
Temporal Structure Mining for Weakly Supervised Action Detection

Tan Yu1, Zhou Ren2, Yuncheng Li3, Enxu Yan3, Ning Xu4 and Junsong Yuan5

1 Cognitive Computing Lab, Baidu Research 2 Wormpex AI Research
3 Snap Inc. 4 Amazon 5 State University of New York at Buffalo

v yutan@baidu.com, renzhou200622@gmail.com, raingomm@gmail.com,

eyan2@snap.com, ningxu01@gmail.com, jsyuan@buffalo.edu

Abstract

Different from the fully-supervised action detection prob-
lem that is dependent on expensive frame-level annotations,
weakly supervised action detection (WSAD) only needs
video-level annotations, making it more practical for real-
world applications. Existing WSAD methods detect action
instances by scoring each video segment (a stack of frames)
individually. Most of them fail to model the temporal re-
lations among video segments and cannot effectively char-
acterize action instances possessing latent temporal struc-
ture. To alleviate this problem in WSAD, we propose the
temporal structure mining (TSM) approach. In TSM, each
action instance is modeled as a multi-phase process and
phase evolving within an action instance, i.e., the temporal
structure, is exploited. In this framework, phase filters are
used to calculate the confidence scores of the presence of an
action’s phases in each segment. Since in the WSAD task,
frame-level annotations are not available and thus phase
filters cannot be trained directly. To tackle the challenge,
we treat each segment’s phase as a hidden variable. We use
segments’ confidence scores from each phase filter to con-
struct a table and determine hidden variables, i.e., phases of
segments, by a maximal circulant path discovery along the
table. Experiments conducted on three benchmark datasets
demonstrate good performance of the proposed TSM.

1. Introduction
Thanks to the video representation learned by deep neu-

ral network, the community has achieved excellent perfor-
mance in action recognition task on trimmed video clips
[30, 35, 40, 5, 37]. Nevertheless, people are usually inter-
ested in action instances occurring in short intervals of a
video. Therefore, directly applying the classifier trained by
trimmed videos in untrimmed videos usually leads to fail-
ure. In order to alleviate the above problem, research com-
munity turns to the action detection task [9, 15, 3, 42, 19, 7],
which is to temporally localize action instances and mean-

 a1 a0 a2 a3

Background

 a1 a2 a3

(a) SMS [45].

 a1 a0 a2 a3

Background

 a1 a2 a3

(b) The proposed TSM.

Figure 1. Comparisons between SMS [45] and the proposed TSM.
In SMS, the phase evolves in start(a1)-middle(a2)-end(a3) order
and thus it can only model a single action instance. In contrast,
the proposed TSM additionally introduces a background phase,
a0. The phase evolves in a recurrent order, which is simple but
effectively models the videos contains multiple action instances.

while recognize their categories. Recently, substantial suc-
cess has been achieved in fully-supervised action detection
[36, 10, 12, 42, 19, 7], which relies on precise frame-level
action labels. Nevertheless, in a large-scale application, la-
belling frame-level annotations is too costly.

To relieve the demand for frame-level annotations,
weakly supervised action detection methods are proposed
recently [39, 21]. These methods only require video-level
labels, which indicates the presence of certain action in-
stances. Compared with frame-level annotations, video-
level labels are easier to obtain. UntrimmedNets [39] par-
titions a video into overlapped sliding windows, and the
detection is conducted by selecting sliding windows with
high salient scores. More recently, STPN [21] decomposes
a video into multiple short video segments of a uniform size
and learns to select a subset of segments. Nevertheless, both
UntrimmedNets and STPN score segments individually and
ignore the relation among them in action instances. Observ-
ing the limitations of existing methods, we are motivated to
exploit the temporal relations among segments.

Temporal relations have been extensively exploited in
the fully-supervised action detection. Representative works
include RNN-based approach [16], 3D-convolution ap-
proach [23] and temporal pyramid pooling [46]. Neverthe-
less, these methods are not applicable to weakly-supervised

4321

a1

a2

a3

a0

a0

a1

a2

a3

f1

f2

f3

f0

s1 sNsNs1

...

s1 sN

Loss

Segment
Features

Scores Table

 Phase
 Filters

Instance 1 Instance 2

-3

-1

-2

0 0

0 0 1 1 2 2 5 5 4 4 2 -2-2 1 0 3

4 6

1 31 4 3

0 3 2 １　0 1 1 0 0 -2-1 3 3 2 2 2

1 ４ 5 3 5 ６ 0 2 2 1 0 -1-2 2 1 2 4 4

(BG)

1 1 0

113

Figure 2. An untrimmed video V is partitioned into multiple video
segments {si}Ni=1. Each segment si is fed into backbone net-
work to obtain its feature. Each action is factorized into M phase
{am}Mm=1 (M = 3 in this case). Additionally, a background (BG)
phase a0 is devised. M action phase filters {fm}Mm=1 as well as a
background phase filter f0 take segments’ features as input and
obtain confidence scores of each segment for each phase. Ac-
tion detection is converted into a maximal circulant path discovery
problem in the confidence score table. In the training stage, the
score of the discovered maximal path is used for computing the
classification loss to learn phase-wise filters and update the back-
bone network. In the testing stage, action instances are consecutive
sequences of segments separated by the background phase.

scenarios since we have no knowledge of when an action
instance starts and finishes. On the other hand, the start-
middle-end structure designed by SMS [45] does not work
well either since it can only model a single instance. Due to
this limitation, each training sample of SMS contains only a
single action instance trimmed by the provided frame-level
labels, which are not available in the weakly-supervised
scenario. How to exploit temporal structure in an unsuper-
vised scenario remains an unsolved problem.

