-
work architectures [30], [31] when applied in our proposed
3D CNN-based framework for 3D hand pose estimation
to improve the learning ability. Experimental results have
shown that the 3D deep dense network can achieve better
performance than the 3D shallow plain network.

o To better understand 3D CNNs, we have visualized the input
patterns that produce given activations in the 3D feature
volumes. Local and global 3D structures of hand have been
observed in these patterns.

e We have conducted more extensive self-comparison experi-
ments and have compared with more state-of-the-art methods
on one additional hand pose dataset ICVL [8]. We have
also conducted a cross-dataset experiment and qualitatively
compared with the Intel RealSense SDK [32]. Experimental
results have shown that our method can achieve good perfor-
mance in real-time and has good generalization ability.

The reminder of this paper is organized as follows: Some

related work for 3D hand pose estimation is discussed in Section 2.
Since our method takes 3D volumes as input, we first introduces
different volumetric representations in Section 3, then describe the
proposed 3D CNN-based method in Section 4. Section 5 provides
experimental results, and Section 6 concludes this paper.

2 RELATED WORK

Hand pose estimation Methods for hand pose estimation from
depth images can be categorized into model-driven approaches,
data-driven approaches and hybrid approaches. Model-driven ap-
proaches fit an explicit deformable hand model to depth images
by minimizing a hand-crafted cost function. The commonly used
optimization methods are Particle Swarm Optimization (PSO) [5],
Iterative Closest Point (ICP) [33] and their combination [34]. The
3D shape model is represented by Linear Blend Skinning (LBS)
model [35], [36], [37], Gaussian mixture model [2], [38], [39],
etc. Some models require to define user-specific parameters and
motion constraints. These approaches are sensitive to initializa-
tion, since they usually take advantage of temporal information.
The estimation errors will be accumulated when previous frames’
estimations are inaccurate.

Data-driven approaches learn a mapping from depth image to
hand pose from training data. Some early works [40], [41], [42]
focus on example-based method that searches the most similar
images in a dataset to the input hand image, but cannot work well
in high dimensional space. Inspired by the pioneering work [1]
of human pose estimation, [6], [8], [13], [26], [43], [44], [45]
apply random forests and their variants as a discriminative model.
Limited by the hand-crafted features, methods based on random
forests are difficult to outperform current CNN-based methods in
hand pose estimation. Our work is related to the CNN-based data-
driven approach. Tompson et al. [7] first propose to employ CNNs
to predict heat-maps representing the probability distribution of
2D joint positions in the depth image. Ge et al. [19] improve this
method by predicting heat-maps on multiple views in order to
better utilize the depth information. Oberweger et al. [18] train
a feedback loop containing a discriminative network for initial
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pose estimation, a generative network for pose synthesizing and
a pose update network for improving the pose estimation. Zhou
et al. [22] propose to predict hand model parameters instead of
the joint locations by adopting CNNs. Sinha et al. [20] extract
activation features from CNNs to synchronize hand poses in
nearest neighbors by using the matrix completion algorithm. Ye
et al. [21] propose a spatial attention network with a hierarchical
hybrid method for hand pose estimation. Wan et al. [23] use deep
generative models which can exploit unlabeled depth images for
training. Guo et al. [24] propose a region ensemble network by
dividing feature maps into multiple regions and ensemble regional
features to get final prediction. All these methods use 2D filters
in 2D CNNs to extract 2D features which are lack of 3D spatial
information. Thus, mapping from 2D features to 3D joint locations
is difficult. In this work, we lift the 2D CNN to 3D CNN which
can understand 3D spatial information and extract 3D features for
3D hand pose estimation.

Hybrid approaches combine a data-driven approach based
per-frame reinitialization with a model driven approach based
optimization [10], [11], [46], [47], [48]. These methods are usually
applied for hand tracking since they utilize temporal information
to achieve smooth results. However, in this paper, we focus on 3D
hand pose estimation from single depth images without using any
temporal information, which can be used for robust reinitialization
in hybrid hand tracking approaches.

3D deep learning 3D CNNs have been successfully applied
in video and dynamic hand gesture analysis for recognition
tasks [16], [49], [50], [51], which regard time as the third dimen-
sion. 3D CNNs are also applied to extract 3D features from 3D
data, such as CAD models and depth images. 3D ShapeNets [52]
learn powerful 3D features by using the Convolutional Deep Belief
Network for modeling 3D shapes. Qi et al. [53] show that the 3D
CNN with low input volume resolution can still achieve good
object classification accuracy by applying subvolume supervision
and anisotropic probing. Song and Xiao [27] propose to use 3D
CNN for 3D object detection in RGB-D images. Maturana and
Scherer [54] propose VoxNet, a 3D CNN that can process LiDAR,
RGB-D and CAD data for object recognition. They also apply the
3D CNN for landing zone detection [55]. Yumer and Mitra [56]
propose to use the 3D CNN to learn deformation flows from CAD
models for 3D shape deformation. Song et al. [S57] propose a
3D CNN for semantic scene completion. Although these works
achieve state-of-the-art results in their problems, none of them
focuses on articulated pose estimation that requires to localize a
set of articulated 3D joints from single depth images in real-time.

3 VOLUMETRIC REPRESENTATIONS

Our proposed 3D CNN-based hand pose estimation method takes
a volumetric representation as the input of the neural network.
The objective for encoding the observed hand depth image as a
volumetric representation is to generate 3D volumes providing
sufficient and meaningful information of the hand in 3D space
from the depth image in real-time. The 3D volumes will be fed
into the 3D CNNs to learn 3D features for subsequent 3D hand
joint location regression.