In this work, we model each action instance as a multi-
phase process like SMS [45] and SSN [46]. But we intro-
duce an additional background phase to model the back-
ground which separates multiple action instances in an
untrimmed video. It is simple but effectively address the
action detection in videos containing multiple action in-
stances. In Figure 1, we visualize the phase evolving as
well as the phase evolving in SMS [45]. In SMS, the phase
evolves in a start(a0)-middle (a1)-end(a2) order. Therefore,
it is only able to model a single action instance. In con-
trast, ours evolves in a recurrent order and effectively mod-
els videos containing multiple action instances. We define
the pattern of the phase evolving as temporal structure.
We utilize phase filters to describe confidence score of the
presence of each phase on each segment. Since in weakly-
supervised settings, we have no knowledge of when an ac-
tion instance starts or finishes, therefore, phase filters cannot
be trained directly as SSN [46]. To tackle this challenge,
we treat the phase of each segment as a hidden variable.
After obtaining the table of phase-wise confidence scores,
phases of segments are determined through maximal circu-

lant path discovery, which is efficiently solved through dy-
namic programming. In the training stage, the score of the
discovered maximal path constructs the classification loss
to learn phase filters and update the backbone network. In
the testing stage, detected action instances are consecutive
sequences of segments in non-background phases.

An interesting observation is that the maximal path dis-
covery on the phase-wise confidence score table relies on
the output of phase filters, while the optimization of filters’
weights depends on classification loss computed by the dis-
covered maximal path. Their mutually dependent relation
leads us to adopt an alternately updating strategy. We al-
ternately discover the maximal path based on current phase
filters and update phase filters using gradient derived from
the classification loss of the discovered maximal path. Fig-
ure 2 visualizes the architecture of the proposed temporal
structure mining (TSM) approach. As shown in the figure,
an untrimmed video is partitioned in multiple segments, and
the segments’ features are obtained from the backbone net-
work. Phase filters take the segment-level features as in-
put to generate phase-wise confidence scores table. The ac-
tion detection is formulated into finding a maximal circu-
lant path in the scores table, while the score of the maximal
path is used to compute classification loss. The gradient is
derived based on the loss to update TSM. Extensive exper-
iments on three public datasets show that our TSM consid-
erably outperforms state-of-the-art methods.

2. Related Work
Weakly-supervised action detection. Inspired by the

success of weakly supervised learning in object detection
[1], UntrimmedNets [39] formulates weakly supervised ac-
tion detection task as a multiple instance learning problem.
It learns attention weights on cropped video sliding win-
dow or proposals. Similarly, STPN [21] selects the key seg-
ments by imposing a sparsity constraint on the learned at-
tention. More recently, Auto-Loc [29] utilizes Outer-Inner-
Contrastive to obtain a more reliable boundary. Neverthe-
less, UntrimmedNet, STPN and Auto-Loc are based on per-
segment class activation and the temporal structure among
a video’s segments are ignored. Different from previous
methods, we seek to exploit the temporal structure inherited
in the action to improve the action detection performance.

Temporal structure. Context-Free Grammar (CFG)
[26] decomposes a human activity into multiple sub-events
and manually design an action grammar. Actom Sequence
Model (ASM) [11] models actions as sequences of actoms.
It manually annotates actoms for a set of training actions.
Nevertheless, the manual annotations used in both CFG
and ASM are subjective to annotators and might cost huge
amount of labors for a large dataset. Similarly, attributes
used in [18] and concepts used in [32] are also manually
defined. Tang et al. [34] partitions a video into a series

4322

of events and designs a variable-duration hidden Markov
model (HMM) to model the events transitions. But the
huge amount of parameters of the designed HMM makes
the training difficult. Wang et al. [38] decompose an action
into atoms and phases. Clustering is used to discover ac-
tion atoms and continuous atoms are merged into AND/OR
structure phases. Nevertheless, it does not consider the case
when a video contains uninterested background. It might be
only applicable for action recognition on trimmed videos.
Structured Segment Network (SSN) [46] divides an action
instance into three stages and utilizes temporal pyramid
pooling to explicitly exploit temporal structure. Since in the
fully-supervised scenario, the start and end of an action in-
stance are known in training dataset, it is straightforward
to construct the temporal pyramid. Nevertheless, in the
weakly-supervised cases, no temporal annotations are pro-
vided, and thus we are not able to conduct temporal pyra-
mid pooling used in SSN. Structural Maximal Sum (SMS)
[45] also exploits the temporal structure in action instances.
SMS designs a start-middle-end structure, which can only
model a single action instance. In the training phase, due
to single instance limitation, SMS has to manually crop a
whole video into clips containing a single action instance
using the provided temporal annotations. Nevertheless, in
weakly-supervised scenarios, no temporal annotations are
provided, making the training of SMS infeasible. Mean-
while, some methods [2, 6, 25] align videos to transcripts.
They rely on temporal orderings of manually defined basic
actions. In contrast, ours only relies on video-level class
label and automatically discovers the action phases.

3. Problem Formulation
3.1. Definition

Given a video V , we uniformly decompose it into N
short video segments [s1, · · · , sN]. For each action class
c, we define M action phases {aj}Mj=1 and model each ac-
tion instance as a M -phase process. Meanwhile, the back-
ground is modelled by phase a0. We define xi = g(si,W)
as the feature of segment si obtained from backbone where
W contains parameters of backbone. vjc,i is defined as the
confidence score of the presence of phase aj of class c in si:

vjc,i = f(xi,w
j
c, b

j
c) = x>i w

j
c + bjc, (1)

where f(·,wj
c, b

j
c) represents j-th action phase filter for the

class c. We use vjc,i to construct the confidence score table
visualized in Figure 3 where vjc,i is filled in the cell located
in row j and column i. We define (i, pi) as the cell in the
score table where the column index i is the segment index,
and the row index pi is the phase index, where pi ∈ [0,M].
We define [(1, p1), · · · , (N, pN)] as a path in the confidence
score table. For convenience, we omit the column index and
represent a path of class c by Pc = [p1, · · · , pN].