The input depth image of hand is first converted to a set of 3D
points, which is denoted as P C R3, as shown in the first two rows
of Figure 2. To create a 3D volume containing M x M x M voxels,
we first build an axis-aligned bounding box (AABB) for the 3D
hand points. AABB is the minimum bounding box of which z, v,
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Fig. 2: Visualization of different volumetric representations. For
the last five rows, we only visualize voxels of which values are
less than 1 and larger than —1 by using the color map shown in
this figure. The volume resolution is 32x32x32.

z axes are respectively aligned with x, y, z axes of the camera’s
coordinate system. The 3D volume’s center is set at the center of
AABB, and its faces are set to be parallel to those of AABB. The
edge length of a voxel is set as:

lyozel = maX{l;c7lyalz}/M7 (D

where [, l,, [, are AABB’s edge lengths along three directions;
M is the volume resolution value. We denote the value of a
voxel v as F' (v) that can be determined by using the occupancy
model (Section 3.1) or the truncated signed distance function
(Section 3.2).

3.1

The occupancy grid is a binary grid representing occupied and
unoccupied voxels in the 3D volume, as shown in the 3rd row of
Figure 2. Thus, the voxel value is determined as:

F(’U) — { é Elp S Pv s.t. DChe (vcvp) S lvo:}(zel/2

otherwise
where Dcope (p,q) = max (|p; — q;|) is the Chebyshev dis-
tance; v, is the center of tzhe voxel v.
If the input is a 3D CAD model where the 3D information
is fully known, the occupancy grid is sufficient to represent the
complete 3D model. However, in our problem, the input is a 2.5D

Occupancy Grid

» @)
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depth image which only captures the observed surface points from
the view of camera, which is an incomplete 3D shape of the hand.
The occupancy grid cannot differentiate voxels before and behind
the observed surface.

3.2 TSDF Volumes

In the accurate Truncated Signed Distance Function (TSDF) based
volume, each voxel stores the truncated signed distance from the
voxel center to the closest surface point. The value of a voxel v is
computed as:

F (v) = min{max{d (vc)/p, —1},1}, (3)

where d (v.) is the signed distance from the voxel center v, to
the closest surface point; when the voxel center’s depth value is
smaller than the depth value of the closest surface point, its sign is
positive; otherwise, its sign is negative. y is the truncated distance,
which is set as 3 X [,z here.

However, it is time-consuming to compute accurate TSDF,
as all surface points must be checked to find the closest point
for each voxel in the 3D volume. For real-time considerations,
the projective TSDF [58], where the closest point is found only
on the line of sight in the camera frame, should be used. It
can be computed efficiently in parallel on a GPU. Since the
projective TSDF is an approximation of the accurate TSDF, some
information is inaccurate or lost in the projective TSDF. In this
work, we apply the projective Directional TSDF (D-TSDF) [27]
to encode more information in the volumetric representation, in
which each voxel stores a 3D offset vector [dz, dy, dz] to the
closest point instead of a scalar distance.

Figure 2 (the last five rows) shows some examples of accurate
TSDF volumes, projective TSDF volumes and projective D-TSDF
volumes with different hand poses. As can be seen, in accurate
TSDF volumes, the value of TSDF increases when moving from
the observed surface to free space and decreases when moving
to the occluded space. In projective TSDF volumes, the value of
TSDF varies continuously along the line of sight, which keeps
positive in front of the observed surface and negative behind the
observed surface. The projective D-TSDF volume of z direction
is almost the same as the projective TSDF volume, since the z
direction is close to the line of sight. Projective D-TSDF volumes
of x, y directions can provide more information to compensate the
inaccuracy of the projective TSDF volume. Experiments in Sec-
tion 5.3.2 will show that the projective D-TSDF is computationally
efficient and can improve the estimation accuracy.

We need to strike a balance between prediction accuracy and
computational cost to determine the volume resolution M. If the
volume resolution is too large, it will be time-consuming and
memory intensive to compute the volumetric representation. If
the volume resolution is too small, the volumetric representation
cannot give sufficient information for 3D hand pose estimation.
In this work, M is chosen as 32, which proves to have good
estimation accuracy and computational efficiency for 3D hand
pose estimation according to the experiments in Section 5.3.1.

4 3D CONVOLUTIONAL NEURAL NETWORKS

In this section, we first describe the network architectures and
the loss function applied for 3D hand pose regression. To tackle
the problems of self-occlusion and large variations in global
orientations, we further introduce the methods of 3D hand surface
completion and 3D data augmentation. In the end of this section,
we visualize and analyze 3D patterns learned by 3D CNNGs.
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Fig. 3: Plain and dense network architectures. Both networks take
three 32x32x32 projective D-TSDF volumes as input and output
F elements. In (a), all the 3D convolutional layers have stride 1 and
no padding. In (b), the growth rate of the 3D deep dense network
is 32; L in each 3D dense block denotes the number of dense
unit; each dense unit consists of a sequence of layers: BN-ReLU-
3D Conv (1x1x1)-BN-ReLU-3D Conv (33X 3); each transition
layer reduces the number of feature maps by half using 1x1x1
3D convolution and downsamples the feature map using average
pooling. ‘BN’ denotes the batch normalization layer, ‘FC’ denotes
the fully-connected layer, and ‘DP’ denotes the dropout layer.