3.2. Temporal Structure Mining

Now we describe the phase evolving constraint, which is
the core component of temporal structure modelling. Given
a segment si in the phase pi, the phase pi+1 of its next
segment si+1 only has two choices: 1) remaining the same
phase as si, 2) evolving to the next phase. Formally,

pi+1 ∈ {pi, (pi + 1)%(M + 1)}. (2)

The mod operation % means that the last phase aM evolves
to the background phase a0 and a0 evolves to the first action
phase a1. In other words, the action phase transits in a circu-
lant manner. This recurrent evolving mechanism effectively
handles videos containing multiple action instances.

Given an untrimmed video V , we obtain phase-wise con-
fidence scores of each segment {vjc,i}Mj=1 through Eq. (1) to
construct the confidence score table. Given a path Pc =
[p1, p2, · · · , pN] , we define the path score Fc(Pc) as

Fc(Pc) =

N∑
i=1

1(pi 6= 0)vpic,i. (3)

where 1(pi 6= 0) is the indicator function omitting segments
in background phase. Since the background’s scores are not
used in computing path score, by setting the background
score v0c,i = 0, we obtain an equivalent but simpler form as

Fc(Pc) =

N∑
i=1

vpic,i. (4)

The temporal structure mining is formulated into discover-
ing a path constrained by Eq. (2) with maximal path score:

P∗c = argmax
Pc

Fc(Pc). (5)

We show an example of maximal circulant path in Fig-
ure 3 by green boxes. In the training stage, the score of
maximal circulant path Fc(P∗c) represents the presence of
action c in the video, which constructs the classification
loss. In the testing stage, the action instances of a certain
class are detected by grouping consecutive segments sepa-
rated by background phase. As shown in Figure 3, it detects
two action instances, which are separated by background.

Until now, two problems remain unsolved: 1) how to
learn phase filters {f(·,wj

c, b
j
c)}Mj=1 in Eq. (1); 2) how to

discover the maximal circulant path P∗c in Eq. (5) effi-
ciently. In Section 3.3 and 3.4, we tackle them, respectively.

3.3. Phase Filter Learning

Without frame-level action annotations, learning phase
filters is much more difficult than its fully-supervised coun-
terpart [46, 45]. We observe that filters learning relies on the
discovered maximal path, and on the same time the max-
imal path discovery depends on pre-trained phase filters.

4323

-1.3 -2.0 0.3 0.4 0.6 0.2 0.1 0.1 0.0 -0.1 -0.5 0.3 0.2 0.2 0.1 -0.3

-2.1 -3.1 0.4 0.5 0.3 0.5 0.6 0.2 0.1 -0.2 -0.7 0.1 0.2 0.6 0.2 -0.2

-3.1 0.8 -0.3 0.1 0.1 0.2 0.2 0.5 0.2 -0.2 -0.3 -0.3 0.3 0.1 0.4 -0.3

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

a1

a2

a3

a0 (BG)

Instance 1 Instance 2

Figure 3. An example for confidence score table. The green bold
cells are along the maximal circulant path. Due to the phase evolv-
ing constraint, maximal path discovery is not equivalent to greed-
ily selecting the phase with highest score for each segment. For
instance, in the second column of the table, we select phase a0,
the background phase (background), even though phase a3 has the
largest confidence score in this column.

Algorithm 1 Alternately Updating
Input: Videos {Vk}Kk=1 and ground-truth labels {yk}Kk=1.
Output: Weights of the phase filters {wj

c, b
j
c}
M,C
j=1,c=1,

backbone network weights W.
1: for c = 1 to C do
2: for j = 1 to M do
3: initialize wj

c ,b
j
c

4: for k = 1 to K do
5: Vk → [sk,1, · · · , sk,N]

6: for t = 1 to T do
7: for k = 1 to K do
8: xk,i ← g(sk,i,W)
9: for c = 1 to C do

10: discover P∗k,c based on Algorithm 2
11: compute Lc based on Eq. (6)
12: for j = 1 to M do
13: compute ∂Lc

∂wj
c

and ∂Lc

∂bjc
based on Eq. (7)

14: wj
c ← wj

c − δ ∂Lc

∂wj
c

, bjc ← bjc − δ ∂Lc

∂bjc

15: for i = 1 to N do
16: compute ∂Lc

∂xk,i
based on Eq. (8)

17: compute ∂Lc

∂W use Eq. (9)
18: W←W − δ ∂Lc

∂W

19: return {wj
c}
M,C
j=1,c=1,W.

Their mutually dependence leads to the fact that the training
process can not be conducted in a sequential manner.

To tackle this problem, we adopt an alternately updat-
ing strategy consisting of two steps. In the first step, the
maximal path P∗c is discovered based on output of currently
phase filters {f(·,wj

c, b
j
c)}Mj=1, using Maximal Path Dis-

covery as discussed in Sec. 3.4 (Algorithm 2). In the second
step, the path score of detected maximal path Fc(P∗c) and
the video’s ground-truth class label yc ∈ {0, 1} are used to
compute the classification loss Lc defined as

Lc =− yc log(tanh(Fc(P∗c) + ε)

− (1− yc) log(1− tanh(Fc(P∗c)).
(6)

Note that, Lc is not the standard cross-entropy loss. We

Phase
Evolve

Time Progresss1 sN

a0

a1

a2

a3

Figure 4. Temporal structure mining is converted into maximal
circulant path discovery along cylindrical surface from top surface
to bottom surface. The green curve is the maximal circulant path.

replace sigmoid(·) used in original cross-entropy loss by
tanh(·). Below we explain the reason. By setting all
the segments in background phase, we can obtain a triv-
ial path P̂c = [0, 0, · · · , 0]. Since Fc(P̂c) = 0, the
maximal path’s score Fc(P∗c) ∈ [0,+∞]. It means that
sigmoid(Fc(P∗c)) ∈ [1/2, 1) and thus the standard cross-
entropy loss is no longer feasible. Therefore, we use
tanh(·) to replace sigmoid(·) since tanh(Fc(P∗c)) ∈ [0, 1).
ε is a small positive value to ensure tanh(Fc(P∗c) + ε) > 0.

Based on the loss function defined above, the gradients
of loss with respect to weights of phase filters and the back-
bone are derived through back-propagation as Eq. (7)(9).
We alternately discover maximal path and update weights
in each iteration until the maximal iteration is reached. Al-
gorithm 1 describes the training procedure.

∂Lc
∂wj

c

=
∂Lc

∂Fc(P∗k,c)

N∑
i=1

1(pi = j)
∂vji,c
∂wpi

c
,

∂Lc
∂bjc

=
∂Lc

∂Fc(P∗k,c)

N∑
i=1

1(pi = j)
∂vji,c
∂bpic

.

(7)

∂Lc
∂xk,i

=
∂Lc

∂Fc(P∗k,c)

M∑
j=1

1(pi = j)
∂vji,c
∂xk,i

. (8)

∂Lc
∂vec(W)

=
N∑
i=1

[∂xk,i
∂vec(W)

]> ∂Lc
∂xk,i

, (9)

where vec(·) unfolds W to a vector. Despite that the pro-
posed algorithm supports backbone weights updating, lim-
ited by computing resources, we fix the backbone network
in implementation and use it as a feature extraction module.

3.4. Maximal Path Discovery

Naively, Fc(P∗c) can be obtained through exhaustively
searching over all possible paths satisfying the defined tem-
poral constraint. Nevertheless, the exhaustive search takes
O(M2N) complexity, making it inscalable with respect to
N . Thanks to the temporal constraint in phase transition,
the maximal path discovery problem can be tackled effi-
ciently by dynamic programming in O(MN) complexity.

Recall that, the phases of segments satisfy the temporal
constraint defined in Eq. (2). As shown in Figure 4, let us

4324

represent time progress as step-right operation and repre-
sent phase evolves as the step-clockwise operation. Con-
strained by the temporal consistency, when determining the
phase of the next segment, it has two choices: 1) step right,
2) step right and simultaneously step clockwise. The first
choice represents the phase of the next segment remains
the same as the current segment. On the other hand, the
second choice is that an action evolves to another phase in
next segment. The circulant phase transition settings makes
the problem equivalent to finding a maximal circulant path
along the cylindrical surface. Since dynamic programming
is based on back tracking, we rewrite Eq. (2) originally for
forward tracking into its back-tracking version to facilitate
the derivation of dynamic programming:

pi−1 ∈ {(pi +M)%(M + 1), pi}. (10)

We define Sjc,i as maximal score of all possible paths start-
ing from segment s1 and ending in segment si with phase j
for class c. Based on Eq. (10), it is straightforward to obtain

Sjc,i = max{Sjc,i−1, S
j↓
c,i−1}+ vjc,i, (11)

where
j ↓ = (j +M)%(M + 1). (12)

Fc(P∗c) can be obtained through

Fc(P∗c) = max
j∈[0,M]

Sjc,N . (13)

The procedure of the maximal path discovery is described
in Algorithm 2. Since it only hasN×M iterations to obtain
P∗c and Fc(P∗c), the time complexity is only O(NM).

3.5. Soft-max Path Discovery

Note that, the aforementioned maximal path discovery
process only selects the path with the highest score. In
this case, the gradient is only back-propagated through cells
along the maximal path, leaving cells not in the maximal
path ignored. To exploit more information in scores table
and stabilizes the training. In this section, we propose a
soft-max path discovery algorithm. The idea is simply re-
placing the Eq. (11) by its soft counterpart:

Sjc,i ← maxα(Sjc,i−1, S
j↓
c,i−1) + vjc,i, (14)

where maxα(·, ·) is a soft-max operator defined as:

maxα(x, y) = log(eαx + eαy)/α, (15)

in which α is a positive constant controlling the softness. It
is not difficult to observe that

lim
α→+∞

maxα(x, y) = max(x, y). (16)

By default we set α = 10. In soft-max path discovery,

Algorithm 2 Maximal Path Discovery
Input: The segments features [x1, · · · ,xN], an action type
c and weights of the phase filters {wj

c, b
j
c}Mj=1.

Output: The maximal path P∗c = [p1, · · · , pN]. The path
score of maximal path Fc(P∗c).

1: for j = 0 to M do
vjc,1 ← x>1 w

j
c + bjc

Sjc,1 ← vjc,1

2: for i = 2 to N do
3: for j = 0 to M do
4: vjc,i ← x>i w

j
c + bjc

5: if Sjc,i−1 > Sj↓c,i−1 then
6: Sjc,i ← Sjc,i−1 + vjc,i, P

j
i ← j

7: else
8: Sjc,i ← Sj↓c,i−1 + vjc,i, P

j
i ← j ↓

9: Fc(P∗c)← maxj∈[0,M] S
j
c,N

10: pN ← argmaxj∈[0,M] S
j
c,N

11: for i = N − 1 to 1 do
12: pi ← P

pi+1

i+1

13: return P∗c and Fc(P∗c).