4.1 Network Architectures

Our proposed 3D CNN takes three volumes of the projective
D-TSDF as inputs and output a vector containing F' elements.
As shown in Figure 3, we design two network architectures: the
3D shallow plain network and the 3D deep dense network.

4.1.1 3D Shallow Plain Network

The 3D shallow plain network contains three 3D convolutional
layers and three fully connected layers, as shown in Figure 3a.
For the three 3D convolutional layers, the kernel sizes are 53,
3% and 33, all with stride 1 and no padding. The first two 3D
convolutional layers are followed by 3D max pooling layers with
kernel size 23, stride 2 and no padding. After 3D feature extraction
by 3D convolutional layers, three fully-connected layers are used
to map 3D features to a lower dimensional space of 3D hand joint
locations. In the first two fully-connected layers, we apply dropout
layers with dropout rate 0.5 in order to prevent the neural network
from overfitting [59].

4.1.2 3D Deep Dense Network

Deep convolutional networks with shortcut connections have
shown powerful learning ability for image recognition [30], [31],
since the shortcut connection can alleviate the gradient vanishing
problem. We apply the deep dense network architecture [31] in our
proposed 3D CNN-based hand pose estimation method. As shown
in Figure 3b, we design a 3D deep dense network containing 28
convolutional layers and 3 fully-connected layers. Following the
architecture in [31], we apply bottleneck layers in each dense
block to reduce the number of model parameters. Experiments
in Section 5.3.5 will show that the 3D deep dense network can
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Fig. 4: The framework for hand surface completion and 3D
hand pose estimation. 3D U-Net is applied to estimate the TDF
volume of complete hand surface points from the projective D-
TSDF volumes corresponding to the captured partial hand surface
points. The projective D-TSDF volumes concatenated with the
estimated TDF volume are fed into the 3D CNN for 3D hand pose
estimation. ‘C’ denotes the concatenation operation.

achieve more accurate estimation result compared with that of the
3D shallow plain network.

4.2 Loss Function for 3D Hand Pose Regression

Our method estimates K hand joint locations in 3D space,
which represent the 3D hand JIgose. Let the K objective hand
joint locations be ® = {¢},_; € A, here A is the 3 x K
dimensional hand joint space. We denote a training sample as
(X, ®,), where X, is the depth image, ®,, is corresponding
joint locations in the camera’s coordinate system, n = 1,..., N.
The depth image X, is converted to the volumetric representation
V., as described in Section 3. The center of V,, is located at the
center of the AABB generated from the 3D hand points. Thus,
the ground truth ®,, should be transformed into coordinates in
the volume’s coordinate system and normalized between 0 and
1. We denote the transformed and normalized joint locations as
Y, = {ynk}éil € A. The 3D location y,; € R? of the k-th
hand joint is transformed and normalized as:

Ynk = (¢nk - Cn)/(M : lvomel) + 05; (4)

where ¢y, is the center of the 3D volume. The original ground truth
location ¢y, is transformed into the volume’s coordinate system
by subtracting the center c,,, and is normalized between —0.5 and
0.5 by dividing the volume’s edge length [,,..; (We assume that
all joints are within the 3D volume). To make the coordinates of
Ynk be between 0 and 1, we add 0.5 in this formula.

Since the degree of freedom (DOF) of 3D hand joints is
usually lower than the dimension of hand joint locations that
is 3 x K, our designed 3D CNN explicitly enforces the hand
configuration constraints on the estimation of hand joint locations,
thus can alleviate infeasible hand pose estimations. To learn
the hand pose priors, we perform PCA on the transformed and
normalized joint locations {Yn}f:;l in the training dataset, which
is similar to the method in [17]. The coefficients of the principal
components are v, = ET - (Y,, —u), where o, contains F'

3D rotation

w/o transformation (0,=10°, 0,=10°, 6,530°)

%
E

3D stretching and rotation
(s,=1/1.2, 5,=1 2,5=1;
0,=10°, 6,=10°, 6,=30°)

3D stretching
(5=1/1.2,5=12,5.=1)

Fig. 5: An example of 3D data augmentation. Top-left: original
point cloud, ground truth and TSDF volume. Bottom-left: point
cloud, ground truth and TSDF volume after 3D stretching. Top-
right: point cloud, ground truth and TSDF volume after 3D rota-
tion. Bottom-right: point cloud, ground truth and TSDF volume
after 3D stretching and rotation. For illustration purpose, we only
draw the projective D-TSDF volume on z direction.

coefficients, F' < 3 x K; E = [e1, e, - , ep] are the principal
components; u is the mean vector of Y.

During the training stage, we minimize the following objective
function using the SGD algorithm:

N
w' = argminy_ _ Jay - F (Vi w)|*. 5)

During testing, given the input volumetric representation V, the
transformed and normalized hand joint locations estimated by the
3DCNNisY = E - F(V,w*) +u.

4.3 Hand Surface Completion

One of challenges in 3D hand pose estimation is that the input
depth image only captures partial hand surface and suffers from
the self-occlusion problem. To tackle this problem, we leverage
the complete hand surface as intermediate supervision for learning
3D hand pose from depth images. More specifically, we estimate
the complete hand surface using a data-driven approach and
take advantage of the estimated complete hand surface for 3D
hand pose estimation. As shown in Figure 4, we apply the 3D
U-Net [61] architecture for estimating the complete hand surface
from the captured partial hand surface. Similar to [62], we use the
unsigned truncated distance function (TDF) as the network output,
since it is not necessary to differentiate known and unknown space
for the distance function of the complete hand surface. The ground
truth of the complete hand surface is generated by using the model
fitting method [7] with a 3D hand model. When training the 3D
U-Net, we minimize the smooth L; loss defined in [63] using
the ADAM optimizer [64]. After generating the TDF volume of
the complete hand surface, we concatenate it with the original
projective D-TSDF volumes and feed them into a 3D DenseNet for
3D hand pose estimation. The 3D U-Net and the 3D DenseNet are
pre-trained separately, and are fine tuned in an end-to-end manner.
Experiments in Section 5.3.6 will show that, with the intermediate
supervision of hand surface completion, the accuracy of 3D hand
pose estimation can be further improved.
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Fig. 6: Visualization of patterns learned in a fully trained 3D CNN model. For each layer, we show reconstructed patterns in the
st row, and corresponding receptive fields indicated by black boxes in the 2nd row. These patterns are reconstructed by using the
guided backpropagation method proposed in [60]. For patterns of L3, we only draw voxels of which absolute values are larger than a
threshold. Voxels with large values are shown in bright color, and voxels with small values are shown in dark color. Neurons in the
1st convolutional layer (L1) can capture local structures, such as corners and edges; neurons in the 2nd convolutional layer (L2) can
capture structures of hand part, such as fingers; neurons in the 3rd convolutional layer (L.3) can capture global structures of hand.

4.4 3D Data Augmentation

Another challenge of 3D hand pose estimation is that hand pose
has large variations in global orientations and hand sizes. In order
to make the 3D CNN model robust to different orientations and
sizes and improve its generalization ability, we perform 3D data
augmentation on the training data for both pose regression and
surface completion networks. Different from existing 2D image
data augmentation, our method directly rotate and stretch the hand
points in 3D space.

We first stretch the point cloud along z, y, z axes of the
camera’s coordinate system with stretch factors s;, s, and s,
respectively. Then, the point cloud is rotated around z, y, z axes
of the camera’s coordinate system with rotation angles 6, 6, and
6., respectively. For a 3D point p, after stretching and rotating,
the point p is transformed into p’:

R =Ry (0:) Ry (0y) R.(6) (6)
S = Diag (s, 8y, 52)

where R, R, and R, are 3x3 rotation matrices around x, ¥,
z axes, respectively; Diag (s, Sy, $,) is a 3x3 diagonal matrix
whose diagonal entries starting in the upper left corner are s,
sy and s.. Figure 5 shows an example of 3D data augmentation.
3D stretching and rotation are performed on the hand point cloud
and corresponding ground truth joint locations. TSDF volumes are
then generated from the transformed point cloud.

In this work, an augmented training set is generated by
randomly stretching and rotating original training samples. The
stretch factors s, and s, are chosen log-uniformly at random from
the interval [1/1.5, 1.5]. Since it is the relative size rather than the
absolute size that affects the TSDF volume, we can set the stretch
factor s, as 1. In the camera’s coordinate system, the point cloud
generated from the depth image is not only in-plane rotated around
z axis, but also out-of-plane rotated around z, y axes, as shown in

Figure 5. The out-of-plane rotated point cloud is different from the
real point cloud due to the incompleteness of the point cloud. We
assume that with small out-of-plane rotation angles ¢, and 6, the
TSDF volume generated from the out-of-plane rotated point cloud
can be approximately the same as the TSDF volume generated
from the real point cloud when the camera’s viewpoint is at the
rotated angle, and we choose 6, and 8, uniformly at random from
the interval [—30°, 30°]. The in-plane rotation angle 6, is chosen
uniformly at random from the interval [—180°, 180°]. During the
training stage, both the original training set and the augmented
training set are used for training. Experiments in Section 5.3.3
will show the effectiveness of the 3D data augmentation.

4.5 Visualizing 3D CNN

In order to analyze 3D features extracted by the 3D CNN, we
visualize the input patterns that produce given activations in the 3D
feature volumes by adopting the guided backpropagation method
proposed in [60] which is a modification of the deconvolution
based visualizing approach proposed in [65].

In Figure 6, we visualize some 3D patterns learned in a 3D
shallow plain network which is fully trained on the MSRA hand
pose dataset [26]. We take three input volumes with different
hand poses as examples in Figure 6. In order to reconstruct 3D
patterns, 3D feature volumes generated from 3D convolutional
layers are projected down to the input voxel space by using the
guided backpropagation method. For each convolutional layer of
each hand pose, we choose four feature volumes as examples in
Figure 6. To show which parts of the input volume cause high
activations in the 3D feature volume, we crop the reconstructed
3D pattern volume inside the receptive field corresponding to the
highest activation in the 3D feature volume. We also show the
relative location of the receptive field in the input 3D volume. The
receptive field sizes of the 1st convolutional layer (L1), the 2nd
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Fig. 7: Self-comparison of different volume resolutions and different volume types with/without data augmentation on MSRA
dataset [26]. Left: the impact of different volume resolutions on the proportion of good frames. Middle: the impact of different volume
types and data augmentation on the proportion of good frames. Right: the impact of different volume types and data augmentation on

the per-joint mean error distance (R:root, T:tip).

convolutional layer (L2) and the 3rd convolutional layer (L3) in
the 3D shallow plain network are 5, 10 and 20, receptively.