F̄c(P∗c) = log(

M∑
j=0

eαS
j
c,N)/α. (17)

In back-propagation,

∂Lc
∂wj

c

=
∂Lc

∂F̃c(P∗c)

M∑
j=0

eαS
j
c,N∑N

j′=1 e
αSj′

c,N

∂Sjc,N

∂wj
c

. (18)

From Eq. (18), we can observe that it counts multiple paths
into consideration and assigns different weights according
to their importance. Note that, the soft-max path discovery
is only conducted in training. In contrast, in testing, we still
conduct maximal path discovery to detect action instances.
Algorithm 3 describes the soft-max path discovery.

3.6. Relation with existing methods

Structured Segment Network (SSN) [46] also exploits
the temporal structure in temporal action detection. They
divide each action proposal into starting, course and end-
ing stages. They further obtain an instance’s representation
through temporal pyramid pooling. Since they deal with
a fully-supervised scenario, the positive training proposals
are available to perform structured temporal pyramid pool-
ing. Nevertheless, in a weakly-supervised scenario, we do
not have access to temporal annotations, making temporal
pyramid pooling no longer feasible.

Structural Maximal Sum (SMS) [45] designs a start-
middle-end structure for modeling a single action instance.

4325

Algorithm 3 Soft-Max Path Discovery
Input: The segments’ features [x1, · · · ,xN], an action type
c and weights of the phase filters {wj

c, b
j
c}Mj=1.

Output: The path score of soft path F̄c(P∗c).
1: for j = 0 to M do

vjc,1 ← x>1 w
j
c + bjc

Sjc,1 ← vjc,1

2: for i = 2 to N do
3: for j = 0 to M do

vjc,i ← x>i w
j
c + bjc

Sjc,i ← maxα(Sjc,i−1, S
j↓
c,i−1) + vjc,i

4: F̄c(P∗c)← log(
∑M
j=0 e

αSj
c,N)/α

5: return F̄c(P∗c).

SMS is also designed for fully-supervised action detection.
Utilizing the known ground-truth action instances’ bound-
aries, they partition a video into several positive training
samples containing a single action instance. Nevertheless,
in a weakly supervised scenario, an untrimmed video might
contain multiple instances. In that case, an action instance
might start after the finish of another action instance and
thus the start-middle-end structure designed for a single ac-
tion instance does not work well.

4. Experiments
In this section, we first describe the benchmark datasets,

evaluation metrics, backbone network and implementation
details. After that, we conduct ablation study to analyze the
contribution of individual modules and then compare the
proposed TSM with state-of-the-art techniques.

4.1. Datasets and Evaluation Metrics

We evaluate TSM on three popular action localization
benchmark datasets, THUMOS14 [14], ActivityNet 1.2 [4]
and ActivityNet 1.3 [4]. Videos on both datasets are
untrimmed and we do not utilize the temporal boundary an-
notations in the training stage. On THUMOS14 dataset, we
train our model with the 20-class validation subset, which
consists of 200 untrimmed videos, without using the tempo-
ral annotations. Following the settings in [21], we evaluate
our algorithm using the 212 videos in the 20-class testing
subset with temporal annotations. ActivityNet 1.2 consists
of 4, 819 training videos and 2, 383 videos for validation,
covering 100 activity classes. ActivityNet 1.3 consists of
10, 024 videos for training, 4, 926 for validation, with 200
activity classes. On ActivityNet 1.2 and ActivityNet 1.3
datasets, we use training split as the training set and test
on the validation set. We follow the standard evaluation
protocol based on mean average precision values at several
different levels of intersection over union (IoU) thresholds.

All datasets are evaluated by the standard action detection
evaluation programs provided by the datasets.

4.2. Backbone Network and Two-stream Fusion

Since compared baselines adopt different features, to
make a fair comparison with baselines, we adopt two types
of backbone networks to extract features for video seg-
ments. The first backbone is I3D [5] pretrained on the Ki-
netics dataset [17], which are also adopted by one of our
compared baseline STPN [21]. The second backbone is
TSN [40] pretrained by UntrimmedNet [39], which is also
used by one of our compared baseline Auto-Loc [28]. Even
though our algorithm supports an end-to-end training as de-
rived in Eq. (9), due to limited computing resources, we
only use backbone as feature extraction modules.

It is demonstrated in many previous methods [21] that,
by fusing multiple information such as RGB and optical
flow achieves a considerably better performance than us-
ing a single modality. Therefore, we utilize two separate
networks which takes RGB and optical flow as input, re-
spectively. The detection results from two-stream networks
are further fused to obtain the final detection results. To be
specific, given a video V and a specific class type c, we first
obtain the candidate temporal intervals Irgb = {Iirgb}

Krgb

i=1

and Iof = {Iiof}
Kof

i=1 based on a single RGB or optical-flow
(of) network, respectively. The final score of each interval
I ∈ Irgb ∪ Iof is obtained by combining its score from the
RGB network and that from the optical-flow network

Fc(I) =
F rgbc (I) + λF ofc (I)

1 + λ
. (19)

We set λ = 2 on the THUMOS14 dataset and set λ = 0.5
on ActivityNet 1.2 and ActivityNet 1.3 datasets. Since there
exist overlapping intervals in Irgb ∪ Iof , we conduct non-
maximal suppression on intervals based on their scores.