As can be seen in Figure 6, from low layer (L1) to high layer
(L3), neurons can capture patterns from local to global. Neurons in
L1 capture low-level local geometry structures, such as the corners
(e.g., L1 column 3, 8, 12) and edges (e.g., L1 column 1, 5, 7).
Neurons in L2 capture mid-level shape structures of the hand,
such as the hand finger tips (e.g., L2 column 5, 6, 8, 10) and palm
edges (e.g., L2 column 2, 4, 7, 11). Neurons in L3 capture high-
level global structures of the hand. It is interesting to note that, in
patterns of L3, the contrast in regions of hand joints is obvious,
which indicates that the learned high layer feature volumes focus
on regions of hand joints. The hierarchical nature of 3D features
is consistent with that in the 2D CNNs as observed in [65].

5 EXPERIMENTS
5.1

We evaluate our proposed method on three public hand pose
datasets: MSRA hand pose dataset [26], NYU hand pose
dataset [7] and ICVL hand pose dataset [8].

The MSRA dataset [26] contains nine subjects’ hand depth
images captured by the Intels Creative Interactive Gesture Camera.
Each subject performs 17 hand gestures, and each hand gesture
contains about 500 frames. There are more than 76K frames in this
dataset. In the following experiments on this dataset, we train on
eight subjects and test on the remaining subject. This is repeated
nine times for all subjects. The ground truth of each frame contains
K = 21 hand joints’ 3D locations including four joints for each
finger and one joint for the wrist.

The NYU dataset [7] contains more than 72K frames for
training and 8K frames for testing, which are captured by the
PrimeSense™ 3D sensor. The ground truth of each frame
contains 36 hand joints’ 3D locations. Following previous work
in [7], [18], we estimate a subset of K = 14 hand joints’ 3D
locations including three joints for thumb, two joints for index,
middle, ring and little fingers, one joint for palm center and two
joints for the wrist. Since the NYU dataset provides the original
depth image containing human body and background, we apply a

Datasets and Evaluation Metrics

simplified hourglass network [66] to detect 2D hand joint locations
and use the corresponding depth information to segment the hand.

The ICVL dataset [8] contains 12 training sequences hav-
ing 22K frames and two testing sequences having 1.6K frames
captured by the Intel’s Creative Interactive Gesture Camera. This
dataset additionally provides a training set in which the original
training samples are in-plane rotated 14 times. However, in our
experiments, instead of using the additional training set, we apply
the 3D data augmentation by randomly rotating and stretching the
original training samples eight times. Thus, the augmented training
set in our experiments contains 176K frames. The ground truth of
each frame contains K = 16 hand joints’ 3D locations including
three joints for each finger and one joint for the palm center.

Three metrics are employed to evaluate the hand pose estima-
tion performance in our experiments. The first metric is the per-
joint mean error distance over all test frames. The second metric
is the proportion of good frames in which the worst joint error is
below a threshold [67], which is a strict measure. The third metric
is the proportion of joints within an error threshold [10].

5.2 Implementation Details

We train and evaluate our proposed 3D CNN models for 3D hand
pose estimation on a computer with two Intel Core i7 5930K
3.50GHz CPUs, 64GB of RAM and an Nvidia GeForce GTX
1080 GPU having 8GB of GPU memory. The 3D CNN models are
implemented within the PyTorch framework. For network training
parameters, we choose the batch size as 16, the momentum as
0.9 and the weight decay as 0.0005. The learning rate is set as
0.01 for the 3D regression network, and is divided by 10 after 50
epochs. For the 3D U-Net, the learning rate is set as 0.001. The
training is stopped after 60 epochs to prevent overfitting. We apply
the same hyper-parameters for all experiments on all datasets. All
the weights of 3D convolutional layers in 3D CNNs are randomly
initialized using the method proposed in [68].

5.3 Self-comparison
5.3.1 Choice of Volume Resolution

To evaluate the impact of different volume resolutions, we exper-
iment with projective D-TSDF volumes with different resolution
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Fig. 8: Self-comparison of 2D/3D CNNs with different network architectures for 3D hand pose estimation on MSRA [26], NYU [7]
and ICVL [8] hand pose datasets. The mean error distances over all joints of different methods are shown in the legends.

values: 16, 32 and 64 using the 3D plain networks with direct
regression. Since training the network with 64 x64x64 volume
resolution is very time consuming, we only train and test these
three networks with different volume resolutions on a small
subset of the MSRA dataset without data augmentation in this
experiment. As shown in Figure 7 (left), the estimation accuracy of
1616 x 16 resolution is slightly inferior to those with 32 x32x32
and 64 x 64 x64 resolutions. The estimation accuracy of the latter
two resolutions is almost the same. However, computing TSDF
volume with 64 x64 %64 resolution is more time consuming and
memory intensive. Thus, the volume resolution 32x32x32 is
most suitable for hand pose estimation, and we use this volume
resolution in the following experiments. This experiment also
shows that our method is robust to relatively low volume reso-
lution, since the estimation accuracy does not decrease a lot when
the resolution value is 16.