4.3. Implementation Details

For the RGB stream, we rescale the smallest dimen-
sion of a frame to 256 and perform the center crop of size
224×224. For the flow stream, we apply the TV-L1 optical
flow algorithm [41]. Pixel values of obtained optical flows
are truncated to the range [−20, 20], then rescaled between
−1 and 1. We sample 400 segments at uniform interval
from each video. The network is trained using traditional
SGD optimizer. The learning rate is initialized as 0.005 and
decays to its 1

10 every 10 epochs. The whole training pro-
cess stops at 30 epochs and the performance is considerably
stable with respect to weights initialization. At testing time,
for each class, we rank detected candidate locations accord-
ing to their structural scores.

4326

2-phase 3-phase
mAP@IoU 0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7
RGB 29.5 22.1 15.1 7.3 2.7 30.8 22.7 15.5 7.6 3.4
Optical Flow 36.1 29.3 22.9 13.6 6.9 37.1 30.4 23.4 13.3 7.0
Two-stream 39.3 31.7 24.6 14.1 6.6 39.5 31.9 24.5 13.8 7.1

Table 1. Two-stream fusion on THUMOS14 dataset.
2-phase 3-phase

mAP@IoU 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
RGB 28.0 24.0 19.4 14.7 8.4 28.1 23.8 19.5 14.7 8.2
Optical Fow 22.5 19.6 16.5 12.9 7.0 23.1 20.3 17.4 13.2 7.7
Two-stream 29.7 25.6 20.8 15.8 9.0 30.3 25.7 21.4 16.1 9.0

Table 2. Two-stream fusion on ActivityNet 1.3 dataset.

M mAP@IoU
0.3 0.4 0.5 0.6 0.7 Avg

1 37.1 29.7 22.7 12.6 6.1 21.6
2 39.3 31.7 24.6 14.1 6.6 23.3
3 39.5 31.9 24.5 13.8 7.1 23.4
4 38.9 31.0 23.8 13.2 6.5 22.7
5 38.2 30.6 23.5 13.0 6.3 22.3
Table 3. Influence of M on the THUMOS14 dataset.

4.4. Ablation Study

Influence of phase number. We evaluate the influence
of phase number M on THUMOS14 dataset. We use I3D
features. We vary the phase number M among [1, 5]. Note
that, when phase number is 1, it is equivalent to select-
ing foreground from background and ignoring the temporal
structure. As shown in Table 3, the performance signifi-
cantly improves when M increases from 1 to {2, 3}, which
validates the superiority of exploiting the temporal struc-
ture. Meanwhile, the performance turns worse when M
further increases to {4, 5}. The worse performance might
be due to the fact that 3 phases are enough to model the
temporal structure of most action instances in THUMOS14
dataset and more phases are more prone to over-fitting.

Soft-max Path Discovery. We demonstrate the advan-
tage of soft-max path discovery over its counterpart based
on maximal path discovery. The experiments are con-
ducted on THUMOS14 dataset based on two-stream I3D
features with 2-phase settings. As shown in Table 4, the
soft-max path discovery converges faster than its counter-
part. It only need 30 epochs whereas its hard counterpart
requires 45 epochs. Meanwhile, the performance of soft-
max path discovery consistently outperforms its hard coun-
terpart. For instance, when IoU = 0.3, the mAP achieved
by soft path discovery is 39.3, whereas its hard counterpart
only achieves a 38.7 mAP. Moreover,

Two-stream fusion. We show the performance improve-
ment through fusing the RGB stream and the optical-flow
stream on THUMOS14 and ActivityNet 1.3 datasets. The

Supervision Epochs mAP@IoU
0.3 0.5 0.7

Hard 45 38.7 24.0 6.2
Soft 30 39.3 24.6 6.6

Table 4. The comparison between soft-max path discovery (Soft)
and maximal path discovery (Hard) on THUMOS14 dataset.

Supervision Method mAP@IoU
0.3 0.5 0.7

Full Richard et al. [24] 30.0 15.2 −
Full Yeung et al. [43] 36.0 17.1 −
Full Yuan et al. [44] 33.6 18.8 −
Full Yuan et al. [45] 36.5 17.8 −
Full S-CNN [29] 36.3 19.0 5.3
Full CDC [27] 40.1 23.3 7.9
Full Dai et al. [8] − 25.6 9.0
Full SSAD [19] 43.0 24.6 −
Full R-C3D [42] 44.7 28.9 −
Full SS-TAD [3] 45.7 29.2 9.6
Full Gao et al. [13] 50.1 31.0 9.9
Full SSN [46] 51.9 29.8 10.7

Weak Sun et al. [33] 8.5 4.4 −
Weak Hide and Seek [31] 19.5 6.8 −
Weak UntrimmedNets [39] 31.1 16.2 5.1
Weak STPN [21] 35.5 16.9 4.3
Weak Auto-Loc [28] 35.8 21.2 5.8
Weak W-TLAC [22] 40.1 22.8 7.6
Weak Our (TSN) 37.3 21.9 6.0
Weak Our (I3D) 39.5 24.5 7.1

Table 5. Comparisons with state-of-the-art methods under differ-
ent IoU thresholds on THUMOS14 dataset.

results are obtained from I3D segment features. As shown
in Table 1 and Table 2 , fusing the detection results from
two streams generally achieves better action detection per-
formance than that based on a single modality. One excep-
tion is the case when IoU = 0.7 on THUMOS14 dataset at
a 2-phase setting. In that case, using a single RGB stream

4327

(a) ‘JavelinThrow’ action detection on video test 0001159. (b) ‘LongJump’ action detection on video test 0000379

Figure 5. Green curves are the activations of phase-1 filter and red curves are activations of phase-2 filter. Blue lines are ground-truth
locations of action instances. Green lines are locations of segments in phase 1 and red lines are locations of segments in phase 2.

Supervision Method mAP@IoU
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Full SSN [46] 41.3 38.8 35.9 32.9 30.4 27.0 22.2 18.2 13.2 6.1

Weak UntrimmedNets [39] 7.4 6.1 5.2 4.5 3.9 3.2 2.5 1.8 1.2 0.7
Weak Auto-Loc [28] 27.3 24.9 22.5 19.9 17.5 15.1 13.0 10.0 6.8 3.3
Weak TSM (Ours) 28.3 26.0 23.6 21.2 18.9 17.0 14.0 11.1 7.5 3.5

Table 6. Comparisons with the state-of-the-art methods under different IoU thresholds on ActivityNet 1.2 dataset.

Supervision Method mAP@IoU
0.5 0.75 0.95

Full Montes et al. [20] 22.5 − −
Full R-C3D [42] 26.8 − −
Full CDC [27] 45.3 26.0 0.2
Full SSN [46] 43.3 28.7 5.6

Weak STPN [21] 29.3 16.9 2.3
Weak TSM (Ours) 30.3 19.0 4.5

Table 7. Comparisons with the state-of-the-art methods under dif-
ferent IoU thresholds on ActivityNet 1.3 dataset.

achieves a 6.9 mAP whereas the two-stream only achieves
a 6.6 mAP. The worse performance might be due to the
fact that the performance of the optical-flow stream is much
worse than that of the RGB-stream.

4.5. Comparison with state-of-the-art methods

To further demonstrate the effectiveness of our method,
we compare it with current state-of-art methods on THU-
MOS14, AcitivityNet 1.2 and AcitivityNet 1.3 datasets. To
make a fair comparison with Auto-Loc [29] on ActivityNet
1.2, we adopt the same TSN features released by the authors
of Auto-Loc. Meanwhile, to fairly compare with STPN [21]
on ActivityNet 1.3, we use the same I3D features. More-
over, we show our results using both TSN and I3D features
on THUMOS14 dataset. We compare ours with both fully-
supervised action detection methods and weakly supervised
ones. As shown in Table 5 6 7, out method consistently
outperforms STPN [21] and Auto-loc [28] on all testing
dataset. For instance, on the THUMOS14 dataset, when
IoU threshold is 0.3, ours based on TSN features achieve a

37.3 mAP whereas Auto-Loc only achieves a 35.8 mAP.
On the Acitivitynet 1.3, ours achieve a 19.0 mAP when
IoU= 0.75, whereas STPN [21] only achieves a 16.9 mAP.
Meanwhile, we achieve comparable performance with W-
TALC [22] using the same I3D features. We visualize
the detection result of a 2-phase setting on THUMOS’14
dataset in Figure 5. As shown in the figure, the proposed
method not only detects most of action instances but also
discover a temporal structure for each action instance.

5. Conclusion
In this paper, we investigate the problem of weakly su-

pervised action detection (WSAD) in untrimmed videos and
propose temporal structure mining (TSM) approach. Dif-
ferent from existing WSAD methods ignoring the tempo-
ral relation among segments, our TSM exploits the tempo-
ral structure in action instances. We model an action as
a multiple-phase process and define temporal structure as
the pattern of phase evolving. To effectively model videos
containing multiple action instances, we design a recurrent
phase evolving mechanism. We utilize phase filters to de-
scribe the confidence score of the presence of a specific ac-
tion phase in a segment. Due to the lack of temporal anno-
tation in training data, we treat the phase of a segment as a
hidden variable which is determined by maximal circulant
path discovery in the confidence score table. Extensive ex-
periments conducted on three public datasets demonstrates
the superiority of the proposed TSM in WSAD.
Acknowledgement: It is supported by start-up grants from
University at Buffalo and a gift grant from Snap Inc.

4328

References
[1] Hakan Bilen and Andrea Vedaldi. Weakly supervised deep

detection networks. In CVPR, 2016.
[2] Piotr Bojanowski, Rémi Lajugie, Francis Bach, Ivan Laptev,

Jean Ponce, Cordelia Schmid, and Josef Sivic. Weakly su-
pervised action labeling in videos under ordering constraints.
In ECCV, 2014.

[3] S Buch, V Escorcia, B Ghanem, L Fei-Fei, and JC
Niebles. End-to-end, single-stream temporal action detec-
tion in untrimmed videos. In BMVC, 2017.

[4] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,
and Juan Carlos Niebles. Activitynet: A large-scale video
benchmark for human activity understanding. In CVPR,
2015.

[5] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In CVPR,
pages 4724–4733, 2017.

[6] Chien-Yi Chang, De-An Huang, Yanan Sui, Li Fei-Fei, and
Juan Carlos Niebles. D3tw: Discriminative differentiable
dynamic time warping for weakly supervised action align-
ment and segmentation. CoRR, abs/1901.02598, 2019.

[7] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Sey-
bold, David A Ross, Jia Deng, and Rahul Sukthankar. Re-
thinking the faster R-CNN architecture for temporal action
localization. In CVPR, 2018.

[8] Xiyang Dai, Bharat Singh, Guyue Zhang, Larry S Davis, and
Yan Qiu Chen. Temporal context network for activity local-
ization in videos. In ICCV, 2017.

[9] Achal Dave, Olga Russakovsky, and Deva Ramanan. Predic-
tivecorrective networks for action detection. In CVPR, 2017.

[10] Tran Du, Yuan Junsong, and David Forsyth. Video event de-
tection: From subvolume localization to spatiotemporal path
search. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(2):404–416, 2013.

[11] Adrien Gaidon, Zaid Harchaoui, and Cordelia Schmid. Ac-
tom sequence models for efficient action detection. In CVPR
2011, pages 3201–3208. IEEE, 2011.