5.3.2 Choice of Volume Types

We evaluate the impact of different volume types on the estimation
accuracy on MSRA dataset using the 3D plain network without
data augmentation. As can be seen in Figure 7 (middle and
right), among occupancy grid, accurate TSDF, projective TSDF
and projective D-TSDF, the projective D-TSDF performs best.
It is worth noting that the performance of occupancy grid is
comparable with those of accurate TSDF and projective TSDF,
which indicates that the 3D CNNs can learn effective 3D features
from the occupancy grid, although the occupancy grid cannot
differentiate voxels before and behind the observed surface. But
the projective D-TSDF, which encodes more information on three
directions, outperforms the occupancy grid. For the real-time
performance, the average computation time to generate occupancy
grid, accurate TSDF, projective TSDF and projective D-TSDF on
the same GPU are 1.4ms, 30.2ms, 1.9ms and 2.9ms, respectively.
Thus, considering both the estimation accuracy and the real-
time performance, the projective D-TSDF is overall best. In the
following experiments, we apply the projective D-TSDF with
32x32x32 volume resolution as the network input and apply 3D
data augmentation for training.

5.3.3 Evaluation of Data Augmentation

We compare the method without using data augmentation and
the methods using 2D/3D data augmentation. For 2D data aug-
mentation, we randomly rotate and stretch the 3D hand point
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Fig. 9: Examples of hand surface completion with our method on

NYU hand pose dataset [7]. The hand surfaces are extracted from
the 323 volumes of distance function.

cloud in the 2D image plane. As shown in Figure 7 (middle
and right), when using the same input volume, the method using
2D data augmentation outperforms the method without using data
augmentation. When using 3D data augmentation in the training
stage, the estimation accuracy is further improved. It is worth
noting that, although the 3D rotated point cloud is not exactly
the same as the real point cloud, the network trained with 3D
data augmentation can still achieve better performance than the
network trained with 2D data augmentation, which indicates that
the network can benefit from the 3D augmented data.

5.3.4 2D CNNs Versus 3D CNNs

We compare the performance of the 3D CNN-based methods and
the 2D CNN-based methods in this experiment. For 2D CNN-
based methods, we segment the hand from the depth image and
resize it to a 96x96 image while keeping the aspect ratio. The
outputs of 2D CNNs are 2D image locations and depth values of
hand joints, which are converted to 3D locations using camera
parameters. For fair comparison, we experiment with the 2D deep
dense network and 3D deep dense network having similar network
architecture and comparable number of parameters. The 2D deep
dense network has 5 dense blocks, 29 convolutional layers and 3
full-connected layers with 65M parameters; and the 3D deep dense
network has 4 dense blocks, 28 convolutional layers and 3 full-
connected layers with 50M parameters. In addition, we perform
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with respect to the camera frame.

TABLE 1: Impact of Hand Surface Completion on 3D Hand Pose
Estimation using 3D ResNet and 3D DenseNet. The Average
Estimation Errors on NYU Dataset [7] are Listed in This Table.

3D ResNet | 3D DenseNet
w/o Surface Completion 12.1mm 10.6mm
/w Surface Completion 11.7mm 10.2mm
/w Ground Truth of Complete Surface 11.0mm 8.3mm

2D data augmentation when training the 2D deep dense network,
and the number of training samples is the same as that used in
training the 3D deep dense network. As shown in Figure 8, the 3D
deep dense network consistently performs better than the 2D deep
dense network on all the three hand pose datasets, which indicates
that the 3D CNNs can better utilize the depth information and
provide more accurate estimation.

5.3.5 Shallow Network Versus Deep Network

We compare the estimation accuracy of the 3D shallow plain
network and the 3D deep networks. For 3D deep networks, apart
from the deep dense network, we also experiment with the deep
residual network [30] which has 4 residual blocks, 9 convolutional
layers and 3 full-connected layers. As can be seen in Figure 8, the
performance of 3D deep dense network is better than that of 3D
deep residual network, and the performance of 3D deep residual
network is better than that of 3D shallow plain network on all
the three hand pose datasets. Although the 3D deep networks
have more convolutional layers, the convolutional layers in the
3D shallow plain network have more output channels. Thus, the
forward propagation time of these three networks is comparable,
which is 3.5ms for 3D shallow plain network, 3.4ms for 3D deep
residual network, and 4.5ms for 3D deep dense network. We use
the 3D deep dense network in the following experiments.

5.3.6 Evaluation of Hand Surface Completion

We evaluate the impact of hand surface completion on the
accuracy of 3D hand pose estimation. Some examples of the
estimated complete hand surface as the intermediate results of our
method are shown in Figure 9. We extract the hand surface from
the 323 volume of distance function using Matlab’s isosurface
function [62]. As can be seen from Figure 9, our method is able

to generate complete hand surface from the input partial hand
surface. Compared with the ground truth, our estimation is more
blurry and loses some details of the complete hand surface. The
average L1 loss of estimated TDF volume against the ground truth
TDF volume of the complete surface is 0.112 in voxel space of
which the truncation distance is 2.5. The average errors of 3D hand
pose estimation using hand surface completion and without using
hand surface completion are presented in Table 1. As can be seen,
no matter using the 3D deep residual network or the 3D deep
dense network, the surface completion step can further improve
the estimation accuracy. In addition, in order to evaluate the
importance of the complete hand surface on hand pose estimation,
we use the ground truth of the complete hand surface combined
with the original partial hand surface as network input to estimate
the 3D hand pose. As presented in the last row of Table 1, the
networks can achieve much smaller estimation errors when using
the ground truth of the complete hand surface, which shows the
potential of our method to achieve smaller pose estimation error if
the complete hand surface could be estimated more accurately.