[12] Yu Gang and Junsong Yuan. Fast action proposals for human
action detection and search. In CVPR, 2015.

[13] Jiyang Gao, Zhenheng Yang, and Ram Nevatia. Cas-
caded boundary regression for temporal action detection. In
BMVC, 2017.

[14] A Gorban, H Idrees, YG Jiang, A Roshan Zamir, I Laptev, M
Shah, and R Sukthankar. Thumos challenge: Action recog-
nition with a large number of classes, 2015.

[15] Fabian Caba Heilbron, Wayner Barrios, Victor Escorcia, and
Bernard Ghanem. Scc: Semantic context cascade for effi-
cient action detection. In CVPR, 2017.

[16] Rui Hou, Rahul Sukthankar, and Mubarak Shah. Real-time
temporal action localization in untrimmed videos by sub-
action discovery. In BMVC, 2017.

[17] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017.

[18] Weixin Li and Nuno Vasconcelos. Recognizing activities by
attribute dynamics. NIPS, 2013.

[19] Tianwei Lin, Xu Zhao, and Zheng Shou. Single shot tempo-
ral action detection. In ACM on Multimedia, 2017.

[20] Alberto Montes, Amaia Salvador, Santiago Pascual, and
Xavier Giro-i Nieto. Temporal activity detection in
untrimmed videos with recurrent neural networks. arXiv
preprint arXiv:1608.08128, 2016.

[21] Phuc Nguyen, Ting Liu, Gautam Prasad, and Bohyung Han.
Weakly supervised action localization by sparse temporal
pooling network. In CVPR, 2018.

[22] Sujoy Paul, Sourya Roy, and Amit K Roy-Chowdhury. W-
talc: Weakly-supervised temporal activity localization and
classification. In ECCV, 2018.

[23] Colin Lea Michael D Flynn René and Vidal Austin Reiter
Gregory D Hager. Temporal convolutional networks for ac-
tion segmentation and detection. In ICCV, 2017.

[24] Alexander Richard, Hilde Kuehne, and Juergen Gall. Weakly
supervised action learning with RNN based fine-to-coarse
modeling. In CVPR, pages 1273–1282, 2017.

[25] Alexander Richard, Hilde Kuehne, Ahsan Iqbal, and Juer-
gen Gall. Neuralnetwork-viterbi: A framework for weakly
supervised video learning. In ECCV, 2018.

[26] Michael S Ryoo and Jake K Aggarwal. Semantic represen-
tation and recognition of continued and recursive human ac-
tivities. IJCV, 82(1), 2009.

[27] Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki
Miyazawa, and Shih-Fu Chang. Cdc: Convolutional-de-
convolutional networks for precise temporal action localiza-
tion in untrimmed videos. In CVPR, pages 1417–1426, 2017.

[28] Zheng Shou, Hang Gao, Lei Zhang, Kazuyuki Miyazawa,
and Shih-Fu Chang. Autoloc: Weakly-supervised temporal
action localization in untrimmed videos. In ECCV, pages
154–171, 2018.

[29] Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal
action localization in untrimmed videos via multi-stage cnns.
In CVPR, 2016.

[30] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. In
NIPS, 2014.

[31] Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek:
Forcing a network to be meticulous for weakly-supervised
object and action localization. In ICCV, 2017.

[32] Chen Sun and Ram Nevatia. Active: Activity concept tran-
sitions in video event classification. In ICCV, 2013.

[33] Chen Sun, Sanketh Shetty, Rahul Sukthankar, and Ram
Nevatia. Temporal localization of fine-grained actions in
videos by domain transfer from web images. In ACM on
Multimedia, 2015.

[34] Kevin Tang, Li Fei-Fei, and Daphne Koller. Learning latent
temporal structure for complex event detection. In CVPR,
2012.

[35] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In ICCV, 2015.

[36] Du Tran and Junsong Yuan. Max-margin structured output
regression for spatio-temporal action localization. In NIPS,
2012.

4329

[37] Zhigang Tu, Xie Wei, Qianqing Qin, Ronald Poppe,
Remco C. Veltkamp, Baoxin Li, and Junsong Yuan. Multi-
stream cnn: Learning representations based on human-
related regions for action recognition. Pattern Recognition,
79:32–43, 2018.

[38] Limin Wang, Yu Qiao, and Xiaoou Tang. Mining motion
atoms and phrases for complex action recognition. In ICCV,
2013.

[39] Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc Van Gool.
Untrimmednets for weakly supervised action recognition
and detection. In CVPR, 2017.

[40] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment
networks: Towards good practices for deep action recogni-
tion. In ECCV, 2016.

[41] Andreas Wedel, Thomas Pock, Christopher Zach, Horst
Bischof, and Daniel Cremers. An improved algorithm for
tv-l 1 optical flow. In Statistical and geometrical approaches
to visual motion analysis. Springer, 2009.

[42] Huijuan Xu, Abir Das, and Kate Saenko. R-C3D: region
convolutional 3D network for temporal activity detection. In
ICCV, pages 5794–5803, 2017.

[43] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-
Fei. End-to-end learning of action detection from frame
glimpses in videos. In CVPR, 2016.

[44] Jun Yuan, Bingbing Ni, Xiaokang Yang, and Ashraf A Kas-
sim. Temporal action localization with pyramid of score dis-
tribution features. In CVPR, 2016.

[45] Ze-Huan Yuan, Jonathan C Stroud, Tong Lu, and Jia Deng.
Temporal action localization by structured maximal sums. In
CVPR, 2017.

[46] Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xi-
aoou Tang, and Dahua Lin. Temporal action detection with
structured segment networks. In ICCV, 2017.

4330