5.4 Comparison with State-of-the-art
5.4.1 Comparison on MSRA Dataset

On MSRA dataset, we compare our 3D CNN-based hand pose
estimation method with seven state-of-the-art methods: the hi-
erarchical regression method [26], the joint matrix factorization
and completion (JMFC) method [69], the multi-view CNN-based
method [19], the local surface normals (LSN) based method [45],
the crossing nets using deep generative models [23], the improved
2D CNN with hand pose prior and refinement (DeepPrior++) [70],
the region ensemble network (REN) [72] and the pose guided
structured REN (Pose-REN) [71]. Note that since the hierarchical
regression method [26] has been shown superior to the methods
in [1], [6], we indirectly compare our method with [1], [6].

As shown in Figure 10, our 3D CNN-based method out-
performs state-of-the-art methods on the MSRA dataset. The
proportion of good frames over different error thresholds is shown
in Figure 10 (left). Our method achieves the best performance
when the error threshold is larger than 10mm. For example, when
the error threshold is 30mm, the proportion of good frames of
our method is about 6%, 10%, 20%, 22%, 28%, 33% and 39%
higher than those of the methods in [71], [70], [19], [23], [45]
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(finger jointly regression), [26] and [69], respectively. When the
error threshold is Smm, the proportion of good frames of our
method is slightly worse than those of the methods in [26] and
[69]. This may be caused by the relatively large edge length of
the voxel, which is 5.5mm on average when the volume resolution
is 32x32x32. In Figure 10 (middle and right), we compare the
mean error distance over different yaw and pitch viewpoint angles
with the methods in [19], [26], [71], [72]. As can be seen, the
mean errors over different viewpoint angles of our method are
about 7mm, 4.5mm, 1.8mm and 0.8mm smaller than those of the
methods in [26], [19], [72] and [71], respectively. Our method
exhibits less variance to the pitch viewpoint angle changes with a
smaller standard deviation (0.58mm) than those of the methods in
[26] (0.79mm), [19] (0.64mm), [72] (0.82mm) and [71] (0.63mm).

5.4.2 Comparison on NYU Dataset

On NYU hand pose dataset, we first compare our 3D CNN-based
hand pose estimation method with nine state-of-the-art methods:
the 2D CNN-based heat-map regression method [7], the 2D CNN-
based direct regression method with a pose prior (DeepPrior) [17],
the 2D CNN-based method using a feedback loop [18], the 2D
CNN-based hand model parameter regression method [22], the
deep feature based matrix completion method (DeepHand) [20],
the crossing nets using deep generative models [23], the Lie-

X method applying the Lie group theory [73], the DeepPrior++
method [70], and the Pose-REN method [71]. For the 2D CNN-
based heat-map regression method [7], we estimate the 2D joint
locations from heat-maps and convert them to 3D locations using
corresponding depth values. As shown in Figure 11 (left), our
method outperforms these nine methods over all the error thresh-
olds. For example, the proportion of good frames of our method
is about 10% more than that of the Pose-REN method [71] when
the error threshold is between 20mm and 50mm.

In order to make a fair comparison with the spatial attention
network based hierarchical hybrid method in [21], we evaluate the
proportion of joints within different error thresholds on the subset
of 11 hand joints following the experiment in [21] (removing palm
joints except the root joint of thumb). As shown in Figure 11
(middle), our method is superior to the methods in [17], [18], [21],
[70], [71] over all the error thresholds. For example, the proportion
of joints within error threshold 20mm of our method is about 20%
more than that of the method in [21].

We also compare the mean error distance of our method
with those of the methods in [18], [22], [70], [71]. As shown
in Figure 11 (right), our method achieves the smallest mean error
distance on most joints, and the mean error distance over all joints
of our method is about 5.5mm, 6.5mm, 2mm and 1.5mm smaller
than those of methods in [18], [22], [70] and [71], receptively.
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Fig. 13: Qualitative results for MSRA, NYU and ICVL datasets. We compare our method based on the 3D deep dense network (in the
2nd column for each dataset) with the method based on the 2D deep dense network (in the 1st column for each dataset). The ground
truth hand joint locations are presented in the last column for each dataset. We show hand joint locations and bones with the point
cloud. Different hand joints and bones are visualized using different colors. This figure is best viewed in color.

5.4.3 Comparison on ICVL Dataset

On ICVL hand pose dataset, we compare our 3D CNN-based
hand pose estimation method with eight state-of-the-art methods:
the latent regression forest (LRF) [8], the hierarchical regression
method [26], the hand model parameter based method [22],
the LSN method [45], the crossing nets using deep generative
models [23], the REN method [24], the DeepPrior++ method [70],
and the Pose-REN method [71]. As shown in Figure 12 (left), our
method outperforms these eight methods over most of the error
thresholds on this dataset.

We also compare the mean error distance of our method
with those of the methods in [17], [45], [71], [72]. As shown
in Figure 12 (right), our method achieves the smallest mean error
distance on most joints. The mean error distance over all joints of
our method is 6.7mm, while those of methods in [17], [45], [72],
and [71] are 9.3mm, 8.2mm, 7.3mm and 6.8mm, receptively.

5.5 Cross-dataset Experiment

To evaluate the generalization ability of our 3D CNN-based hand
pose estimation method, we perform a cross-dataset experiment,
in which the 3D CNN model is trained on the whole MSRA
dataset [26] and is evaluated on the whole dataset released in [34].
According to the evaluation metric in [34], we calculate the mean
error distances for the wrist and the five fingertips. As shown
in Table 2, we compare our 3D CNN-based method with model
based tracking methods reported in [34], which are FORTH [5],
PSO [34], ICP [74], ICP-PSO [34] and ICP-PSO* (ICP-PSO with
finger-based initialization) [34], as well as the multi-view CNN-
based method [19]. As can be seen, our method achieves the
second best result on three subjects and on the average error over
all subjects.

TABLE 2: Average Estimation Errors (in mm) of 6 Subjects for 7
Methods Tested on the Dataset Released in [34].

Subject 1 2 3 4 5 6 Avg
FORTH 354 19.8 273 263 16.6 462 28.6
PSO 293 148 402 173 162 243 236
ICP 299 20.7 30.8 239 185 328 26.1
ICP-PSO 10.1 241 130 128 119 200 153
MVCNN 30.1 197 243 199 21.8 20.7 228
3D DenseNet 142 114 114 108 109 11.6 11.7
ICP-PSO* 86 74 98 104 78 11.7 92

It is worth noting that the model-based methods in [34] require
a carefully calibrated hand model for each subject. However, our
method does not use the calibrated hand model and thus is more
flexible for different subjects. In such situation, our method still
outperforms the FORTH, PSO, ICP and ICP-PSO methods, as
shown in Table 2. Our method performs a little bit worse than the
ICP-PSO* method which uses the ground truth to initialize the first
frame. But our method does not use any ground truth of the testing
data and is performed on cross-dataset which is more challenging.
Thus, the overall second best result achieved by our method in this
cross-dataset experiment indicates that our 3D CNN-based method
has good generalization ability.

5.6 Qualitative Results

Some qualitative results for MSRA, NYU and ICVL datasets are
shown in Figure 13. We compare our 3D deep dense network
with the baseline method of 2D deep dense network as described
in Section 5.3.4. As can be seen in Figure 13, when using the
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Fig. 14: Qualitative results for testing in real scenarios using Intel RealSense SR300 Depth Camera. For each hand pose, the 1st row
shows the RGB image of the hand; the 2nd row shows the depth image of the hand; the 3rd row shows the hand pose estimated by the
Intel RealSense SDK [32]; the 4th row shows the hand pose estimated by our 3D CNN-based method. We show hand joint locations
and bones with the point cloud. Joints of thumb, index, middle, ring and little fingers are visualized in green, blue, cyan, yellow and

pink, receptively. This figure is best viewed in color.

same residual network architecture, our 3D CNN-based method
can better utilize the depth information and provide more accurate
estimation than the 2D CNN-based method.

We also conduct qualitative comparison with the Intel Re-
alSense SDK [32]. We train the 3D CNN model on the whole
MSRA dataset and apply this pre-trained 3D CNN model to
perform real-time hand pose estimation with the Intel RealSense
SR300 Depth Camera in real scenarios. Qualitative results of our
3D CNN-based method and the Intel RealSense SDK [32] are
shown in Figure 14. As can be seen, the Intel RealSense SDK
does not accommodate complex hand poses as accurately as our
method. For example, in the 4th column of Figure 14, when the
little finger is occluded by the ring finger, the Intel RealSense
SDK makes wrong estimation of ring finger joints’ locations; in
the 6th column of Figure 14, the Intel RealSense SDK confuses
the index finger with the middle finger; in the 2nd, 8th and 9th
columns of Figure 14, the Intel RealSense SDK confuses the ring
finger with the little finger. By contrast, benefiting from the 3D
CNN which can better exploit the 3D information, our method
is able to correctly estimate the hand poses in these cases. More
comparisons are presented in our demo video, available online.

5.7 Runtime and Model Size

The runtime of our 3D CNN-based hand pose estimation method
is 7.9ms on average on the computer described in Section 5.2.
The process of generating the projective D-TSDF volumes with
32%x32x32 volume resolution on GPU takes 2.9ms on average.
The process of 3D deep dense network forward propagation
running on GPU takes 4.5ms on average. The process of recon-
structing 3D coordinates of hand joints in the 3D volume from
PCA coefficients output by the 3D CNN and transforming them
to 3D locations in the camera’s coordinate system takes 0.5ms
on average on CPU. Thus, our method is capable of running in
real-time at over 126 frames per second (fps). When adopting the

1. https://youtu.be/xdMebl Yt2g8

hand surface completion step in our method, it takes 7.6ms on
average for the 3D U-Net and the 3D deep dense network forward
propagation. Thus, the runtime of the method using hand surface
completion is 11.0ms, and the frame rate is 91 fps.

For model size, our 3D deep dense network model takes about
192MB, the 3D U-Net for hand surface completion takes about
200MB, while the multi-view CNNs in [19] take about 1.2GB.
The network parameters are stored in 32 bit float.

6 CONCLUSION

We present a novel 3D CNN-based hand pose estimation method
in this paper. By adopting the projective D-TSDF, we encode
the hand depth image as a 3D volumetric representation which
is then fed into the 3D CNN. We show that the 3D CNN
mapping the 3D volumes to 3D joint locations in a single pass
is easy to be trained in an end-to-end manner. The 3D deep dense
network can further improve the learning ability for 3D hand pose
estimation. To make the 3D CNN robust to various hand sizes
and global orientations, we perform 3D data augmentation on the
training data. To tackle the self-occlusion problem, we leverage
the complete hand surface as intermediate supervision for learning
3D hand pose. Experimental results indicate that our proposed 3D
CNN-based approach achieves state-of-the-art performance for 3D
hand pose estimation on three challenging datasets and is able to
run in real-time with good generalization ability.
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